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ABSTRACT

Diffusion models (DM) have become essential components of generative model-
ing, demonstrating exceptional performance in domains like image synthesis, au-
dio generation, and complex data interpolation. Signal-to-Noise diffusion models
represent a broad family encompassing many state-of-the-art models. Although
several efforts have been made to explore Signal-to-Noise (S2N) diffusion models
from different angles, a comprehensive study that connects these viewpoints and
introduces new insights is still needed. In this work, we provide an in-depth per-
spective on noise schedulers, analyzing their role through the lens of the signal-to-
noise ratio (SNR) and its relationship to information theory. Based on this frame-
work, we introduce a generalized backward equation to improve the efficiency of
the inference process.

1 INTRODUCTION

Diffusion models (DM) have become a fundamental part of generative models, which excel in var-
ious domains, including creating images, generating audio, and interpolating complex data. The
foundational framework for these models was introduced by |Sohl-Dickstein et al.| (2015)), and [Ho
et al.|(2020) further refined it with Denoising Diffusion Probabilistic Models (DDPMs). DDPMs add
noise to data iteratively and learn to reverse this process, allowing them to model data distributions
effectively.

Signal-to-Noise (S2N) diffusion models (Kingma et al., [2021} |Kingma & Gao, [2024) constitute an
extensive class of diffusion models encompassing various other models, such as variance-preserving
(VP) and variance-exploding (VE) DMs (Song et al., 2020b)), iDDPM (Nichol & Dhariwall, |2021)),
DDPM (Ho et al.| [2020), and EDM (Karras et al., 2022). Originally, continuous variation models
were introduced by Kingma et al.| (2021). They first developed a discrete S2N diffusion model,
followed by a variational-based backward inference, and finally examined the asymptotic behavior
as the number of time steps approaches infinity, leading to a continuous variational DM. Building
on the development of continuous variational DMs, |Kingma & Gao|(2024) further investigated S2N
diffusion models in the signal-to-noise space, identifying connections between diffusion objectives
with different weighting formulas and simple data augmentation techniques. An intriguing ques-
tion arises regarding whether the forward and backward distributions developed in Kingma et al.
(2021) using the variational approach and asymptotic analysis are consistent with and connectable
to the forward and backward processes of the Stochastic Differential Equation (SDE) viewpoint of
diffusion models (Song et al.,|2020b).

Moreover, using the tool developed in Zhang & Chen|(2022)), we can conveniently derive the back-
ward SDE of S2N diffusion models. However, identifying the exact solution of this backward SDE
is non-trivial, as it only describes the transition from z; to z;_a; over a small interval At, rather
than allowing us to directly jump from z; to z, for s < ¢. It is worth noting that (Zhang & Chen,
2022)) addressed the same issue for the ODEs of VPSDE (Ho et al., 2020) and VESDE (Song et al.,
2020b). Here, we extend this analysis by providing a solution for the backward SDE of general S2N
diffusion models. Additionally, we connect this to the backward transition probability pg(zs | z¢),
showing that this is a special case within the spectrum of our developed formulas, which we can
exploit to obtain better samples. Additionally, we look into the Non-Markovnian continuous vari-
ational model of the S2N diffusion models. We note that DDIM (Song et al.l [2020a) relaxed the
Markov property to arrive in the discrete Non-Markovnian diffusion model for DDPM (Ho et al.,
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2020). Here we develop more general Non-Markovnian continuous variational model of the S2N
diffusion models. Furthermore, we investigate the backward SDE for Non-Markovnian continuous
variational model of the S2N diffusion models which is a novel result because what was gained in
Song et al.| (2020a)) is the connection between DDIM and the probability flow ODE (Song et al.,
2020b).

Last but not least, inspired by |[Kingma et al.| (2021); |Kingma & Gao| (2024), we transform the S2N
diffusion models into the signal-to-noise space. Under certain conditions, we find that the original
S2N diffusion models, which form an equivalent class, are transformed into the same diffusion
model in the signal-to-noise space. Furthermore, we develop an information-theoretic perspective
for S2N diffusion models in this space, which can be seen as an extension of the work by Kong et al.
(2023)), whose analysis was limited to specific and simple S2N diffusion models.

In this work, we propose connective viewpoints of S2N diffusion models. Specifically, our contri-
bution can be summarized as follows:

* We devise a forward SDE for S2N diffusion models and demonstrate its connectivity and
consistency with the results developed in (Kingma et al.l[2021)). Moreover, through asymp-
totic analysis, we show that we can inversely recover the developed forward SDE from the
formula presented in Kingma et al.[(2021)).

* To enable sampling, drawing inspiration from [Zhang & Chen| (2022)), we devise a general
backward SDE and an exact inference formula to transition from time step ¢ to s where
s < t. Furthermore, we develop a parameterized approximate inference formula for s =
t — At. Interestingly, we observe that the inference formula presented in [Kingma et al.
(2021) aligns with our parameterized approximate inference formula.

* Specifically, drawing inspiration from the Non-Markovian forward process in |Song et al.
(2020a), we develop a continuous variational diffusion model capable of exactly inducing
the forward distributions. Moreover, we devise the backward SDE corresponding to this
Non-Markovian inference formula.

* Furthermore, drawing inspiration from Kingma et al.| (2021)); |Kingma & Gaol (2024), we
map S2N diffusion models onto the signal-to-noise space. Within this framework, we de-
velop an information-theoretic perspective for a general S2N diffusion model, which can
be seen as a generalization of the approach presented in|Kong et al.|(2023)).

* Finally, we employ our parameterized approximate inference formula to sample images
from existing pre-trained models. This demonstration illustrates that by selecting appropri-
ate parameters, we can achieve higher performance than the inference baselines within the
spectrum.

2 RELATED WORK

Diffusion models have rapidly become a cornerstone in the landscape of generative models, demon-
strating exceptional capabilities across a variety of domains, including image synthesis, audio gener-
ation, and complex data interpolation. The foundational framework of diffusion probabilistic models
was first introduced by [Sohl-Dickstein et al.| (2015), and this framework underwent significant re-
finement with Ho et al.|(2020), who developed Denoising Diffusion Probabilistic Models (DDPMs).
DDPMs iteratively add noise to data and learn to reverse this process, effectively modeling the data
distribution through a sophisticated generative procedure.

Building on this foundation, subsequent research has introduced various enhancements aimed at
improving the efficiency and quality of sample generation. A key development in these variants is the
introduction of adaptive noise control mechanisms, often termed noise scheduling. This control is
crucial as it determines the reverse diffusion trajectory, directly influencing the fidelity and diversity
of the generated samples. Among these innovations, the Score-Based Generative Model (SGM)
introduced by [Song & Ermon| (2019); Song et al.| (2020b) represents a significant advancement.
SGMs utilize score-based methods, as formalized by Hyvirinen Hyvirinen & Dayan| (2005), to
guide the reverse diffusion. These methods leverage gradients of the data distribution to adaptively
refine the generative process, producing samples that more closely resemble the original distribution.
This approach has proven particularly effective in enhancing the visual and auditory quality of the
generated outputs.



Under review as a conference paper at ICLR 2025

Another influential perspective is the treatment of diffusion as Continuous Normalizing Flows
(CNFs), proposed by [Lipman et al.| (2022)); [Tong et al.| (2023). This view interprets the diffusion
process as a series of invertible transformations, facilitating smoother and more controlled transi-
tions from noise back to data. This methodology is essential for maintaining the structural integrity
of complex datasets and supports a more nuanced manipulation of the generative process.

Additionally, the precise control of noise levels, conceptualized through the Signal-to-Noise Ratio
(S2N), has been the focus of several studies (Karras et al.| 2022 [Kingma et al.l 2021} |[Kingma &
Gao, 2024} INichol & Dhariwal, [2021} [Song et al.,2020a). The optimization of SNR is crucial, as it
impacts the clarity and sharpness of the generated samples. By carefully tuning the SNR during the
diffusion process, the model’s ability to produce high-quality outputs can be significantly improved,
thus avoiding common issues such as over-smoothing or excessive residual noise, which can degrade
the performance of generative models. Furthermore, fast and efficient sampling has been studied in
several works, notably (Song et al. 2020a; |[Zhang & Chenl |2022; |Song et al.| [2023; |[Zhang et al.,
2023).

3 THEORY DEVELOPMENT

3.1 PROBLEM SETTING

We consider the following diffusion forward process
zz=a(t)x+o(t)e,

where € ~ N (0,1), = is generated from a data distribution, and a, 0 : [0,7] — R™T are two

functions representing signal and noise of the forward process with « (0) = 1 and lim;_, 1 % =0.

We define A (t) = log ;’Egi
or very low. The above signal-to-noise (S2N) forward process can be rewritten
z=a(t)r+at)exp{—XA(t)/2} €, (1)

where A (t) is a monotonic decreasing function from A,,q,; = A (0) and Ay = A (T).

specifying the log of the signal-to-noise ratio with lim;_,7 A (t) = —o0

Additionally, S2N diffusion models constitute a highly diverse family of diffusion models that have
achieved state-of-the-art performance in practice, as summarized in Table[I]

Table 1: Noise scheduling in various diffusion model variants.

a(t) o(t) At) Parameters
in = 0.1
VP (Song et al.|[2020b) S 1= % log % P
A\ /e%ﬁdﬂwfmmt e2Bat’ +Pmint e2Bat?+Pmint _ | Bq=19.9
in = 0.01
VE (Song et al.|[2020b) 1 i (202 )t (2t — 2)10g Ormin — 24108 T
Omin Omaz = 50
cos({2 - 5 cos?(tts . T
iDDPM (Nichol & Dhariwal][2021} #ﬁ) log —— W( e 22>, T 5 =0.008
cos(m-g) cos (m~5)7cos <Tm§)
. ] 1t
FM-OT (Lipman et al.}|2022) 1—t t 2log

t

3.2 THE CONNECTIVE VIEWPOINTS

SDE Viewpoint. From the definition of the forward process, we know that g (z: | z9) =
N (a(t) zo,0% (t)I). To realize the general transition distribution ¢ (2; | z,) where 0 < s <
t < T, we aim to find the SDE of the above forward process. Let us consider the general form of
SDE

dz; = f (1) z,dt + g (1) du,, 2

where {w, : t € [0;T]} is the Brownian motion, and f (¢), g (t) € R.
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.. . P . d\ll(‘r t) _ sy d¥(Tt)
Denote W (7,t) as the transition function satisfying (i) =~V (r,t) f(H)L (i) —— =
U (1,t) f (7)1, and (iii)) ¥ (7,7) = L It is obvious that ¥ (T t) = exp{ f f(s ds} I satisfies

(i), (ii), and (iii). The distribution ¢ (z; | z5) = N (mt‘s7 Zt‘s) is a Gaussian distribution with

mys = W (t,s)zs and Xy, = f U (t,7)? g% () dr. Theorem I whose proof can be found in
Appendlx - . I.T|characterizes the SDE of the forward process of S2N diffusion models.

Theorem 1 With f (t) = dloita(t) = a((t)) and g (t) = \/—exp {=\ (t)} N (t)a (t), the SDE flow
in is equivalent to the S2N forward process in (I) Moreover, we have the transition function
U (1,t) = i((;)) I and the transition distribution q (z; | z5) = N (mt|s, Et\s) with my|s = %ZO =
525 and Sy = o (t) [exp {=A ()} —exp{=A(s)}] = o (t) [m - ﬁR(S)} where we

define SNR (t) = a?; . Moreover; the SDE of the forward process of S2N diffusion models has the

following form

!
dz, = Z‘((:))ztdt +/—exp {-A (D) N (D) (t) dw,. 3)
Connection to continuous variational diffusion model. Currently, our roadmap is to start from
the forward SDE of S2N and derive the transition probability q (z; | z5) = N (mt‘s, Zt|8), where
mys and 3y, are defined in Theorem Interestingly, this same transition probability g (z; | z5) =
N (my)s, 5¢)s) was also used in the continuous variational diffusion model (Kingma et al., 2021)
to define a continuous forward distribution for a variational approach, highlighting the connection
and consistency between the forward distribution in (Kingma et al.,|2021) and the forward SDE of
S2N. In the next section, we aim to explore the connection between the backward SDE of S2N and

the backward distribution developed in the continuous variational diffusion model (Kingma et al.,
2021).

It is natural to ask a question: if we have the transition probability q (z¢ | z5) = N (mt|s, i)s ) with
my|s and Yy, defined above, can we get back the SDE forward in Eq. @)" To this end, we consider
q (214t | z¢) and derive as follows

_a(t+At) ‘ 1 .
#eae=— o 2O SNRE T A) T SNRD

_a (ZL)N) z + (\y/%\/exp{—)\ (t+ At} —exp {=\ (1)} (wipar — wy),

thanks to w; Ay — w; = VAte ~ N (0, AtT).
This follows that

B A, At

Zigar— 2 a(t+A) —a(t) 2z ta () \/exp{—)\ (t+ At} —exp{—A(t)} wrinr — wy
At At a(t) '

By taking the limit when At — 0, we obtain

dz = ((f; 2t + () /= exp (A ([O) N (Ddw, = f () zedt + g (8) du,

which concurs with Eq. (3).

Backward SDE. In what follows, we examine the backward SDE of the forward SDE in Eq. to
indicate the connection between the backward SDE of S2N and the backward distribution developed
in the continuous variational diffusion model (Kingma et al., 2021). Inspired by (Zhang & Chen,
2022), the following theorem presents the corresponding backward SDE.
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Theorem 2 The backward SDE of the forward SDE in Eq. (2)) has the following form
1+ p?
dzy = <f(t)zt— 2/)

where p € R and V,, logp(z:) is the score function. Moreover, if we use the score
network sg (z4,t) to estimate ¥V, logp(z;) and denote sg(z,t) = —o(t) eo(2e,t) =
—a ()" exp{ ()} (21, t), the backward SDE can be rewritten as

(@) 1+ p? A1),
dz, = ( D) Z = exp{ 5 } N (t)a(t) e (zt,t)> dt + pg (t) dw;. (5)

We now develop the exact solution of the backward SDE in Eq. (5), allowing us to infer or sample
z, from z; with s < ¢ in Theorem [3] whose proof can be found in Appendix

9% (t) Va, logp (1516)) dt + pg (t) dw, )

Theorem 3 The exact solution of the backward SDE in Eq. is

o= 20 - 0 [ { A2 N e ey dr

+ pa(s) /tS V=exp {=\ (1)} N (1)dw. (6)

We note that our exact solution of the backward SDE is stronger than that in (Zhang & Chen, [2022)
because that work only considered the exact solution of the backward ODE by setting p = 0 (see
Eq. (5) in (Zhang & Chenl 2022)).

Furthermore, if we consider s = ¢ — At for a small A¢ > 0, we can approximate €y (z,,7) =~
eg (z1,t) for 7 € [s, t], hence leading to the following approximation solution of the exact solution
in Eq. (6) as shown in Corollary I}

Corollary 1 If we approximate ey (z.,7T) = €9 (2¢,t) for 7 € [s,t], the exact solution in Eq. (@
can be approximated as

2= Zij))zt + ifja(s) [eXp{”;”A(t)} - exp{_lz_ﬁ(s)H exp{”;t)} €0 (20,9

+ pa(t) VP A Y = o AN (jig)w ¢ (8))5@ @

where v € R, 6 € RY, and e ~ N (0,1).

We now make connection to the backward distribution py (25 | 2¢) developed in continuous varia-
tional diffusion model (Kingma et al., 2021)) using the variational approach. Specifically, we have
po (2o | 2t) = N (21 | pg (2458, 1) , 04 (5, 1) I) where we define

o (s135,1) = Sz . (5)a (6) (exp (A (B} = exp (-2 (5))) 30 (22.5)

= ZE?) zi+a(t) (exp{-A(t)} —exp{—X(s)})exp { AD) } €o (25, 9)

a(t)? (exp{-A (1)} —exp {-A(s)}) o (5)°
o (t)?

which is the variance of ¢ (2 | z¢, 2¢). This further implies that

zs = pq (245 5,t) +0g (s, 1) €

- Z((j; zi+a(s)a(t) (exp{=A()} —exp{=A(s)}) 5o (25,5)
a (t) exp{=A(t)} — exp {—=A(s)}o (5) €
o (1) '

0 (s:1) = 0,07 o =

3

®)
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It is worth-noting that the inference formula in Eq. (§) is a special case of our general inference
formula in Eq. (7) when v = 1 and § = 1. This indicates that using the variational approach to
obtain pg (2, | z:) =N (24 | pg (245 8,1) a4 (s,1) I), as done in continuous variational diffusion
model (Kingma et al.| [2021), falls within the spectrum of the exact solution of the corresponding
backward SDE.

Moreover, the approximated inference formula in Eq. (7) is only sufficiently precise when s = t— At
for a small step size At > 0. This explains why although using py (25 | z¢) or the inference formula
in Eq. can help us to move from z; to any z as long as s < ¢, longer step sizes ¢ — s has more
errors, hence compromising the generation performance.

It is appealing to answer the question: from the inference formula in Eq. (8), can we get back the
SDE backward equation in (@) with some p? To answer this question, from the inference formula in
Eq. (§), we set s = t — At to gain

Zt_At — 2Rt - O[(t—At) —O[(t)
At Ata@t)
a(t—At)a(t) (exp{—A(t)} —exp{-A(t — At)})
* “At
a(t) Jexp{=A({t)} —exp{-A(t — At)} Wi_ At — Wy
+0(t)\/ At o(t—At) fAt '

Taking limit when At — 0, we gain

sg (z¢, 1)

dzy = (Z/((:)) zi 4+ a2 () exp {=A (1)} X (t) 59 (21, t)) dt 4+ o (t) /—exp {=X (t)} X (t)dw,

= (F W= — g0 50 (z0,1)) dt + g (t) duor,

which falls in the spectrum of the SDE backward equation in (4) with p = 1. This consolidates the
consistency of the SDE and the continuous variational approach viewpoints.

Non-Markovnian Continuous Variational Model and Its SDE. Inspired by DDIM (Song et al.,
2020a), we relax the Markov property in the forward process and aim to find the backward distribu-
tion q(zs|z¢, ) (s < t) such that its induced marginal distribution ¢(z) coincides with the forward
one. To achieve this, we consider

q(zs | ze,2) =N (a (s)zo + 02 (s) — B2 (s,t)%_(;l(g)z(J,ﬁ2 (s,t) I) .

Here we note that different from DDIM (Song et al., |2020a) which aims to characterize the dis-
crete Non-Markovnian backward distribution ¢ (z;_1 | 2¢, ), we aim to characterize the contin-
uous Non-Markovnian backward distribution, allowing us to jump backward from 2z, to z, with
s < t. One might argue that for DDIM (Song et al., 2020a)), in g (z;—1 | z¢, x), we can replace z;—1
by z:_a: (At — 0) to reach the result for the continuous flow. However, it is not trivial since it
requires to perform an asymptotic analysis as done in|Kingma et al.[(2021)).

We need to prove the consistency between the forward and backward processes (i.e., the induced
marginal distribution ¢(z) coincides with the forward one). Indeed, we prove by induction, i.e., if
q(z¢ | @) = N (a(t)z,0(t)I) then ¢ (2, | ) = N (a(s) @, 02 (s)I). This is obvious because
we have

a(ee |2) = [l 22)a (e | ) dan
and from Bishop| (2007), the mean and variance of z4 can be computed as

alt)x—a(t)z

m(zs) = a(s)x+ /o2 (s) — B2 (s,t)T =a(s)x.
V(zs) =B (s,t) I+ (0° (s) — B (s,1)) Zz Egl =o%(s)1
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Given ¢ (zr |®) = N (a(T) =z, 0% (T)1), we reach q(z; | ) = N (a(t)z,0?(t)I),Vt €
057), indicating that g (2, | 20,@) = N (a(s) 20 + /o2 () — B2 (5, 1) 25822, 62 (5, ) T) i
a proper backward flow.
Moreover, by defining

Do (Zs | Zt) =4q (Zs | Zt, Zg (Ztvt)) ’
Jz(t)39(2t7t)+2t zi—0o(t)eg(ze,t)

where 2y (z¢,t) = O = 0] is used to predict &, we reach
2= a(5) 30 (out) + Vo5~ P B )
_ A(s) A(t) B2 (s, 1) —A(t) = A(s)
_—<exp{ 5 }—exp{Q} 1- 2 (5) )exp{Q}a(s)eg(zt,t)
a(s) A(t) = A(s) B (s,1)
—|-a(t)<1—|—exp{2} 1— 2 (s) )zt+ﬁ(s,t)e, 9

where € ~ (0, 1).

It is worth-noting that Eq. (9) enables us to jump from z; to z, (s < t). Moreover, this can
be considered as a continuous and generalizing version of Eq. (12) in DDIM (Song et al.| [2020al).
More interestingly, in the following theorem, we find out the SDE that corresponds to the continuous
Non-Markovnian variational model in Eq. (9).

Theorem 4 Consider 3 (s,t) = 1/b(s) — b(t) for s < t with a decreasing function b. The SDE
that corresponds to the continuous variational model in Eq. (9) has the following form:

dz, — [Z((:)) + Xz(t) exp{)\;t) H 2 - #m {—A;t)} o () e (20, 1) dt

+ %b’ (t) exp {)\ét)} a™l () eg (24, 1) + /U (t)dw,. (10)

Here we note that the result obtained in Theorem[]is totally novel because what was gained in/Song
et al.| (2020a)) is the connection between the DDIM iterate and the probability flow ODE (Song et al.,
2020b).

3.3 TRANSFORMING S2N DIFFUSION MODELS TO SIGNAL-TO-NOISE SPACE AND
INFORMATION THEORY VIEWPOINT

Similar to |Kingma et al.[ (2021); |Kingma & Gao| (2024), we transform the S2N diffusion models
to the signal-to-noise space that enables us to investigate the information-theoretic viewpoint of the
S2N diffusion models.

We denote & (A (t)) = a(t) (e, @ = aoX™),6 (A (t)) = o (t) (ie.,6 = coA 1), and 24y = 2z¢

where A (t) = log % = log 38\8;

We have the following forward process in the signal-to-noise

space ~
Zp=aM®)z+aA)e=a\(t)z+ exS{()\)\((tt)))/Q}e
or equivalently ]
EA:d()\)w+e><;C)y~{(i\\;2}e’ (11

where A € [Anin, Amaz] With Apin = A (T) and Az = A (0).
In the following theorem, we answer the question which pair of (« (¢), o (¢)) induces the same

forward process in the signal-to-noise space.

Theorem 5 Given (o (t),01 (1)), 01 0 A\[ 1 = g2 0 \; %, and (az (), 02 (1)), if M1 (0) = X2 (0),
M (T) = Ao (T), and i o A\[ ' = g0\, Y, the forward processes corresponding to (o (t) , oy (t))
and (a (t) , 02 (t)) induce the same forward process in the signal-to-noise space.
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Theorem[5]indicates that some S2N diffusion models induce the same diffusion model on the signal-
to-noise space. Moreover, by defining the corresponding relation, we can group the S2N DMs that
induce the same diffusion model on the signal-to-noise space in the equivalent classes.

Information-Theoretic viewpoint of S2N DM in the signal-to-noise space. Information theo-
retic viewpoint was studied inKong et al.[(2023) for a very simple diffusion process: Z) = v/ Az +e.
It is appealing to generalize this information theoretic result for a general and more practical dif-
fusion process. In what follows, we develop the information-theoretic results for the general S2N
diffusion model in the signal-to-noise space in Eq. (I).

Given x, we define the Minimum Mean Square Error (MMSE) for recovering « in the noisy channel
mmse (A) 1= ming(z, )Epz, ) [|2 — & (22, A) ]3] .

where @ (2, \) is referred to as a denoising function. The optimal denoising function &* corre-
sponds to the conditional expectation, which can be seen using variational calculus or from the fact
that the squared error is a Bregman divergence

& (22, \) = argming ;. \\Epz, 2) (|2 — & (20, A) [13] = Eanp(alzs) [2] -
Moreover, the point-wise MMSE is defined as follows:
mmse (z, ) := E,z, ) [l — 2" (22, A) [13] -
The mutual information I (x, Z,) can be characterized in the following theorem.

Theorem 6 For a general S2N DM in the general signal-to-noise space, we have

: ~ - 5 & (NN —ane' (W]a i
(i) %DKL (p(z2x|z)[lp(22) = 72&(%) + [ 05 )&3((/\)) v]a( )mmse (x, \) where D is the

dimension of Z, D, is the Kullback-Leibler divergence, and 6 (\) = & (\) exp {—\/2}.

.. ~ &' &' (N (N)—a(\)e’ (\)]ax
(ii) %H (£B7Z)\) = _DQ&((A/;) + [a W )5.3((>\)) ( )]0’( )mmse ()\)

It is worth noting that our results obtained in Theorem [f|can lead to those in[Kong et al.|(2023) when
choosing @ (A\) = vV Aand & (\) = 1.

4 EXPERIMENTS
Inspired by the theoretical results in Section [3} we conduct experiments to test the effectiveness of

hyperparameters participating in the backward process built based on our Corollary |I} Our experi-
ment settings are organized based on work and checkpoints in EDM (Karras et al., [2022).

4.1 DETERMINISTIC SAMPLING

Corollary [T|becomes deterministic when p = 0, then the sampling process is defined as follow:

2y = Zij))zt - ﬁa(s) [exp { _12_ U(t)} — exp { _12_ 7A(S)H exp {”z(t)} eo (21, 9)
(12)

The traditional Euler solver method corresponds to our specific case when v = 0. As shown in
Figure 4], with the same number of NFEs, more negative v makes the outcome images blurrier,
while images become sharper as ~ increases. However, too large a v value exceeds the common
range of pixel values and distorts the images.

Figurerepresents our grid search results to find the optimal value of ~ for each CIFAR-10 (32 x 32)
model pretrained by [Song et al.[(2020b) and |Karras et al.[(2022)). We observe that in all settings, the
optimal v value, which corresponds to the best FID, is a small positive number, especially around
0.026 for the settings used by [Karras et al.|(2022). Not only for CIFAR-10 (32 x 32), but v = 0.026
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Table 2: Results in FID ({) for Unconditional FFHQ (64 x 64), Unconditional AFHQV2 (64 x 64)
and Conditional ImageNet (64 x 64) settings by deterministic sampling with NFE = 79 using |Karras
et al.| (2022)’s checkpoints.

Uncond. FFHQ Uncond. AFHQv2

Cond. ImageNet

VP VE VP VE
Euler solver 3.25 3.43 2.38 2.58 2.75
Ours (y = 0.026) 3.27 3.39 2.09 2.27 2.71

also outperforms v = 0 in nearly all cases for the Unconditional FFHQ (64 x 64), Unconditional
AFHQV2 (64 x 64), and Conditional ImageNet (64 x 64), as shown in Table 2| With the FFHQ
dataset, we achieve only an approximate result in VP (3.27 > 3.25) and a slight improvement in VE
(3.39 < 3.43). Results in ImageNet also display slight improvement (2.71 < 2.75). On the other
hand, the evaluation for AFHQv2 shows a significant decrease in FID: 0.29 in VP and 0.31 in VE.
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Figure 1: The FID ({) of deterministic sampling at several CIFAR-10 (32 x 32) checkpoints when
varying v with NFE = 35.

4.2 STOCHASTIC SAMPLING

We observe synthetic image quality in stochastic sampling (p = 1) for numerous values of y and 4.
As mentioned before, setting v = 1 and § = 1 allows Corollary[T]to correspond to the traditional in-
ference formula[§] Similarly to deterministic sampling[4.1] different choices of v and & can improve
results when evaluating model performance. Figure[3|presents the FID for an unconditional CIFAR-
10 (32 x 32) model from a grid search over -y and 6. Among the pool of candidates, the choice of
(v = 1.25,6 = 0.95) yields the best value for this metric and improves model performance beyond
(y = 1,0 = 1), not only in this CIFAR-10 setting but also in an ImageNet (64 x 64) setting, as
shown in Figure 2]

5 CONCLUSION

Diffusion models (DMs) have emerged as essential elements within generative models, demonstrat-
ing proficiency across diverse domains such as image synthesis, audio generation, and intricate data
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FID(!)
. (y=1.00,6=1.00)
. (y=1.25,6=0.95)

1.70

Figure 2: FID (|) for Class-Conditional Figure 3: Grid search results in FID () for Uncondi-
ImageNet (64 x 64) dataset by stochastic tional CIFAR-10 (32 x 32) (VP) by stochastic sam-
sampling with NFE = 511. pling when varying v, § with NFE = 511.

interpolation. Signal-to-Noise diffusion models encompass a versatile family that includes most
cutting-edge diffusion models. While various efforts have been made to analyze Signal-to-Noise
(S2N) diffusion models from different angles, there is still a need for a comprehensive investiga-
tion that connects disparate perspectives and explores novel viewpoints. In this work, we present
an extensive examination of noise schedulers, probing their significance through the prism of the
signal-to-noise ratio (SNR) and its links to information theory. Expanding upon this framework, we
have devised a generalized backward equation aimed at enhancing the efficacy of the inference pro-
cess. Our experimental results show that by choosing the correct hyperparameters, our generalized
equation improves model performance compared to traditional ones.
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.1 ALL PROOFS

.1.1 PROOF OF THEOREMI]

Denote WU (7,t) as the transition function satisfying @) dqj(T = g (1,t) fI, (i) d\P n)
U (r,t) f-I, and (ii)) ¥ (r,7) = I It is 0bV10us "that we can choose W (T t) =
exp {7 f: f(s) ds} I that satisfies (i), (ii), and (iii). The distribution ¢ (z¢ | z5) = (mt‘s, s )
is a Gaussian distribution with m,, = VU (t,5) 2, and ¥y, = fst W (t,7)% g2 (7) dr. Consider

__dloga(t) _ a/(t)
f(t) =812 = o » We then have

Therefore, we arrive
myo = W (¢,0) 20 = a (t) 2o,
as expected. Moreover, the variance Et|0 is

ijo = /0 \J (7&,7’)292 (r)dr = /0 o (®) g% (1) drl.

By choosing g, = \/—exp {—X (1)} N (7)a (7)., we reach

o = / W 2 () drT = o2 () exp {-A ()} T = 02 ().

0 a(r)’

as expected. Therefore, The distribution ¢ (z; | z5) = N (mys, 3y)5) has

mys = Y (t,5) 2, = ()

Toals)

20 = (lt|s%s;

Sipe = / (1, 7)2 g (7) dr = / W 2 (1) drT = 02 (1) fexp {—A (1)} — exp {~A ()]

a(r)?

= () [SN; Ol SNJI% (s)} ’

where we define SNR (t) = gg;j .
The SDE of the forward process is

dz, = Z/((gztdt + v/ —exp {=A (1)} X (t)ex (t) dw,.

.1.2  PROOF OF THEOREM[2]

This proof is similar to that of Prop 1 in|Zhang & Chen|(2022).

12
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.1.3 PROOF OF THEOREM[3]

‘We have

/(t)ZtJr 1+ A2
Zt —

=}

dz; = ( D) 5 exP {=X®)IN (1) a? (t) sg (2, t)) dt + \g (t) dw;
« 2 -1
LA exp{-A()} N (t)a? (t)a(t)” exp { )\;t) } €o (2, t)> dt + Ag (t) dw,

t)

)
o 2 _
= (a((;))Zt 1—1—2)\ exp{ )‘2(15)})\/ (t) o (t) eq (zht)) dt + Mg (t) dw,.

This follows that

(
(2t

dz; — of (T)zT __1*A exp{_/\(T)}X (T)a (7)€ (z,7)dT

o () 3 2
+ Mg (7) duw,
U (s,7)dzr — U (s,7) ‘;/((;) e A s e { _AQ(T) } N (1) a(r)ep (20, 7) dr
A (5,7) g (7) dw,
U (s,7)dzr — U (5,7) f (7) 20 = —2 *;2\1/ (5,7) exp { 42(7) } N (7)o (r) e (20, 7) dr

+ AU (s,7) g (1) dw-.
Using V.,V (s,7) = =V (s, 7) f (7) 2, we further reach

1+ 22 al(s) A (1)
- a(T)exp{ 5 })\(T)a(r)eg(zT,T)dT

U (s,7)dzr + V¥ (s,7) 2, =

+ Aa(s) \/— exp{=A(7)} N (7)dw,

U (s,8)2e — U (5,8) 2 = — _;/\Qa(s) /tsexp{_/\;ﬂ}/\' () €0 (20, 7) dr

+ Aa(s) /ts V—exp {=X\ (1)} N (1)dw,.

as 2 s (T
ZSOé((t))Zt 12)\ a(s)/t exp{/\;)})\’(r)ee (zr,7)dT (13)

+ Aa (s) /tS V—exp {=X (1)} N (7)dw,. (14)

.1.4 PROOF OF COROLLARY[I]

We first approximate the first regular integral as

/tsexp{Az(T)}/\'(T)eo (zr,7)dr
A /ts exp { —12— 7)\(7)} N (1) dTeXp{vAQ(t) } o (o1

:/tsexp{_12_VA(T)}dA(T)exp{”AZ(t>}eg (2r1)
= 1i7 [exp{_12_’y)\(t)} —exp{_lgﬁ(s)}] exp{”Az(t)}ee (zr,t). (15)
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To approximate the second Ito integral, we start from its definition. Consider a partition P : 7y =
s<m <..<Tp_1 < T, =t, we have the sum

n—1 n—1
Y Ve {(FAEIN (1) (wi —wi) = Y V= exp {=A(7)} N (7) /71 — e,
i=0 i=0

where €; ~ A (0, I). This further implies that

z_: V=exp {=A (TN (1) (wis —wi) = | — z_: exp {=A(T:)} V' (i) (Tig1 — Ti)e,
=0 =0

here we use the property 3" a;e; = /37— aZe with € ~ N (0,1).

Taking the limit of the above sum when the diameter of the partition § (P) = max; (7,41 — 74)
approaches 0, we gain

n—1 n—1
5(%{)0; V=exp {=A (1)} N (1) (wip1 — w;) = _5(21&0;6@{_)‘(”)} N (1) (Tiy1 — Ti)€.

/ \/— exp {—A (7))} N (7)dw; = \/—/ exp{—A (1)} N (7)dre
= Vlexp {=A (1)} — exp {= (5)}]e.

a(s) /ts V=exp {=A (1)} X (7)dwe = o (s) /[exp {=A ()} — exp {=A(s)}]e

~ o (1) VoD 1A D] — o A )] (z((j)))l_é (‘;Ejﬁ)ée, (16)

here we assume that s = ¢ — At is very close to ¢, hence o (s) = « (t) and o (s) = o ().

Finally, combining Egs. and Eq. (T3, we reach the conclusion.
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.1.5 PROOF OF THEOREM [4]

We start with
2zt —a(t) Zg (24, 1)

zs = a(s) 2 (21,1) + V02 (s) = % (5,1) +08(s)e

o (t)

I RS UNCEI ORI COR P G OEICO N
_< (s) o (t) > 9 (24,t) + -0 ++ B (s,t)
— (o) OVEEH -FED) sB e (i)

o (t) o (t)
- (3 D e
(e cOVI-ZEF co ) ent  [als) | o615
) ("(S) 7 (0) AU GO0 arinne

- (on {22} o ) ) o 22

+a(5) <1+exp{)\(t))\(s)} 1- 52(8’”) z+ B (s,t) e

o2 (s)

Let s =t — At, we gain

R (exp{)\(t;At)} —exp{)\ét)}\/l—w> exp{_)\(t)_;(t_At)}a(t—At)eg (21, )

X a%(t)m) (HQXP{A(t)AQ(tAt)NI_W) oot Bt — At 1)e

A(t—At) At) B2(i—At)
_ exp{ }fexp{—} 1— 50— A _
Zi At — 2 2 2 o2 (I—At) (t) — A(t— Ab)
N ( A exp{ 5 a(t — At)eg (2, t)

A(t)—A(t—At) }
2

a(t—At) —a(t) a(t—At) eXP{ B2(t—At) Bt — At) wi_ar — wy

1—
“Ata() e A - antTT VAL A
This follows that
A(t—At) YO)
R R I N EvTy
Rt—At — Rt 2 2 _
N ~ Az exp { 5 } a(t — At) eg (2, 1)
A B (t—At) 1 “A(t) = A(t — Ab)
- A
—|—eXP{ 2 } —Ato? (t — At) 1+ /1 fiﬁiiﬁig exp 5 a(t t) eg (24, 1)
A()=A(t—At)
Lal-An—am_ at-anew M) [Ty
“Ata(t) o (t) —At o2 (t — At) "t
+ 6 (t — At) Wi_At — Wy
VAt —At
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Let consider 3 (s,t) = 1/b(s) — b(t), we have

A(t—At) Al®)
_ exXpy —5— €xXp — - -
Zi-At — Rt { 2 } { } exp { A1) ;\ (t - At) } a(t — At)eg (2, t)

—At —At
A6 bt — At) — b (1) 1 CA() = A(t— AY)
+exp{ 5 } T ) B P =T exp 5 a(t — At)eg (2, 1)
\V o2 (i—At)

at—AD—a(t)  a(t—Ab eXP{W}\/l_ b(t—At)—b(1)

“Ata(t) o (t) —At o2 (t—At)
b(t—At) —b(t) wi_ar — wy
VAL —At
_ [  XN@®) A(t) A (#) A(t)
dz; = [a(t) + 5 exp{ 5 H 2t — — exp{—Q}a(t)ee(zt,t)dt
+ %b/ (t) eXp{)\ét)}Oll (2t,t) + /= (t)dw;. a7

.1.6  PROOF OF THEOREM [3]

The proof is quite obvious from &y = oy o)\fl =90 /\;1 =agando; =010 )\fl =090 )\;1 =
0.

.1.7 PROOF OF THEOREM @]

‘We start with
d d N d
EDKL( p(Zx|z)p(2)) = I Ep(zale) [logp (2 | ®)] — I Er(zal) [logp (21)]
=A-B
d _ 1d. ._...p_ D&M
A= ﬁEp(zA\m) [logp(z)\ ‘ (B)] - _§alog [U ()‘)] - 2% ()\)

d . d - .
B = JEP(EHE) [logp(z))] = = /logp(zA)p(z,\ | ) dzy

- d - . a -
— [ |pr 1) g owp 2a) +1oxp (22) fp (3o )] a2

O

%p(%\ |z) = VAM
o NaN)—a(\)a (N s
=— FEXoN x-Vz,p(Zx|x)
=c(AN)x-Vzp(z\|x),

& (NFN)=&(NE' (V)
EZI0Y :

Vzp(2a ] 2)

Qe
=

where ¢ (\) = —

d 1 d . 1 d o e\ e e
alogpm) N (zn:p@m [r@ia)p@ade

Using integral-by-part, we gain
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/10gp(5,\) di)\p(éx |x)dzy = —c(N)x- /10gp(2A) Vz,p (2 | x)dz)

—eWa- /p(zA | 2) Vs, logp (1) d&».

)@ - Vz,p(2x | ®)p(2)dz)dz

/P(%l )—1ogp N dZA—// ZA|
/ / m Vz,p (22 | 2)p(T) dzadz

_ ! c()\)/p(w):i/ (x| 2x)Vz,p(2\ | ®)dz dz

p(z)
! C(A)/:E-ngp(:c |ZA)p(Zx | &) p () drdZ )

()
:_plw C()‘)//ﬂ_c'p(@%)\)di-vhp(w\2/\)(12)\
:—p(m)C(A)/E[LIJ | 2\] - Vz,p(z | 22)p(2)) dZ..

sz logp (Z)\) dz)\

Elx | 2] - Vz,p (x| 2))p(22) dZa.

m/pm
[l

Coen (s = YaP(E) _ Vs [pE | @)p(@)de _ [V
Vz, logp(21) = NEVEE (%) - p(23)
f“c,&(f)‘”p zx\ z)p(z)dz
- 5O\

:—?Eiiﬂ“:[a}|2)\]+&(1)\)7Z)\=—5_E;§E[a}2,\]4-5(1)\)2)\
Vs, logp (x| 2x) = Vs, logp(2x | ) — Vz, logp (2)
z-—ae &), 1.
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B:c()\):l:-/p(z,\| )EE?;E[“%A]_&;A)EA dz)
- e [Ble 2] S - Ele | Sl (e | 2)p (20 s
ol GG LRI ENEEENPIENPOPER
i ol ECENHCEAEN FENEOPEN
- [EWe e -aMa Ble | 2p o) d,
—C(?f;“)/ @] %] [z~ Elz | 2:]]p (2 | @) a2,
L N P YT PR L L ELACLIC MY
Therefore, we reach
D0 | ) [ (0)) = 52 ) EATE R TN D e o,

This further implies that

_ D'y [@Ne() —a(Ne V]a(y
=% () 53 (\) mmse (3)
. Ds'() @ (Na(N)—aNe M]a®)
aﬂ (x,Z2)) = — %N N5, mmse ()
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.2 ADDITIONAL VISUALIZATIONS
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Figure 4: Generated images with different values of ~.
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