A Properties of Mean-field Transfer to Particle System

Lemma A.1. The Assumptions 1-3 transfer seamlessly to the aggregated notions of drift and diffusion
given in (7):

1. Ifb(-,+) and o (-, -) satisfy Assumption I, then b(-) and o (+) are L(N'N + 1)-Lipschitz.
2. If b(-,-) satisfies Assumption 2, then b(+) satisfies the same condition with the constant VNC,.

3. If o (-, ) satisfies Assumption 3, then the same holds for o (+) with constant VNK.

Proof. We prove these statements separately:
1. Let x,y € (RY)®N and define a; = |x' — y/|. First, notice that W2 (uy, 1) < + S a2, as the
average on the right-hand-side corresponds to the specific coupling of x; < y;. Now, observe that

1b(x) =b(y)I> = Db wx) = by, )

4

< LZ Z(ai + WZ(,ux’ ﬂy))z

14

< LZZ(Gi +,/ﬁ Z}.a?)%

L

Leta = (ay,...,ayn), and notice that the last quantity above is equal to
a 2
a+‘/%|a| 1 mh/% 1| < L2|a|2N(1+,/%) .

|b(x) = b(y)| < LOVN + 1)|x - yl.

For the diffusion, it suffices to notice that

lo) = @IF = e, ) - (5" 1) [

2
— L2|CL|2

2
L2

This means that

The rest of the proof is similar to the one for the drift.

2. We have

N
(6D = 5 S b ) < Culy ST+ 1) = Col o SR ),

where in the last inequality, we used Cauchy-Schwarz. This implies (x, b(x)) < C,VN(|x| + 1).
3. It is easy to see that

N
lo ()7 = w(o (@) o) = > (o, u) To(x', po)) < NK. u

i=1

Lemma A.2. Ifb(-,-) is (a, B)-dissipative on average, then b(-) is (a, NB)-dissipative in the usual
sense, that is, for all x € (R)®N | (x,b(x)) < —a|x|> + NB.

Proof. Observe that for x € (R4)®N we have
1 V& 2
N(x,b(x)) =N DU b ) = By [y b(y, )] < —a By lyl> + B8
=1
el SR po—atiep
N & N '
This means that (x, b(x)) < —alx|? + NB. [
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B The Main Theorem
B.1 Proof of Theorem 1
Recall the Picard process (Picard):

S S
m = x, + / b(Xpva) du + / o (Xpv) AW
0 0

We break down the proof into four steps: first, we prove that the Picard process is close to the
flow (Flow), and then we bound the distance between the Picard process and the interpolation (Int).
We then conclude the proof of the WAPT property. Lastly, we prove that stability is implied by
dissipativity.

§ Distance of Picard from Flow.

K 2 K 2
[E|H§”—<I>£”|2s2[E' / b(Xi) — b(®) du +2[E‘ / o (Xpsu) — o (@) aw”
0 0

N S
<7 /0 EIB(®)  b(Xyya)[> du + 2 /0 1o (Xesa) — o (@) du

S2(T+1)L2/ E|dY) — X, 1|2
0

where we used Lipschitzness of b and o (implied by Assumption 1 and Lemma A.1), [td’s isometry
(see, e.g., [54, Lemma 3.4]), and Lemma A.1.

§ Distance of Picard to Interpolation. We place a bar above a symbol to denotes its piecewise
constant interpolation.

2
EINY - X, > = E

/ T b))~ (X du + / " () — o () dW + Ap(t.s)

t+s
< 3(T + 1)L2/ E|X, — Xu|* du+3E|Ap(t, 5)[,
t

where Ap(t, s) is the accumulated noise and bias from time ¢ to time ¢ + s, which is equal to

n-1

Ap(t,s) = > Yint Pt + (t +5 = 70) E[Puit | Frug] — (1 = 70) E[Prsr | F), (B.1)
i=k

with n = m(t + s) and k = m(¢). It is shown in [23] that lim;_,« [E\Ap(t, s)|2 =0, as.
Continuing to bound the inside of the integral, we have
EIX, —xk|* < 3(t = 1) (EIb (xi0) 1> + E|Prat %) +3(2 — 1) Etr(o (xx) T 0 (k)
where we used the fact that conditional expectation is a contraction in L2, and
Elo (x¢) & |* = Etr(€],,0(xk) o (xk) 1)
= Etr(o(xx) "o (xx) Exa1éyy)
= Etr(o(xx) "o (xx) E[éxn1éyy | F])
=Etr(o(xx) "o (xx)).
Moreover, by Assumption 3 we have E tr(o-(xg) "o (xx)) = O(1). We thus get by Lemma B.1
EIX; —xi* < 3Cye, (1/7ks1 + 1) +3Cyis1 = O(yks1).
This implies

sup EMY) - X2 < CT?L? sup  7a +3E[Ap(t, T = A,

s€[0,T] t<u<t+T

with A; — 0 ast — oo, a.s.
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§ Concluding the proof of APT. By Gronwall inequality,
E|X,s - @V P <C / CE[ X — O P 4 A, < A; exp(sC) < A; exp(TC) — 0
0

as t — oo. Since
Wg(law(thY), laW(q)fvt))) S [E|Xt+s - CDEZ) |2,

we get the desired result.

§ Stability. Lemma A.2 implies that under dissipativity on average, the iterates are stable, and as in
[23, Theorem 3], we get the desired convergence result.

B.2 On Propagation of Chaos

Theorem 1 shows that the law py of x; € (R4)®N converges in the Wasserstein space to the limit-set
(or the internally chain-transitive (ICT) set) S ¢ %, ((R4)®N) of the corresponding flow:

lim inf Wh(ug, u) = 0.
k—oo uesS

By looking only at the first particle of xz, namely, x }(, and given that the dynamics is exchangeable, it
follows that

W3 (uk, 1) =igf/|x—ylzﬂ(dx,dy)
:inf(‘/|)c1 —yllzﬂl(dxl,dyl)+--~+/|xN —yN PPN (dxV, dayM)
Ve

> in1f./|)cl -yl (axt, dy")
Ve
= sz(law(x}(), marginal, (u)),

where ! (dx!, dy') = f n(x,y) dx*dy?* - - - dx™ dyN , and we used the exchangability in deducing that
the law of ' are the same as the first marginal of u, foralli = 1, ..., N. Hence, as the limit-set S’ of
the first component of the SDE X! is a subset of the marginal of S,

lim inf W (law(xy),v) < i inf  Ws(law(x;),v) = 0.
s s 2(law (), v) Pl yemarlgrilnall (s) 2(law (), v)

This means that the first particle converges in law to the ICT sets of the corresponding SDE. Assuming
a uniform propagation of chaos, we also know that the law of X, has a distance of O(1/N) from the
mean-field equation, and hence, we get that the law of the particles following the discrete algorithm
have controllable distance from the mean-field dynamics.

B.3 Supporting Lemmas
Lemma B.1. Suppose Assumptions 1-5 hold. One has E|b(x;)|? = O(1/yi+1), Elers1|> = O(vis1),
and E|Py.1)? = O(1).

Proof. We repeatedly use the fact that E|b(x;)|> < 2L% E|xk|? + E|b(x0)|> = 2L? E|xx|* + Co. By
Assumption 4, E|gg,1]? < 0(7,%+1)ak + O(yr+1), and we have

E|Pis1|* < 2E|es|* + 2E|Uss1 > = O(y7, Dax + O(1). (B.2)
Moreover, as v/p + g < /P + /g, we have
VE|Ps1]? < O(yre)Vax + O(1). (B.3)

Assumption 3 also implies that E|o (xg)éxs1]> < Cor.
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Define ay := E|xi|>. Then,
k1 = Ak = Vipy EIB (k) + Prs P + View1 Elo(x0)Exat [* + 211 Exe, B(xXk) + P
+ 27, EGre, 0 (xi)€rn) + 2707 BB (6k) + Prst, 0 (xi)Exr)
< 207710k + ¥4 Co + 2714 EIPkat P + 711 Cor + 2ya01 Co (Var +1)
+ 29k Var VEI P 2 + 2, VC o VE I Pi P (B.4)
Plugging the bounds from (B.2) and (B.3) into (B.4) gives
arsr = ax < O(y3,)ax + O (i) Vax + O(yisn)

= P'}’]2<+1ak + Ovir1Vak + Ryps1,
for some P, O, R > 0 that do not depend on k.

We now prove ay < M /7y for some fixed M > 0 via induction. Suppose this is the case for k. For
k + 1 we have

ake1 < (Pyp,y + Dag + Oyis1Var + Ryn
< M(Pyis1 + 1/yia1) + VMONYir1 + Ryin

!
< M/yiso.

The last inequality is equivalent to the fact that the following quadratic equation (in VM) has a
bounded largest root (and the bound shall not depend on k):

M(PYis + 1yt = 1/¥k2) + VMONYiGT + Ryin
Notice that by Assumption 5, the leading coefficient is negative, and the larger root is computed as
OVYk+1 + O\Yke1 + \/4R(7k+1/7k+2 -Py;,, -1
2(1/yk+2 = Pyksr = 1/ yk+1)

207ke1 + 2VR\ ka1 [ Vi
< - T <20y + VR Yo /viet <20+ VR = M.

2¥k41/ V2

The claim for b follows by Lipschitzness, from which the claim for the bias and perturbation follows
directly. [

C Proofs of Results for Applications

C.1 Two-Layer Neural Networks and Mean-field Langevin

Proof of Corollary 1. Smoothness of drift: We start by showing Lipschitzness with respect to the
measure parameter of the drift. First, observe that VoW (8, ) is Lipschitz:
VoW (6,0") = VoW (0,0”)] = |E.~p[(¢(2,0') — ¢(2,0")) Vog(z, 0)]I
= |E.~p[(x({(z,8)) — k({(z2,0"))) '({z, 6)) z]|
<Clo’'-96"|,
due to the boundedness of «” and z, and Lipschitzness of «.
Now, consider u, v € 9 (R?) and let 7 be the optimal coupling (in WV, sense) between them. Then,
for a fixed 8 € R¥,
2
b6, 1) = b(8,v)* = ‘/ VoW (8, p) —VeW(0,q) n(dp,dq)
< [19aW(e.p) - VaW 6.0 x(dp.da)
< / C’lp - qI* n(dp. dq)

= C2W22(/1, V).

17



Next, we show for a fixed measure u € 9 (R%), b(-, u) is Lipschitz in the first input.

[b(0, ) —b(6", w)| <

/ VoW(6, p) — VoW (&', p) u(dp)| + [VV(8) — YV (8)].

Let us treat each term separately. We have

VoW (0, p) = VoW(0', p)| = [E;-ple(2, p)(Vop(z,0) = Vop(z,6")]]
= |E;-p [« ({p, 2)) (k' ({z,0)) — k"({z,0"))) z]|
< CE;-pllz]|0 - 6’| 2]
<Clo-0).

Similarly,
[VV(8) = VV(8)] = [E(y.o)~p[yz(K (6. 2) = &' ({0, 2))) D(dy. d)]| < Clo - ¢'|.
Thus,
160, 1) = b(6", V)| < 1b(6, 1) = b(O,v)] +[b(8,v) = b(0",v)| < L(10 = 0'| + Wa(p, ),
showing b satisfies Assumption 1.

Growth control: First, let us calculate
[ 0560, uta0) = [ (.00, (. 0 Didz)u(ae" (a0
—//y<9,Ve<,0(z, 6)) D(dy, dz)p(do)
- [ 16 u(ao)
= [[ otz 002 Dlaotas utan)
- [[ vx 0. Dy deucan)
-1 [ 10 utao).
As @, ', and supp(D) are bounded, we can see that

‘ / (0. b(60, 1)) p(d6)

<c // 161121 D(d2)pu(d6) + C* / 161121 D(d2)pu(d6) < C / 10] (o),

thus, satisfying Assumption 2.

Dissipativity on average: Here we use the extra assumption that |a x’(a)| is bounded. We directly
bound the terms «’({6, z))(#, z) above and obtain

/(9,1)(9,;1));4((19) < —A/|9|2u(d9)+C. n

C.2 Stein Variational Gradient Descent

Proof of Corollary 2. While the first term in the drift is standard to work with (see Section 4.4), it is
the second term in the drift that makes it difficult to analyze. Specifically, we prove the dissipativity on
average only for empirical measures. While this would be enough for our purposes (and Theorem 1
goes through), it is an interesting future direction to see when does dissipativity hold in a more
general setup. Moreover, for simplicity, we only consider the case where the kernel K is of the form
K(x,y) = h(x — y), for some function 4.

Below, we first prove that b is dissipative on average, which implies that the law of the iterates will
be in a compact subset of 9, (R?). Then, we show that b is smooth on this compact subset.
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Dissipativity on average: Due to K being symmetric, VoK (x, y) = —V,K(y, x). We thus have

/ (x = 1 VaK (6, ) () a(dy)
- // (6, V2K (x, ) () a(dy) — / (0 V2K (x. 1)) p(d)p(dy)
= // (x, VoK (x,y)) p(dx) u(dy) + / (y, V2K (y,x)) pu(dx) u(dy)

-2 [[ e Vak ) ).
Thus, |
[ vk wiannian =5 [[ - Ky u@onan <

by Cauchy-Schwarz and the assumption that |V2K (x, y)| < n/|x — y|. With similar arguments, and
using dissipativity of V, we have

// TV (@)K (e, ) p(d)a(dy)
1
- // (WO () u(d)pa(dy) ~ 5 // (x = 1 VV(x) = WV () K (5, ) p(d)p(dy)
> a // XK (x. ) (d)pe(dy) - BIIK [
- %L/ lx — yI*K (x, y) pu(dx) p(dy)

Ly

> o [ kPR n@utan - 1K+ 5.
As K(x,x) = h(0) and K(x,y) > O for all x, y, and that u is an empirical measure y = % Zf\il Ox;»
the last quantity is equal to

1 2 1 2 h(0) 2
¥ Z|xi| Z K(xi,x;) 2 V2 lei| K(xi,xi) > N~ |x|* p(dx).
i J i
In total, we derive that b is dissipative on average.
Smoothness of the drift: We have, for u in a compact set of %, (R¢)
b(x, ) = b(x", )

< /VzK(x,y)—VzK(x',y)u(dy)

+

/ (K(x,y) — K< 1)) VYV (y) ,u(dy)‘
< Lix —x'|(1 + / V@)l ﬂ(dy))

< Llx —x’|(l + c/(1 + |y|2)u(dy)) < L'|lx—x'|.

Moreover, take u, v in the same compact set, and let & be the optimal coupling (in WV, sense). Then,

|b(x, 1) = b(x,v)?
2
<2

/ VoK (x,y) — V2K (x, z) n(dy, dz)

2
+2

/ K(x,y)VV(y) — K(x,z)VV(z) n(dy, dz)

< ZLZWZZ(,u, V)

2
+2

/ K(x,y)VV(y) — K(x,2)VV(y) + K(x,2)VV(y) — K(x,2)VV(2) n(dy, dz)

< 2L°W2 (i, v) + 4(L% + LHYW3 (1, v). n
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C.3 Two-player Zero-sum Continuous Games

Proof of Corollary 3. Recall that
-V<K(q1,95)
b 5 = * ’ 2 dq’ s = s .
(g, 1) / (a V,K(q) ) udq’),  q=1(q1,92)
Smoothness of drift: For a fixed 1 € % (R%)R?? and ¢, r € R*? we have

-V.K(q1.95) -V K(r1,q5)
Ib(g.10) = bir )l < / (a VyK(qli,qi)) - (a VyK(qli,ri))

< LPqy - +@®L?|qa — ra)?

2

u(dq’)

< Llg -1l
where we used L-Lipschitzness of VK and VK.

Now, for a fixed ¢ € R??, and y, v € P (R?Y)R?? with optimal coupling 7, we have

S (2
1b(q, 1) - b(g, )2 < // (—VxK <qw2>) B (—wa,rz))

, dr,dr’
ClVyK(rl,%) a'VyK(rl,QZ) ﬂ-( 4 r)
< L2/ lra = 1512 + |r1 = ][> m(dr, dr’)

= L*W3(u, v).

Average dissipativity of drift: Suppose VK and -V K are (a, 8)-dissipative. Then

/(q,b(q,#)>ﬂ(dq)=/ (q1,-V+<K(q1,95)) + (g2, VyK (g}, q2)) u(dg")u(dq)

< [ -aa(laif +1:P) () + 25,
implying that b(-, -) is (aa, 28)-dissipative on average.

If, on the other hand, the domains X and ) are bounded, observe that by Cauchy-Schwarz

/ (q.b(q. ) u(dg)| < // 11V K (g1, @3] + @lgallVyK (¢ 42)] 1(dq)u(dg) < M,

where M = sup, cx 4,eylq1lIVxK(q1,q5)| + alq2l|VyK (g}, g2)|.  Also denoting by R =
SUPg e xxy lg|?, we see that for any a > 0, b(-,) is (@, M + aN)-dissipative on average, as

/(q,b(%#»ﬂ(a’cﬂ+C¥/|61|2,u(dq) < M+aN.

Optimistic algorithm fits Assumption 4: Recall the iterates

@hpy = gk +Via1 (26(q, k) — b(gh_ys k=1)) + V2Vka1 0 Bl

where B! = (f;{ 1< 1’( ,1)- Notice that the bias of this iteration is

k+1
&4y = b(ql. 11x) — b(ql_ys k1)

For brevity, let us write % = %,,. We have

Ellefn* | Fal = Ellghpy — 4% — Yis1b(qh k) = N2yrs1 0 Ejy [P | F]

< 3E[qyy — 4?1 Fal + 374 END(gh )1 | Fie] + 6yia1t(1 +@)d.
Moreover, we have
Ellqjrr — al* 1 Fal < 292, E[120(4) /i) = b(qh_y k-0 P | Fiel +2yx17(1 + @)d

=2yt EUD (gl k) + €l P 1 Fi] + 2yiat(1 + @)d
< 430 ELb(qh 1) P | Fal + 4y, Ellein I 1 Fal + 2vant(1 +)d
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Combining the last two inequalities, we have

Ellely 1P| il < 3(477,) Ellb (g 0P | Fal + 497, Ellely P | Fil +2yent(1+a)d)

+3y2, E[lb(gk, @) * | Fal + 6yit(1 +a)d
= 12y;,, Ellet,, I | Fil + 15vi,, ELIb(q,, 5P | Fil + R2ypat(l +a)d

Since yx+1 — 0, we can assume that 127i+1 < 1/2, which implies

Ellsk, * 1 F2] < 30v2,, Elb (g, 1) P | F] + 24yint(1 +@)d,
which is exactly what we are after. [ |
C4 Kinetic Equations

Proof of Corollary 4. Smoothness of the drift: Let x,y € R? and u, v € %,(R¢) and set 7 be an
optimal coupling between y and v (in W sense). Then

|b(x, 1) = b(y, V)| < [VV(x) = VV(y)| +

/ VW(x - z) u(dz) - / VW(y - z) v(dz)

By L-Lipschitzness of VV, the first term is bounded by L|x — y|. For the second term, using the
coupling, we can write it as

'// VW(x —z1) = VW(y — 20) n(dzy,dz0)| < [/lVW(x -z1) = VW(y — 22)| n(dz1, dz2)

< L//Ix—y+Zz—Z1I7r(dZ1,dzz)

< L//|x Yl +122 - 2l w(dzr, dz)

< Lix =yl + LW (u,v)
< Llx —y| + LWy (u, v).

Putting these together we get
b(x, 1) = b(y, V)| < 2L(|x =yl + Wa(p, v)).

Average dissipativity of the drift: First we show that for x € R and a probability measure y, we
have

// (e VW x = ) p(dop(dy) > —Myy /2. 1
This holds, since

[ owes - o utauta
= [[ = v+ 0w - )t
= [[ = v W - atanuan + [[ @ IW0 - ) ot
> <t + [[ . IW 0= ) ey

> My - / (6 VW (x - ) p(do)p(dy),

where in the penultimate inequality we used the assumption (which implies (VW (x),x) > —Myw),
and in the last one, we used the that W is symmetric (which implies VW (-z) = —=VW(z)), and used
Fubini’s theorem to exchange integrals. Bringing the last term to the left and dividing by 2 shows
(C.1).

21



To show average dissipativity, it suffices to observe
- [t uta@r = [ vven @+ [[eIwe - o) adu
> o [l o) - 5~ M 2.

Proximal algorithm fits Assumption 4: Note that this implicit algorithm corresponds to the following
proximal step
2 }
N

i i i i 1 i ] i ]
Plot = € = VW (xgy) = VV(xp) + N Z(VW(xk+1 - xi) - VW(x; - xi))’
J=1

1
2¥k+1

‘x - (X;C + V27k+1 §£+1)

j 1 X .
Xjp1 = arginin{V(x) N ,Z:; W(x—x))+

By defining the perturbation as

we see that the algorithm (Kin-Prox) fits the template (SAA). For brevity, let us write F; = F,.
‘We only have to show that

N
Ellex+11*1 Fl = > Ellel P | Fil = Oy 1B i) P + yie)-
i=1
We have
i |2 i i 1 Z i j i J ’
|‘9k+1| = VWV (xpyy) = VV(xp) + N Z(Vw(xkﬂ —x) = VW(x = x))
j=1

. o, 2 N . . . 2
< 2fVV(al) - WGP + Z(ku;H —xl) - YW (xi - xi)‘
=1

|2 22N

<2070~ of T Dlehy i

2| i i|2
=4L |xk+1 _xk| :
For brevity, let
1Y ;
f(x)=VV(x)+ N Z VW (x —xi),
=
noticing that £}, = f(x},,) — f(x}). By the update rule (Kin-Prox)

Ellxe, =P 1 F1] < 298, ELS ()P | Fa] + 4yind.
Moreover, we have that |f(x§(+l)|2 < 2|f(x;'<+l) - f(x}'()|2 + 2|f(x§<)|2. Since yr+1 — 0, we can
assume that 16227 | < 1. Allin all, this gives
Ellel, |* | Fx] < 4L7 E[|xh,, — xk[* | Fx]
< 8Ly, E[1f (X}, )P | Fi] + 16Lyid
< 16L2 Y E[If(xhy) = fDP | Fi] + 16L2y7 | f () I” + 16L%yis1d
16L°y; 1 Ell&f |7 | Fil + 16L2yE | f (x> + 16L%yi1d

IA

IA

1 i i
5 [E[|‘9k+1|2 | Fi] + 16L2')’]%+1|f(xk)|2 + 16Lz?’k+1d~

This implies that _ _
Ellel, 1* | Fil < 32L%y;, | f(x)I* +32L% s d.

Summing over i and observing that | f (x;;)|2 = |b(xx)|? concludes the proof. [
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