
A Experimental Details

For the experiment in Figure 3, the input data consists of 1000 data points sampled from a multivariate
Gaussian distribution: x ∼ N (0, I5). The target is generated by a linear transformation y = v ⋅ x,
where the norm of v is rescaled to obtain different values of ∣∣E[xy]∣∣ as the control parameter of the
simulation. The models are with D = 2 neural networks with bias terms and with hidden width 32 for
both hidden layers. The training proceeds with gradient descent with a learning rate of 0.1 for 104
iterations when the training loss has stopped decreasing for all the experiments.

For the CIFAR10 experiments, we train a standard ResNet18 with roughly 107 parameters under
the standard procedure, with a batch size of 256 for 100 epochs.10 For the linear models, we use a
hidden width of 32 without any bias term. The training proceeds with SGD with batch size 256 for
100 epochs with a momentum of 0.9. The learning rate is 0.002, chosen as the best learning rate from
a grid search over [0.001,0.002, ...,0.01].

B Proofs

B.1 Proof of Lemma 1

Proof. Note that the first term in the loss function is invariant to the following rescaling for any a > 0:

{Ui → aUi;

Wij →Wij/a;
(21)

meanwhile, the L2 regularization term changes as a changes. Therefore, the global minimum must
have a minimized a with respect to any U and W .

One can easily find the solution:

a∗ = argmin
a

⎛
⎝
γua

2U2
i + γw∑

j

W 2
ij

a2
⎞
⎠
= (

γw∑j W
2
ij

γuU2
i

)
1/4

. (22)

Therefore, at the global minimum, we must have γua
2U2

i = γw∑j
W 2

ij

a2 , so that

(U∗i )2 = (a∗Ui)2 =
γw
γu
∑
j

(W ∗
ij)2, (23)

which completes the proof. ◻

B.2 Proof of Lemma 2

Proof. By Lemma 1, we can write Ui as bi and Wi∶ as biwi where wi is a unit vector, and finding the
global minimizer of Eq. (2) is equivalent to finding the minimizer of the following objective,

Ex,ε

⎡⎢⎢⎢⎢⎣

⎛
⎝∑i,j

b2i ϵiwijxj − y
⎞
⎠

2⎤⎥⎥⎥⎥⎦
+ (γu + γw)∣∣b∣∣22, (24)

= Ex

⎡⎢⎢⎢⎢⎣

⎛
⎝∑i,j

b2iwijxj − y
⎞
⎠

2⎤⎥⎥⎥⎥⎦
+ σ2∑

ij

b4i (∑
k

wikxk)
2

+ (γu + γw)∣∣b∣∣22, (25)

The lemma statement is equivalent to bi = bj for all i and j.

We prove this by contradiction. Suppose there exist i and j such that bi ≠ bj , we can choose i to
be the index of bi with maximum b2i , and let j be the index of bj with minimum b2j . Now, we can
construct a different solution by the following replacement of biwi∶ and bjwj∶:

{b
2
iwi∶ → c2v;

b2jwj∶ → c2v,
(26)

10Specifically, we use the implementation and training procedure of https://github.com/
kuangliu/pytorch-cifar, with standard augmentations such as random crop, etc.
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where c is a positive scalar and v is a unit vector such that 2c2v = b2iwi∶ + b2jwj∶. Note that, by the
triangular inequality, 2c2 ≤ b2i + b2j . Meanwhile, all the other terms, bk for k ≠ i and k ≠ j, are left
unchanged. This transformation leaves the first term in the loss function (25) unchanged, and we now
show that it decreases the other terms.

The change in the second term is

(b2i∑
k

wikxk)
2

+ (b2j∑
k

wjkxk)
2

→ 2(c2∑
k

vkxk)
2

= 1

2
(b2i∑

k

wikxk + b2j∑
k

wjkxk)
2

. (27)

By the inequality a2 + b2 ≥ (a + b)2/2, we see that the left-hand side the larger than the right-hand
side.

We now consider the L2 regularization term. The change is

(γu + γw)(b2i + b2j)→ 2(γu + γw)c2, (28)

and the left-hand side is again larger than the right-hand side by the inequality mentioned above:
2c2 ≤ b2i + b2j . Therefore, we have constructed a solution whose loss is strictly smaller than that of the
global minimum: a contradiction. Thus, the global minimum must satisfy

U2
i = U2

j (29)

for all i and j.

Likewise, we can show that UiWi∶ = UjWj∶ for all i and j. This is because the triangular inequality
2c2 ≤ b2i + b2j is only an equality if UiWi∶ = UjWj∶. If UiWi∶ ≠ UjWj∶, following the same argument
above, we arrive at another contradiction. ◻

B.3 Proof of Theorem 1

Proof. By Lemma 2, at any global minimum, we can write U∗ = br for some b ∈ R. We can also write
W∗ = rvT for a general vector v ∈ Rd. Without loss of generality, we assume that b > 0 (because the
sign of b can be absorbed into r).

The original problem in Eq. (2) is now equivalently reduced following problem because rT r = d1:

min
b,v

Ex

⎡⎢⎢⎢⎢⎣

⎛
⎝
bd1∑

j

vjxj − y
⎞
⎠

2

+ b2d1σ2 (∑
k

vkxk)
2⎤⎥⎥⎥⎥⎦
+ γud1b2 + γwd1∣∣v∣∣22. (30)

For any fixed b, the global minimum of v is well known:11

v = bE[xy]T [b2 (σ2 + d1)A0 + γwI]
−1

. (31)

By Lemma 1, at a global minimum, b also satisfies the following condition:

b2 = γw
γu
∣∣v∣∣2, (32)

One solution to this equation is b = 0, and we are interested in whether solutions with b ≠ 0 exist. If
there is no other solution, then b = 0 must be the unique global minimum; otherwise, we need to
identify which of the solutions are actual global minima. When b ≠ 0,

∣∣ [b2 (σ2 + d1)A0 + γwI]
−1E[xy]∣∣

2

= γu
γw

. (33)

Note that the left-hand side is monotonically decreasing in b2, and is equal to γ−2w ∣∣E[xy]∣∣2 when
b = 0. When b → ∞, the left-hand side tends to 0. Because the left-hand side is a continuous
and monotonic function of b, a unique solution b∗ > 0 that satisfies Eq. (33) exists if and only if
γ−2w ∣∣E[xy]∣∣2 > γu/γw, or,

∣∣E[xy]∣∣2 > γuγw. (34)

11Namely, it is the solution of a ridgeless linear regression problem.

15



Therefore, at most, three candidates for global minima of the loss function exist:

{
b = 0, v = 0 if ∣∣E[xy]∣∣2 ≤ γuγw;
b = ±b∗, v = b [b2 (σ2 + d1)A0 + γwI]

−1E[xy], if ∣∣E[xy]∣∣2 > γuγw,
(35)

where b∗ > 0.

In the second case, one needs to discern the saddle points from the global minima. Using the
expression of v, one finds the expression of the loss function as a function of b

d1(d1 + σ2)b4∑
i

E[x′y]2i ai
[b2(σ2 + d1)ai + γw]2

− 2b2d1∑
i

E[x′y]2i
b2(σ2 + d1)ai + γw

+E[y2]

+ γud1b2 + γwd1∑
i

E[x′y]2i b2

[b2(σ2 + d1)ai + γw]2
, (36)

where x′ = Rx such that RA0R
−1 is a diagonal matrix. We now show that condition (34) is sufficient

to guarantee that 0 is not the global minimum.

At b = 0, the first nonvanishing derivative of b is the second-order derivative. The second order
derivative at b = 0 is

−2d1∣∣E[xy]∣∣2/γw + 2γud1, (37)
which is negative if and only if ∣∣E[xy]∣∣2 > γuγw. If the second derivative at b = 0 is neg-
ative, b = 0 cannot be a minimum. It then follows that for ∣∣E[xy]∣∣2 > γuγw, b = ±b∗,
v = b [b2 (σ2 + d1)A0 + γwI]

−1E[xy], if ∣∣E[xy]∣∣2 > γuγw are the two global minimum (because
the loss is invariant to the sign flip of b). For the same reason, when ∣∣E[xy]∣∣2 < γuγw, b = 0 gives
the unique global minimum. This finishes the proof. ◻

B.4 Proof of Proposition 1

Proof. We first show that there exists a constant r such that the global minimum must be confined
within a (closed) r-Ball around the origin. The objective (9) can be upper-bounded by

Eq. (9) ≥ γu∣∣U ∣∣2 +
D

∑
i=1

γi∣∣W (i)∣∣2 ≥ γmin (∣∣U ∣∣2 +∑
i

∣∣W (i)∣∣2) , (38)

where γmin ∶=mini∈{u,1,2,...,D} > 0. Now, let w denote be the union of all the parameters (U,W (i))
and viewed as a vector. We see that the above inequality is equivalent to

Eq. (9) ≥ γmin∣∣w∣∣2. (39)

Now, note that the loss value at the origin is E[y2], which means that for any w, whose norm
∣∣w∣∣2 ≥ E[y2]/γmin, the loss value must be larger than the loss value of the origin. Therefore, let
r = E[y2]/γmin, we have proved that the global minimum must lie in a closed r-Ball around the
origin.

As the last step, because the objective is a continuous function of w and the r-Ball is a compact set,
the minimum of the objective in this r-Ball is achievable. This completes the proof. ◻

B.5 Proof of Theorem 2

We divide the proof into the proof of a proposition and a lemma, and combining the following
proposition and lemma obtains the theorem statement.

B.5.1 Proposition 4

Proposition 4. Any global minimum of Eq. (9) is of the form
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

U = burD;

W (i) = birirTi−1;
W (1) = r1E[xy]T (bu∏D

i=2 bi)µ [(bu∏
D
i=2 bi)2s2 (σ2 + d1)A0 + γwI]

−1
,

(40)

where µ = ∏D
i=2 di, s

2 = ∏D
i=2 di(σ2 + di), bu ≥ 0 and bi ≥ 0, and ri = (±1, ...,±1) is an arbitrary

vertex of a di-dimensional hypercube for all i.
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Proof. Note that the trivial solution is also a special case of this solution with b = 0. We thus focus on
deriving the form of the nontrivial solution.

We prove by induction on D. The base case with depth 1 is proved in Theorem 1. We now assume
that the same holds for depth D − 1 and prove that it also holds for depth D.

For any fixed W (1), the loss function can be equivalently written as

Ex̃Eϵ(2),...,ϵ(D)
⎛
⎝

d1,d2,...dD

∑
i1,i2,...,iD

UiDϵ
(D)
iD

...ϵ
(2)
i2

W
(2)
i2i1

x̃i1 − y
⎞
⎠

2

+ γu∣∣U ∣∣2 +
D

∑
i=2

γi∣∣W (i)∣∣2 + const.,

(41)

where x̃ = ϵ(1)i1 ∑iW
(1)
i1i

xi. Namely, we have reduced the problem to a problem involving only a
depth D − 1 linear net with a transformed input x̃.

By the induction assumption, the global minimum of this problem takes the form of Eq. (10), which
means that the loss function can be written in the following form:

Ex̃Eϵ(2),...,ϵ(D)
⎛
⎝
bubD...b3

d1,d2,...dD

∑
i1,i2,...,iD

ϵ
(D)
iD

...ϵ
(2)
i2

vi1 x̃i1 − y
⎞
⎠

2

+L2 reg., (42)

for an arbitrary optimizable vector vi1 . The term ∑d2,...dD

i2,...,iD
ϵ
(D)
iD

...ϵ
(2)
i2
∶= η can now be regarded as a

single random variable such that E[η] =∏D
i=2 di ∶= µ and E[η2] =∏D

i=2 di(σ2
i +di) ∶= s2. Computing

the expectation over all the noises except for ϵ(1), one finds

Ex̃

⎛
⎝
bubD...b3s∑

i1

vi1 x̃i1 −
µy

s

⎞
⎠

2

+L2 reg. + const. (43)

= Ex,ϵ(1)
⎛
⎝
bubD...b3s∑

i,i1

vi1ϵ
(1)
i1

W
(1)
i1i

xi −
µy

s

⎞
⎠

2

+L2 reg. + const., (44)

where we have ignored the constant term because it does not affect the minimizer of the loss. Namely,
we have reduced the original problem to a two-layer linear net problem where the label becomes
effectively rescaled for a deep network.

For any fixed bu, ..., b3, we can define x̄ ∶= bubD...b3sx, and obtain the following problem, whose
global minimum we have already derived:

Ex̄Eϵ2,...,ϵD

⎛
⎝∑i,i1

vi1W
(1)
i1i

x̄i −
µy

s

⎞
⎠

2

. (45)

By Theorem 1, the global minimum is identically 0 if ∣∣E[µx̄y/s]∣∣2 < d2γ2γ1, or, E[xy] ≤
γ2γ1

b23...b
2
u(∏

D
i=3 di)

. When E[xy] > γ2γ1

b23...b
2
u(∏

D
i=3 di)

, the solution can be non-trivial:

{
v∗ = b∗2r1;
W∗ = r1E[xy]Tµb∗2b3...bu [(b∗2)2d23...d2Db2us

2 (σ2 + d1)A0 + γ1I]
−1

,
(46)

for some b∗2 . This proves the theorem. ◻

B.6 Lemma 3

Lemma 3. At any global minimum of Eq. (9), let b1 ∶=
√
∣∣Wi∶∣∣2/d and bD+1 ∶= bu,

γk+1dk+1b
2
k+1 = γkdk−1b2k. (47)

Proof. It is sufficient to show that for all k and i,

γk+1∑
ij

(W k+1
ji )2 = γk∑

ij

(W k
ij)2. (48)
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We prove by contradiction. Let U∗,W ∗ be the global minimum of the loss function. Assuming that
for an arbitrary k,

γk+1∑
ij

(W ∗,k+1
ji )2 ≠ γk∑

ij

(W ∗,k
ij )

2. (49)

Introduce W a such that W a,k+1
ji = aW ∗,k+1

ji and W a,k
ji =W

∗,k
ji /a. The loss without regularization is

invariant under the transformation of W ∗ →W a, namely

L0(W ∗) = L0(W a). (50)

In the regularization, all the terms remain invariant except two terms:

{
γk+1∑ij(W

∗,k+1
ji )2 → γk+1∑ij(W

a,k+1
ji )2 = a2γk+1∑ij(W

∗,k+1
ji )2

γk∑ij(W
∗,k
ij )

2 → γk∑ij(W
a,k
ji )

2 = a−2γk∑ij(W
∗,k
ji )

2 (51)

It could be shown that, the sum of a2γk+1∑ij(W
∗,k+1
ji )2 and a−2γk∑ij(W

∗,k
ji )

2 reaches its mini-

mum when a2 =
√

γk∑ij(W
∗,k
ji )

2

γk+1∑ij(W
∗,k+1
ji )2

. If γk+1∑ij(W
∗,k+1
ji )2 ≠ γk∑ij(W

∗,k
ij )

2, one can choose a to

minimize the regularization terms in the loss function such that L(W a) < L(W ∗), indicating W ∗ is
not the global minimum. Thus, γk+1∑ij(W

∗,k+1
ji )2 ≠ γk∑ij(W

∗,k
ij )

2 cannot be true. ◻

B.7 Proof of Proposition 2

Proof. Let

L0 = Ex̃Eϵ2,...,ϵD

⎛
⎝

d1,d2,...dD

∑
i1,i2,...,iD

UiDϵ
(D)
iD

...ϵ
(1)
i1

W
(1)
i1i

xi − y
⎞
⎠

2

. (52)

L0 is a polynomial containing 2D + 2th order, D + 1th order, and 0th order terms in terms of
parameters U and W . The second order derivative of L is thus a polynomial containing 2D-th order
and (D − 1)-th order terms; however, other orders are not possible. For D ≥ 2, there are no constant
terms in the Hessian of L, and there is at least a parameter in each of the terms.

The Hessian of the full loss function with regularization is

∂2L

∂2UiUj
= ∂2L0

∂2UiUj
+ (1 − δij)2γu(Ui +Uj) + δij2γu; (53)

∂2L

∂2W i
jkUl

= ∂2L0

∂2W i
jkUl

+ 2(γwW i
jk + γuUl); (54)

∂2L

∂2W i
jkW

l
mn

= ∂2L0

∂2W i
jkW

l
mn

+ (1 − δilδjmδkn)2γw(W i
jk +W l

mn) + δilδjmδkn2γw. (55)

For U = 0, W = 0, the Hessian of L0 is 0, since each term in L0 contains at least a U or a W . The
Hessian of L becomes

∂2L

∂2UiUj
∣
U,W=0

= δij2γu; (56)

∂2L

∂2W i
jkUl

RRRRRRRRRRRU,W=0

= 0; (57)

∂2L

∂2W i
jkW

l
mn

RRRRRRRRRRRU,W=0

= δilδjmδkn2γw. (58)

The Hessian of L is a positive-definite matrix. Thus, U = 0, W = 0 is always a local minimum of the
loss function L. ◻
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B.8 Proof of Proposition 3

We first apply Lemma 3 to determine the condition for the nontrivial solution to exist. In particular,
the Lemma must hold for W (2) and W (1), which leads to the following condition:

∣∣bD−1dD−10 [b2DdD0 (σ2 + d0)DA0 + γ]−1E[xy]∣∣2 = 1. (59)

Note that the left-hand side is a continuous function that tends to 0 as b → ∞. Therefore, it is
sufficient to find the condition that guarantees that there exists b such that the l.h.s. is larger than
1. For any b, the l.h.s. is a monotonically decreasing function of any eigenvalue of A0, and so the
following two inequalities hold:

{∣∣b
D−1dD−10 (b2DdD0 (σ2 + d0)Dσ2

x + γ)−1E[xy]∣∣ ≤ ∣∣bD−1dD−10 (b2DdD0 (σ2 + d0)Damin + γ)−1E[xy]∣∣
∣∣bD−1dD−10 (b2DdD0 (σ2 + d0)Dσ2

x + γ)−1E[xy]∣∣ ≥ ∣∣bD−1dD−10 (b2DdD0 (σ2 + d0)Damax + γ)−1E[xy]∣∣.
(60)

The second inequality implies that if

∣∣bD−1dD−10 [b2DdD0 (σ2 + d0)Damax + γ]−1E[xy]∣∣ > 1, (61)

a nontrivial solution must exist. This condition is equivalent to the existence of a b such that

dD0 (σ2 + d0)Damaxb
2D − ∣∣E[xy]∣∣bD−1dD−10 < −γ, (62)

which is a polynomial inequality that does not admit an explicit condition for b for a general D. Since
the l.h.s is a continuous function that increases to infinity as b→∞, one sufficient condition for (62)
to hold is that the minimizer of the l.h.s. is smaller than γ.

Note that the left-hand side of Eq. (62) diverges to ∞ as b → ±∞ and tends to zero as b → 0.
Moreover, Eq. (62) is lower-bounded and must have a nontrivial minimizer for some b > 0 because
the coefficient of the bD−1 term is strictly negative. One can thus find its minimizer by taking
derivative. In particular, the left-hand side is minimized when

bD+1 = (D − 1)∣∣E[xy]∣∣
2Dd0(σ2 + d0)Damax

, (63)

and we can obtain the following sufficient condition for (62) to be satisfiable, which, in turn, implies
that (59) is satisfiable:

D + 1
2D
∣∣E[xy]∣∣dD−10 ( (D − 1)∣∣E[xy]∣∣

2Dd0(σ2 + d0)Damax
)

D−1
D+1

> γ, (64)

which is identical to the proposition statement in (15).

Now, we come back to condition (60) to derive a sufficient condition for the trivial solution to be the
only solution. The first inequality in Condition (60) implies that if

∣∣bD−1dD−10 [b2DdD0 (σ2 + d0)Damin + γ]−1E[xy]∣∣ ≤ 1, (65)

the only possible solution is the trivial one, and the condition for this to hold can be found using the
same procedure as above to be

D + 1
2D
∣∣E[xy]∣∣dD−10 ( (D − 1)∣∣E[xy]∣∣

2Dd0(σ2 + d0)Damin
)

D−1
D+1

≤ γ, (66)

which is identical to (14).

We now prove the upper bound for the solution in ((16)). Because for any b, the first condition in 60
gives an upper bound, and so any b that makes the upper bound less than 1 cannot be a solution. This
means that any b for which

∣∣bD−1dD−10 [b2DdD0 (σ2 + d0)Damin + γ]−1E[xy]∣∣ ≤ 1 (67)

cannot be a solution. This condition holds if and only if

dD0 (σ2 + d0)Daminb
2D − ∣∣E[xy]∣∣bD−1dD−10 > −γ. (68)
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Because γ > 0, one sufficient condition to ensure this is that there exists b such that

d0(σ2 + d0)Daminb
2D − ∣∣E[xy]∣∣bD−1 > 0, (69)

which is equivalent to

b > [ ∣∣E[xy]∣∣
d0(σ2 + d0)Damin

]
1

D+1

. (70)

Namely, any solution b∗ satisfies

b∗ ≤ [ ∣∣E[xy]∣∣
d0(σ2 + d0)Damin

]
1

D+1

. (71)

We can also find a lower bound for all possible solutions. When D > 1, another sufficient condition
for Eq. (68) to hold is that there exists b such that

∣∣E[xy]∣∣dD−10 bD−1 < γ. (72)

because the b2D term is always positive. This condition then implies that any solution must satisfy:

b∗ ≥ 1

d0
[ γ

∣∣E[xy]∣∣
]

1
D−1

. (73)

For D = 1, we have by Theorem 1 that
b∗ > 0 (74)

if and only if E[xy] > γ. This means that

b∗ ≥ lim
η→0+

lim
D→1+

1

d0
[ γ + η
∣∣E[xy]∣∣

]
1

D−1

= {∞ if E[xy] ≥ γ;
0 if E[xy] < γ. . (75)

This finishes the proof. ◻

B.9 Proof of Theorem 3

Proof. When nontrivial solutions exist, we are interested in identifying when b = 0 is not the global
minimum. To achieve this, we compare the loss of b = 0 with the other solutions. Plug the trivial
solution into the loss function in Eq. (9), the loss is easily identified to be Ltrivial = E[y2].
For the nontrivial minimum, defining f to be the model,

f(x) ∶=
d,d1,d2,...dD

∑
i,i1,i2,...,iD

UiDϵ
(D)
iD

...ϵ
(2)
i2

W
(2)
i2i1

ϵ
(1)
i1

W
(1)
i1i

x (76)

= ηdD0 b2DE[xy]T [b2DdD0 (σ2 + d0)DA0 + γI]−1x, (77)

where, similar to the previous proof, we have defined ∑d1,...dD

i1,...,iD
ϵ
(D)
iD

...ϵ
(1)
i1
∶= η such that E[η] =

∏D
i di = dD0 and E[η2] = ∏D

i di(σ2
i + di) ∶= dD0 (σ2 + d0)D. With this notation, The loss function

becomes

ExEη(f(x) − y)2 +L2 reg. (78)

= Ex,η[f(x)2] − 2Ex,η[yf(x)] +Ex[y2] +L2 reg. (79)

=∑
i

d3D0 (σ2 + d0)Db4DaiE[x′y]2i
[dD0 (σ2 + d0)Daib2D + γ]2

− 2∑
i

d2D0 b2DE[x′y]2i
dD0 (σ2 + d0)Daib2D + γ

+Ex[y2] +L2 reg. (80)

The last equation is obtained by rotating x using a orthogonal matrix such that R−1A0R = diag(ai)
and denoting the rotated x as x′ = Rx. With x′, The L2 reg term takes the form of

L2 reg. = γDd20b
2 + γ∑

i

d2D0 b2D ∣∣E[x′y]i∣∣2

(dD0 (σ2 + d0)Db2Dai + γ)2
. (81)
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Combining the expressions of (81) and (80), we obtain that the difference between the loss at the
non-trivial solution and the loss at 0 is

−∑
i

d2D0 b2DE[x′y]2i
[dD0 (σ2 + d0)Daib2D + γ]

+ γDd20b
2. (82)

Satisfaction of the following relation thus guarantees that the global minimum is nontrivial:

∑
i

d2D0 b2DE[x′y]2i
[dD0 (σ2 + d0)Daib2D + γ]

≥ γDd20b
2. (83)

This relation is satisfied if

d2D0 b2D ∣∣E[xy]∣∣2

[dD0 (σ2 + d0)Damaxb2D + γ]
≥ γDd20b

2 (84)

b2D−2

[dD0 (σ2 + d0)Damaxb2D + γ]
≥ γD

d2D−20 ∣∣E[xy]∣∣2
. (85)

(86)

The derivative or l.h.s. with respect to b is

b2D−3[(2D − 2)γ − 2dD0 (σ2 + d0)Damaxd
2D]

[dD0 (σ2 + d0)Damaxb2D + γ]2
. (87)

For b, γ ∈ (0,∞), the derivative dives below 0, indicating the l.h.s. of (86) has a global maximum at
a strictly positive b. The value of b is found when setting the derivative to 0, namely

b2D−3[(2D − 2)γ − 2dD0 (σ2 + d0)Damaxd
2D]

[dD0 (σ2 + d0)Damaxb2D + γ]2
= 0 (88)

(2D − 2)γ − 2dD0 (σ2 + d0)Damaxd
2D = 0 (89)

b2D = (D − 1)γ
dD0 (σ2 + d0)Damax

. (90)

The maximum value then takes the form

(D − 1)D−1
D

Dγ
1
D dD−10 (σ2 + d0)D−1a

D−1
D

max

. (91)

The following condition thus guarantees that the global minimum is non-trivial

(D − 1)D−1
D

Dγ
1
D dD−10 (σ2 + d0)D−1a

D−1
D

max

≥ γD

d2D−20 ∣∣E[xy]∣∣2
(92)

∣∣E[xy]∣∣2 ≥ γ
D+1
D D2(σ2 + d0)D−1a

D−1
D

max

dD−10 (D − 1)D−1
D

. (93)

This finishes the proof. ◻

B.10 Proof of Theorem 4

Proof. The model prediction is:

f(x) ∶=
d,d1,d2,...dD

∑
i,i1,i2,...,iD

UiDϵ
(D)
iD

...ϵ
(2)
i2

W
(2)
i2i1

ϵ
(1)
i1

W
(1)
i1i

x (94)

= ηdD0 b2DE[xy]T [b2DdD0 (σ2 + d0)Dσ2
xI + γI]−1x. (95)

One can find the expectation value and variance of a model prediction:

Eη[f(x)] =
d2D0 b2DE[xy]Tx

b2DdD0 (σ2 + d0)Dσ2
x + γ

(96)

21



For the trivial solution, the theorem is trivially true. We thus focus on the case when the global
minimum is nontrivial.

The variance of the model is

V ar[f(x)] = E[f(x)2] −E[f(x)]2 (97)

= (σ
2 + d0)Dd3D0 b4D(E[xy]Tx)2

[b2DdD0 (σ2 + d0)Dσ2
x + γ]2

− d4D0 b4D(E[xy]Tx)2

[b2DdD0 (σ2 + d0)D]2σ2
x + γ]2

(98)

= d3D0 [(σ2 + d0)D − dD0 ]b4D(E[xy]Tx)2

[b2DdD0 (σ2 + d0)Dσ2
x + γ]2

(99)

= d3D0 [(σ2 + d0)D − dD0 ]b2D+2(E[xy]Tx)2

∣∣E[xy]∣∣2
, (100)

where the last equation follows from Eq. (13). The variance can be upper-bounded by applying (16),

V ar[f(x)] ≤ dD0 [(σ2 + d0)D − dD0 ](E[xy]Tx)2

(σ2 + d0)2Dσ2
x

∝ dD0 [(σ2 + d0)D − dD0 ]
(σ2 + d0)2D

. (101)

We first consider the limit d0 →∞ with fixed σ2:

V ar[f(x)]∝ Dd2D−10 σ2

(d0 + σ2)2D
= O ( 1

d0
) . (102)

For the limit σ2 →∞ with d0 fixed, we have

V ar[f(x)] = O ( 1

(σ2)D
) . (103)

Additionally, we can consider the limit when D →∞ as we fix both σ2 and d0:

V ar[f(x)] = O (e−D2 log[(σ2
+d0)/d0]) , (104)

which is an exponential decay. ◻

C Exact Form of b∗ for D = 1

Note that our main result does not specify the exact value of b∗. This is because b∗ must satisfy
the condition in Eq. (6), which is equivalent to a high-order polynomial in b with coefficients being
general functions of the eigenvalues of A0, whose solutions are generally not analytical by Galois
theory. One special case where an analytical formula exists for b is when A0 = σ2

xI . Practically, this
can be achieved for any (full-rank) dataset if we disentangle and rescale the data by the whitening
transformation: x→ σx

√
A−10 x. In this case, we have

b2∗ =

√
γw

γu
∣∣E[xy]∣∣ − γw
(σ2 + d1)σ2

x

, (105)

and

v = ±

¿
ÁÁÁÀ
√

γu

γw
∣∣E[xy]∣∣ − γu

σ2
x(σ2 + d1)

E[xy]
∣∣E[xy]∣∣

, (106)

where v =Wi∶.

D Effect of Bias

This section studies a deep linear network with biases for every layer and compares it with the no-bias
networks. We first study a general case when the data does not receive any preprocessing. We then
show that the problem reduces to the setting we considered in the main text under the common data
preprocessing schemes that centers the input and output data: E[x] = 0, and E[y] = 0.
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D.1 Two-layer network

The two-layer linear network with bias is defined as

fb(x;U,W,βU , βW ) =∑
i

ϵiUi(Wi∶ ⋅ x + βW
i ) + βU , (107)

where βW ∈ Rd1 is the bias in the hidden layer, and βU ∈ R is the bias at the output layer. The loss
function is

Lb(U,W,βU , βW ) =Eϵ,x,y[(∑
i

ϵiUi(Wi∶ ⋅ x + βW
i ) + βU − y)2] +L2 (108)

=Ex,y [(UWx +UβW + βU − y)2 + σ2∑
i

U2
i (Wi∶ ⋅ x + βW

i )2] (109)

+ γu(∣∣U ∣∣2 + (βU)2) + γw(∣∣W ∣∣2 + ∣∣βW ∣∣2). (110)

It is helpful to concatenate x and 1 into a single vector x′ ∶= (x,1)T and concatenate W and βW into
a single matrix W ′ such that W , βW , x, and W ′, x′ are related via the following equation

Wx + βW =W ′x′. (111)

Using W ′ and x′, the model can be written as

fb(x′, U,W ′, βU) =∑
i

ϵiUiW
′
i∶ ⋅ x′ + βU . (112)

The loss function simplifies to

Lb(U,W ′, β) = Eϵ,x,y[(∑
i

ϵiUiW
′
i∶ ⋅ x′ + βU − y)2] + γu(∣∣U ∣∣2 + (βU)2) + γw ∣∣W ′∣∣2. (113)

Note that (113) contains similar rescaling invariance between U and W ′ and the invariance of aligning
W ′

i∶ and W ′
j∶. One can thus obtain the following two propositions that mirror Lemma 1 and 2.

Proposition 5. At the global minimum of (108), U2
j =

γw

γu
(∑iW

2
ji + (βW

j )2).

Proposition 6. At the global minimum, for all i and j, we have

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

U2
i = U2

j ;

UiWi∶ = UjWj∶;

Uiβ
W
i = Ujβ

W
j .

(114)

The proofs are omitted because they are the same as those of Lemma 1 and 2, substituting W by W ′.
By following a procedure similar to finding the solution for a no-bias network, one finds that

Theorem 5. The global minimum of Eq. (108) is of the form

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

U = br;

βU =
d1b[(d1+σ

2
)

γu
γw

b−1]vE[x]−(d1
γu
γw

b2−1)E[y]

(d1+σ2)d1
γ2
u

γ2
w
b4+(γu−2)d1

γu
γw

b2+γu+1
;

W = rb{E[x] [b γu

γw
(d1 + bσ2) − 1]βU +E[xy]}

T
[b2(d1 + σ2)A0 + γwI]−1;

βW = −r γu

γw
bβU ,

(115)

where b satisfies

γub
2 = b2

γw(E[y]S1S3

S4
E[x] −E[xy])(M−1)2(E[y]S1S3

S4
E[x] −E[xy])T + γ2

u

γw
(S3

S4
E[y] − bS2

S4
E[x]M−1E[xy])

2

(bS2S1

S4
E[x]M−1E[x]T − 1)

2
,

(116)
where M,S1, S2, S3, S4 are functions of the model parameters and b, defined in Eq. (122).
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Proof. First of all, we derive a handy relation satisfied by βU and βW at all the stationary points. The
zero-gradient condition of the stationary points gives

{Ex,y[2(UWx +UβW + βU − y)]U + 2γwβW = 0;
Ex,y[2(UWx +UβW + βU − y)] + 2γuβU = 0, (117)

leading to

Uγuβ
U + γwβW = 0 (118)

βW
i = −

γu
γw

Uiβ
U . (119)

Proposition 5 and proposition 6 implies that we can define b ∶= ∣Ui∣ and bv ∶= UiWi∶. Consequently,
Uiβ

W
i = −

γu

γw
b2βU , and the loss function can be written as

Ex

⎡⎢⎢⎢⎢⎣

⎛
⎝
bd1∑

j

vjxj − (d1
γu
γw

b2 − 1)βU − y
⎞
⎠

2

+ b2d1σ2 (∑
k

vkxk −
γu
γw

bβU)
2⎤⎥⎥⎥⎥⎦
+ γud1b2

+γwd1∣∣v∣∣22 + γu (
b2d1γu
γw

+ 1)(βU)2. (120)

The respective zero-gradient condition for v and βU implies that for all stationary points,
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

v = [b2(d1 + σ2)A0 + γwI]−1b{E[x] [b γu

γw
(d1 + bσ2) − 1]βU +E[xy]} ;

βU =
d1b[(d1+σ

2
)

γu
γw

b−1]vE[x]−(d1
γu
γw

b2−1)E[y]

(d1+σ2)d1
γ2
u

γ2
w
b4+(γu−2)d1

γu
γw

b2+γu+1
.

(121)

To shorten the expressions, we introduce

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

M = b2(d1 + σ2)A0 + γwI;
S1 = b γu

γw
(d1 + bσ2) − 1;

S2 = d1b [(d1 + σ2) γu

γw
b − 1] ;

S3 = d1 γu

γw
b2 − 1;

S4 = (d1 + σ2)d1 γ2
u

γ2
w
b4 + (γu − 2)d1 γu

γw
b2 + γu + 1.

(122)

With M,S1, S2, S3, S4, we have

{
v =M−1b(E[x]S1β

U +E[xy]);
βU = S2vE[x]−S3E[y]

S4
.

(123)

The inner product of v and E[x] can be solved as

vE[x] = b
S3

S4
E[x]M−1E[x]S1E[y] −E[x]M−1E[xy]

bS2

S4
E[x]M−1E[x]S1 − 1

. (124)

Inserting the expression of vE[x] into the expression of βU one obtains

βU = S3E[y] − bS2E[x]M−1E[xy]
bE[x]M−1E[x]S1S2 − S4

(125)

The global minimum must thus satisfy

γub
2 = γw ∣∣v∣∣2 + γu

b2d1γu
γw

(βU)2 (126)

= b2
γw(E[y]S1S3

S4
E[x] −E[xy])(M−1)2(E[y]S1S3

S4
E[x] −E[xy])T + γ2

u

γw
(S3

S4
E[y] − bS2

S4
E[x]M−1E[xy])

2

(bS2S1

S4
E[x]M−1E[x]T − 1)

2
.

(127)

This completes the proof. ◻
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Remark. As in the no-bias case, we have reduced the original problem to a one-dimensional problem.
However, the condition for b becomes so complicated that it is almost impossible to understand. That
being said, the numerical simulations we have done all carry the bias terms, suggesting that even
with the bias term, the mechanisms are qualitatively similar, and so the approach in the main text is
justified.

When E[x] = 0, the solution can be simplified a little:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

U = rb;

βU = − d1
γu
γw

b2−1

(d1+σ2)d1
γ2
u

γ2
w
b4+(γu−2)d1

γu
γw

b2+γu+1
E[y];

W = rbE[xy]T [b2(d1 + σ2)A0 + γwI]−1;
βW = r γu

γw
b

d1
γu
γw

b2−1

(d1+σ2)d1
γ2
u

γ2
w
b4+(γu−2)d1

γu
γw

b2+γu+1
E[y],

(128)

where the value of b is either 0 or determined by

γu = γw ∣E[xy]T [b2(d1+σ2)A0+γwI]−1∣2+
γ2
u

γw
E[y]2

⎛
⎜
⎝

d1
γu

γw
b2 − 1

(d1 + σ2)d1 γ2
u

γ2
w
b4 + (γu − 2)d1 γu

γw
b2 + γu + 1

⎞
⎟
⎠

2

.

(129)
In this case, the expression of W is identical to the no-bias model. The bias of both layers is
proportional to E[y]. The equation determining the value of b is also similar to the no-bias case. The
only difference is the term proportional to E[y]2.

We also note that the solution becomes significantly simplified when E[x] = 0 and E[y] = 0. This
could be seen by finding the partial derivative of L with respect to βW and βU and then setting them
to 0. When E[x] = 0, E[y] = 0, one obtains:

⎧⎪⎪⎨⎪⎪⎩

∂L
∂βW

i

= UiUβW +Uiβ
U + γwβW

i = 0;
∂L
∂βU = UβW + βU + γuβU = 0.

(130)

These equations lead to
Uγuβ

U + γwβW = 0, (131)
implying

{β
U = 0;

βW = 0. (132)

In practice, it is common and usually recommended practice to subtract the average of x and y from
the data and achieve precisely E[x] = 0 and E[y] = 0. We generalize this result to deeper networks in
the next section.

D.2 Deep linear network

Let β be a (∑D
i di + 1)-dimensional vector concatenating all β1, β2, ..., βD, βU , and denoting the

collection of all the weights U , WD, ..., W 1 by w, the model of a deep linear network with bias is
defined as

fb(x,WD, ...,W 1, U, βD, ..., β1, βU) (133)

=(ϵU ○U)((ϵD ○WD)(...((ϵ2 ○W 2)((W 1x + β1) + β2)...) + βD) + βU (134)

=(ϵU ○U)(ϵD ○WD)...(ϵ2 ○W 2)W 1x + (ϵU ○U)(ϵD ○WD)...(ϵ2 ○W 2)β1 (135)

+ (ϵU ○U)(ϵD ○WD)...(ϵ3 ○W 3)β2 + ... + (ϵU ○U)βD + βU (136)

=(ϵU ○U)(ϵD ○WD)...(ϵ2 ○W 2)W 1x + bias(w,β), (137)

where

bias(w,β) = (ϵU○U)(ϵD○WD)...(ϵ2○W 2)β1+(ϵU○U)(ϵD○WD)...(ϵ3○W 3)β2+...+(ϵU○U)βD+βU ,
(138)
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and ○ denotes Hadamard product. The loss function is

Lb(x, y,w, β) = Eϵ,x,y[(fb(x,w,β) − y)2] +L2(w,β). (139)

Proposition 5 and Proposition 6 can be generated to deep linear network. Similar to the no-bias case,
we can reduce the landscape to a 1-dimensional problem by performing induction on D and using the
2-dimensional case as the base step. However, we do not solve this case explicitly here because the
involved expressions now become too long and complicated even to write down, nor can they directly
offer too much insight. We thus only focus on the case when the data has been properly preprocessed.
Namely, E[x] = 0 and E[y] = 0.

For simplicity, we assume that the regularization strength for all the layers employs the value γ. The
following theorem shows that When E[x] = 0 and E[y] = 0, the biases vanish for an arbitrarily deep
linear network:
Theorem 6. Let E[x] = 0 and E[y] = 0. The global minima of Eq. (139) have β1 = 0, β2 =
0, ..., βD = 0, βU = 0.

Proof. At the global minimum, the gradient of the loss function vanishes. In particular, the derivatives
with respect to β vanish:

∂Lb(x, y,w, β)
∂βi

= 0; (140)

Eϵ,x,y [
∂fb(x,w,β)

∂βi
(fb(x,w,β) − y)] + γβi = 0; (141)

Eϵ,x,y [
∂bias(w,β)

∂βi
(fb(x,w,β) − y)] + γβi = 0; (142)

Eϵ [
∂bias(w,β)

∂βi
(fb(E[x],w, β) −E[y])] + γβi = 0, (143)

where βi is the ith element of β. The last equation is obtained since fb(x,w,β) is a linear function
of x. Using the condition E[x] = 0 and E[y] = 0, Equation (143) becomes

Eϵ [
∂bias(w,β)

∂βi
bias(w,β)] + γβi = 0. (144)

bias(w,β) is a linear combination of βi. Consequently, ∂bias(w,β)/∂βi does not depend on β,
and bias(w,β)∂bias(w,β)/∂βi is a linear combination of βi. The ∑D

i di + 1 equation derived from
vanishing gradient yield a set of ∑D

i di + 1 linear equations of the form M(w)β = 0, where M(w)
is a (∑D

i di + 1) × (∑D
i di + 1) matrix with dependence on w. These linear equations are linearly

independent, since the term ∂L2(w,β)/∂βi = 2γβi and is different in each of the equations. Thus,
the linear system M(w)β = 0 has (∑D

i di + 1) independent equations and (∑D
i di + 1) variables.

The only possible solution to this linear system is

β = 0. (145)

This finishes the proof. ◻
Thus, for a deep linear network, a model without bias is good enough to describe data satisfying
E[x] = 0 and E[y] = 0, which could be achieved by subtracting the mean of the data.
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