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A Contrastive Clustering Algorithm

With the objectives introduced in the main text, we show our full contrastive clustering algorithm in
Algorithm 1.

Algorithm 1: Contrastive Clustering Algorithm
Input: Demonstrations Ξ, Feature extractor F , Cluster center Matrix C, Sub-trajectory length l,

Learning rate α and λ
Initialize the parameters of F .
Randomly sample K indices jk|Kk=1 from the interval [1, N ]
Take a sub-trajectory ξsub

jk
of length l from ξjk and initialize ck with F (ξsub

jk
)

while not converging do
Sample N trajectories {ξn}Nn=1 from Ξ and subsample two sub-trajectories ξsub

2n−1 and ξsub
2n of

length l for each ξn ∈ Ξ.
Assign the cluster label yn to ξsub

n according to Eqn. (2).
Update the parameters of F by: F ← F − α∇FLcluster according to Eqn. (3).
Re-assign the cluster label yn to ξsub

n based on the updated F .
Update the cluster centers C according to Eqn. (4).

end
for ξ ∈ Ξ do

Take a uniformly sampled sub-trajectory ξsub with length l from ξ.
Assign a cluster label y to ξ according to Eqn. (2).

end
Output: The cluster label y of each trajectory ξ.

B Details for Contrastive Clustering

We further discuss the considerations of the design of contrastive clustering algorithm. Firstly, for
varied-length sequences, it is difficult to design a proper distance metric to ensure that trajectories
from the same mode are close, because common distance metrics such as per-step L2 or cosine
distance on states cannot be used. Thus, contrastive learning is a good choice for learning the distance
metric in a latent space for clustering. Secondly, separating contrastive learning and clustering into
two stages may not find the optimal hidden space for clustering, while co-optimizing them can make
them benefit from each other.

Implementation Details. For the implementation of the contrastive learning algorithm, in the
subsampling step, we fix the length of the sub-trajectories, which is no longer than 50 steps since
RNN usually suffers from catastrophic forgetting with long sequences. For the MuJoCo environment,
the sub-trajectory length is fixed at 20. For the Driving environment, the sub-trajectory length is fixed
at 15. For the Simulated Robot environment, the sub-trajectory length is fixed at 20. For training,
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we randomly sample the sub-trajectories with a fixed stride and make sure each sub-trajectory has
the same length. After convergence, we use the representation of a sub-trajectory for clustering. We
set the batch size of contrastive clustering as 128. We first pre-train the feature extractor only with
the contrastive learning loss Lcontrast for 200 iterations before initializing ck and then train with the
whole loss Lcluster for 2000 iterations. For the number of clusters K, we set it as 5, 10, and 10 at
initialization for MuJoCo, Driving, and Robot Arm respectively. For the feature extractor, we use a
one-layer LSTM model to extract representation for trajectories and set the dimension for the hidden
state as 128. The hyper-parameter λ is fixed to 0.01 for all three environments. Learning rate α is
fixed to 0.01 with Adam optimizer.

C Additional Experimental Results

C.1 Parameter Sensitivity
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Figure 1: Sensitivity experiment results for hyperparameters K and λ

There are two key hyperparameters: cluster number K and the trade-off weight λ between Lcontrast
and Lcluster in our method. We investigate the sensitivity of the performance of our method to the
hyperparameters. We show the expected return after convergence under different hyperparameters in
Figure 1. The solid lines with shades show the mean and standard deviation of the expected return of
our method and the dashed lines on top show the oracle optimal performance that the policy may
achieve by only selecting and learning from the optimal demonstrations.

Results. We observe that when K is small, the converged model suffers from high variance and
lower mean return, as a small number of clusters are not sufficient to capture all single modalities.
Meanwhile, our method with larger K achieves consistent performance, because more clusters
guarantee a clear separation between different modalities. Once the cluster number is enough to
capture all the modalities, more clusters do not improve the performance. Nevertheless, we note
that larger K brings extra computational cost since every cluster requires training a GAIL model, so
we set K to 5, 10, and 10 respectively for 3 environments in consideration of the trade-off between
efficiency and effectiveness. For the sensitivity of λ, we find that our framework works well under
the value of λ ranging from 0.003 to 0.1, and λ > 1 leads to a severe drop in performance, mainly
because too much emphasis on Lcluster will cause all samples to collapse into one or two clusters and
the contrastive clustering algorithm becomes unable to separate different modalities.

Discussion on the choice of K. While in real scenarios when K is unknown to us, we can estimate
it empirically by dimension reduction and then visualizing trajectories. If one wants to get an optimal
K, a grid search around this approximation may be needed, but often an approximation is good
enough. Note that the number of modes has no direct relationship with the number of source domains,
especially in a real-world scenario: data can be collected every day, and each day can be seen as
a source, but they may all fall into a certain number of modes, i.e., the number of modes will not
increase unlimitedly. After contrastive clustering, transferability learning on each cluster can be done
in parallel, which can save time. Only a subset of demonstrations can also be easier to fit, compared
to fitting the whole dataset, which also boosts learning efficiency.
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C.2 Visualization of Transferability

We visualize the transferability computed by the proposed method as well as all our baselines on the
Driving environment. As is shown in Figure 2, the deeper the color, the higher transferability of the
trajectory. We can observe that our method can mostly filter out non-transferable demonstrations (red
arrow) for the target environment while assigning high transferability for transferable ones (green
arrow).

Normalized Transferability

Figure 2: Visualization of the transferability in Driving for different methods.

C.3 Effect of the Ratio of Transferable and Non-transferable Demonstrations

To investigate the influence of the composition of the demonstrations on the final imitation per-
formance, we conduct experiments on three MuJoCo environments with different ratios of the
demonstrations from the four source demonstrators. For Hopper, we set the gravitational constant
as (i) 15.0, (ii) 9.8, (iii) 2.0, (iv) 1.0. We fix the number of trajectories for (i) and (ii), i.e. relatively
transferable demonstrations, and change the number of trajectories for (iii) and (iv). For Walker2d,
we set friction to (i) 24.8, (ii) 9.9, (iii) 3.9, (iv) 1.1. For HalfCheetah, the compositions of demon-
strations are set the same as in original paper, which is (i) (1, 0.9), (ii) (0.9, 1), (iii) (1, 0.05), (iv)
(0.05, 1) with setting (·, ·) as the discount factor of the force of the front leg and the back leg. The
ratio configurations and the results are shown in Table 1, Table 2, Table 3 respectively for three
environments.

We observe that in the Hopper environment, with the increase of non-transferable trajectories, the
performance of naive GAIL deteriorates and other baselines also drop dramatically due to the
multimodal distribution effect, while our method shows stable performance with a high return against
the changes in the composition of the source demonstrations. Moreover, comparing with the converged
result of our method under different ratios, we observe that increasing non-transferable trajectories
does not influence the final return of our method much, which indicates that our transferability
measurement stably and accurately filters out non-transferable trajectories. Even for the easiest setting:
1 : 1 : 1 : 1 with an equal number of transferable and non-transferable demonstrations, our method
still outperforms GAIL. The results show that non-transferable demonstrations consistently influence
imitation learning performance and measurement to filter out non-transferable demonstrations is
important. Experiments on the other environments show similar results, demonstrating the robustness
of our method under various scenarios.

Table 1: Results under different compositions of demonstrations in Hopper environment.

Composition Naive GAIL fMDP ID w/o GAIL ID w/ GAIL Ours

1 : 1 : 1 : 1 2926±468 2947±412 1547±362 2287±315 3259±198
1 : 1 : 2 : 2 2845±360 2662±699 1335±787 2022±253 3261±206
1 : 1 : 5 : 5 2761±358 2361±537 1176±154 1042±730 3104±340

1 : 1 : 10 : 10 2137±685 2791±468 836±218 1314±412 3049±331
1 : 1 : 25 : 25 1083±244 1040±760 908±191 714±82 3113±413
1 : 1 : 50 : 50 739±184 1276±458 764±260 671±126 2890±556

C.4 Additional Experiments on Simulated Robot

We also conduct additional experiments on simulated Franka Panda Arm to better verify our proposed
method. We create three demonstrators by disabling the No. 1, 3 joints, the No. 1 joint, and using
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Table 2: Results under different composition of demonstrations in Walker2d environment.

Composition Naive GAIL fMDP ID w/o GAIL ID w/ GAIL Ours

1 : 2 : 2 : 2 318±290 283±190 1688±218 1703±175 2077±216
1 : 2 : 5 : 5 288±72 249±37 345±92 328±39 1731±73

1 : 2 : 10 : 10 327±65 213±48 311±29 349±30 1664±166
1 : 2 : 20 : 20 287±74 339±131 345±73 320±64 1629±87

Table 3: Results under different composition of demonstrations in HalfCheetah environment.

Composition Naive GAIL fMDP ID w/o GAIL ID w/ GAIL Ours

2 : 2 : 1 : 1 2389±897 404±246 2031±312 2210±86 3008±117
2 : 2 : 2 : 2 2882±84 247±308 2126±110 2067±86 2997±209
2 : 2 : 5 : 5 2201±502 1613±409 -327±119 1273±546 3246±134

2 : 2 : 10 : 10 2367±897 389±232 1808±146 1315±414 2981±71

fully-able joints respectively while disabling the No. 1, 3 joints for the target imitator. We import
demonstrations with the number of interaction steps 1× 105, 1× 105, and 1× 105 for each source
environment respectively. The reward function and the task are set as the same as that of the original
task in the main paper. The result is shown in Fig. 3(a). Another setting is created similarly by
disabling the No. 1, 3, 4, 6 joints, the No. 1, 3, and the No. 4 joint respectively while disabling the
No. 1, 3, 4 joints for the target imitator, with the result presented in Fig. 3(b).
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Figure 3: Additional experiment results on simulated robot environment.

C.5 Generalization to More Demonstrations

In real-world applications, there are situations where demonstrations in the original database are
insufficient and new demonstrations are continuously collected from different sources to augment
the database. We further demonstrate that the proposed method can use augmented demonstrations
more effectively. We conduct experiments in the MuJoCo Walker2d experiment. We firstly collect
2, 2, 50 and 50 demonstrations from environment (i) 24.8, (ii) 9.9, (iii) 3.9, (iv) 1.1 respectively.
The demonstrations are not enough to learn an optimal policy, but our method can still learn a
transferability model and f-MDP and ID can learn a feasibility model. Then we add 10, 50, and
50 demonstrations from environment (v) 24.9, (vi) 0.7, and (vii) 0.1 respectively. Then we require
all the methods not to re-train the transferability or the feasibility model but directly predict the
transferability or feasibility for new demonstrations. The experiments aim to test the generalization
ability of the model to filter out non-transferable demonstrations.

As shown in Fig. 4(a), when we only have insufficient demonstrations, we observe that the proposed
method still achieves the highest point compared with other baselines, which demonstrates that we
are able to use the demonstrations more efficiently even when they are insufficient.
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Moreover, in Fig. 4(b), we are given new demonstrations. To use them selectively, we first use our
contrastive-clustering LSTM model to assign a cluster label to each demonstration according to Eqn.
(2). We then generate the transferability for the new demonstrations with the GAIL model in that
cluster according to Eqn. (6). Note that we do not re-train the clustering model here with the new
demonstrations but directly apply the clustering model and the GAIL model for transferability to
cluster new demonstrations. For a fair comparison, we finetune the policy starting from the same
checkpoint achieved by our method. The proposed method achieves the highest performance, which
means that the proposed method possesses the capability of generalizing to unseen demonstrations.
This generalization to new demonstrations can be extremely meaningful, which serves as a practical
method to satisfy our intention of continually collecting more useful information from multiple
sources. We do not require any extra computation other than a one-time inference, which is efficient
to use.
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Figure 4: Experiments for generalization to more demonstrations.

C.6 Comparison with a K-means Variant
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Figure 5: The ablation study on a K-means variant
of our method.

To demonstrate the significance of our Sequence-
based Contrastive Clustering algorithm, we con-
ducted the following experiments on the Driving
environment by K-Means clustering with the
number of clusters K=10 (as the same in our
method).

Specifically, we down-sampled each trajectory
with a fixed stride to uniformly generate a fixed-
length subsample, and applied the K-means algo-
rithm directly to these sub-trajectories and there-
fore assign each trajectory to a cluster. Then, on
each of these K clusters, we learn the transfer-
ability respectively. The result of using transfer-
ability generated by K-Means clustering for the
final imitation learning is presented in Fig. 5.

We observed that the lacking of a contrastive learning step may cause difficulty in obtaining a high-
quality unimodal clustering, which is essential for learning an accurate transferability measurement,
and further cause a final performance drop. One way our contrastive clustering method is superior to
K-means is that performing K-means on uniformly random-sampled sub-trajectories may introduce
high variance into the clustering results, while our method, which makes different subsamples of the
same trajectory as positive pairs and minimize their distance in the hidden representation space, can
mitigate such instability. Also, the extracted representations are used for clustering, so it is beneficial
if they are learned with the clustering step in a coherent manner.
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