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A DERIVATIONS OF THE NEGATIVE LOG-LIKELIHOOD

For completeness, we provide a derivation for the negative log-likelihood 2 from Kong et al. (2022).
We first introduce a seminal result from Guo et al. (2005),

d

dγ
I(x;xα) = 1/2mmse(γ). (7)

This relationship admits a point-wise generalization,
d

dγ
DKL[p(xα|x) ∥ p(xα)] = 1/2mmse(x, γ), (8)

The marginal is p(xα) =
∫
p(xα|x)p(x)dx, and the pointwise MMSE is defined as follows,

mmse(x, γ) ≡ Ep(xα|x)
[
∥x− x̂∗(xα, γ)∥2

]
. (9)

To obtain the desired result, we apply the thermodynamic integration trick introduced in Kingma
et al. (2021), by first defining the point-wise gap function f(x, γ) as

f(x, γ) ≡ DKL[p(xα|x) ∥ pG(xα)]−DKL[p(xα|x) ∥ p(xα)].

We denote pG(xα) =
∫
p(xα|x)pG(x)dx as the marginal output distribution of the MMSE for the

channel with Gaussian input as mmseG(γ). In the limit of zero SNR, we get limγ→0 f(x, γ) = 0.
In the high SNR limit, Kong et al. (2022) prove that

lim
γ→∞

f(x, γ) = log
p(x)

pG(x)
. (10)

Combining this with Eq. 8, we can write the log likelihood exactly in terms of the log likelihood of
a Gaussian and a one dimensional integral.

− log p(x) = − log pG(x)−
∫ ∞

0

dγ
d

dγ
f(x, γ)

= − log pG(x)− 1/2

∫ ∞

0

dγ (mmseG(x, γ)−mmse(x, γ)) (11)

This expresses density in terms of a Gaussian density and a correction that measures how much
better we can denoise the target distribution than we could using the optimal decoder for Gaussian
source data. The density can be further simplified by writing out the Gaussian expressions explicitly
and simplifying with an identity given in,

− log p(x) = d/2 log(2πe)− 1/2

∫ ∞

0

dγ

(
d

1 + γ
−mmse(x, γ)

)
. (12)

Observe that the first term in the integrand does not depend on x, which allows us to derive the
desired result Eq. 2. We refer readers to Kong et al. (2022) for more detailed derivations.

B DERIVATIONS OF POINTWISE INFORMATION VIA THE ORTHOGONALITY
PRINCIPLE

Our goal is to show that the following expression,

io(x;y) ≡ 1/2

∫
Ep(ϵ)

[
∥ϵ̂α(xα)− ϵ̂α(xα|y)∥2

]
dα,

is a pointwise information estimator, i.e., that it satisfies the identity,

I(X;Y ) = Ep(x,y)[i
o(x;y)].

To show this fact, we first recall the definition of our optimal denoiser and optimal conditional
denoiser.

ϵ̂α(x) ≡ argmin
ϵ̄(·)

Ep(x),p(ϵ)

[
∥ϵ− ϵ̄(xα)∥2

]
ϵ̂α(x|y) ≡ argmin

ϵ̄(·)
Ep(x|y),p(ϵ)

[
∥ϵ− ϵ̄(xα|y)∥2

]
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For this optimal denoiser, the following expression holds exactly.

− log p(x) = 1/2

∫
Ep(ϵ)

[
∥ϵ− ϵ̂α(xα)∥2

]
dα+ const

− log p(x|y) = 1/2

∫
Ep(ϵ)

[
∥ϵ− ϵ̂α(xα|y)∥2

]
dα+ const

(13)

Therefore, we have that,

I(X;Y ) = Ep(x,y)[log p(x|y)− log p(x]

= Ep(x,y)

[
1/2

∫
Ep(ϵ)

[
∥ϵ− ϵ̂α(xα)∥2 − ∥ϵ− ϵ̂α(xα|y)∥2

]
dα

]
Rearranging we have the following.

I(X;Y ) = Ep(x,y)

[ io(x;y)︷ ︸︸ ︷
1/2

∫
Ep(ϵ)

[
∥ϵ̂α(xα)− ϵ̂α(xα|y)∥2

]
dα

]
+ 2Ep(y)

[
1/2

∫
Ep(x|y),p(ϵ) [(ϵ̂α(xα)− ϵ̂α(xα|y)) · (ϵ̂α(xα|y)− ϵ)]︸ ︷︷ ︸

≡O

dα
]

What remains is to show that the term in red is zero, O = 0, and therefore the whole second term
is equal to zero. This fact follows from the orthogonality principle (Kay, 1993), which states the
slightly more general result that,

∀f , Ep(x|y)p(ϵ)[f(xα,y) · (ϵ̂α(xα|y)− ϵ)] = 0.

Note that this is stated in a slightly different way, as we have used xα ≡ xα(x, ϵ) to write the noisy
channel that our MMSE estimator is attempting to use to recover ϵ. The term (ϵ̂α(xα|y) − ϵ) is
recognized as the error of the MMSE estimator. This error must be orthogonal to any estimator, f .
If it isn’t, then we can use it to build an estimator with lower MSE than ϵ̂α(xα|y), contradicting our
assumption that ϵ̂α(xα|y) is the MMSE estimator. A similar result to the orthogonality principle
can be shown in a more general way using Bregman divergences (Banerjee et al., 2005).

Therefore, we finally have the desired result that I(X;Y ) = Ep(x,y)[i
o(x;y)]. Note that this point-

wise estimator has a slightly different interpretation from the standard one, is, as it is not equal to a
log-likelihood ratio pointwise, though it is still in expectation. On the other hand, it has several nice
properties. It is non-negative, which is convenient for visualizing heatmaps. It is clear that if mutual
information is zero, then the optimal denoiser should learn to ignore y, so ϵ̂α(xα|y) = ϵ̂α(xα) and
our information estimate is then zero.

C ADDITIONAL RESULTS

C.1 RELATIONSHIP BETWEEN IMAGE-LEVEL MI AND CMI

On both the COCO100-IT and COCO-WL datasets, we conducted further calculations for image-
level MI and CMI, presenting the results in scatterplots in Fig. 4. These quantitative findings align
with our pixel-level visual analysis (§3.2). MI and CMI exhibit strong consistency for noun words,
with a high Pearson correlation coefficient of 0.89. In most cases, MI values remain higher than
CMI, primarily due to MI containing more information from the background context. However, for
abstract words, the Pearson coefficient drops to 0.17, and notably, MI is consistently larger than
CMI (with most cases being nearly zero), indicating MI’s superior capability in capturing informa-
tion involving abstract words compared to CMI. This signals a high degree of redundancy between
abstract words and context (Williams & Beer, 2010).

C.2 IMAGE-LEVEL MMSE CURVES AND PIXEL-LEVEL MMSE VISUALIZAITON

We analyze the image-level (Fig. 5) and pixel-level (Fig. 8 and 9) MMSE for 10 cases in COCO100-
IT. To fully harness the capabilities of ITD (Kong et al., 2022), we configured the diffusion steps
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Figure 4: Scatter plot for correlation between MI and CMI.

to be 200. We conducted 50 samples under the same α, and the MMSE results are derived from
the average denoising of these samples. However, for the purpose of pixel-level visualization, we
selected only 20 steps.

From Fig. 5, it becomes evident that as α varies, the orthogonal approximation exhibits greater
stability with fewer zigzag patterns compared to the standard version. Furthermore, the orthogonal
method enhances the consistency between MMSE and conditional MMSE, leading to synchronized
peaks and similar distributions. The diffusion process reveals that the optimal performance for
locating object-related pixels in the image coincides with the appearance of peaks in Fig 5. When
the α is too high, the highlighted pixels gradually become sparse, while excessively low α values
lead to chaos in MMSE.

Figure 5: MMSE curves examples for 10 categories.

C.3 EXAMPLES OF WORD LOCATION FOR OBJECT NOUNS

We put more pixel-level MI and CMI visualization examples from COCO100-IT, see Fig. 10 & 11
& 12.

C.4 EXAMPLES OF WORD LOCATION FOR OTHER SEVEN ENTITIES

We put more word location visualization examples for seven entities from COCO-WL, see Fig. 14
& 13.
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C.5 INTERVENTION EXPERIMENTS ADDITIONAL RESULTS

(a) Low correlation between image change and heatmaps

(b) High correlation between image change and heatmaps

Figure 6: (a) An example where the correlation between pixel-level changes and CMI or attention
are low (0.25 and -0.21 respectively). (b) An example where the pixel-level correlation is high (0.73
and 0.77 respectively).

We observe that correlations between heatmaps (from conditional mutual information or from at-
tention) often correlate strongly with changes in the image after intervention. However, this is not
always the case. We show a negative and positive example in Fig. 6. We see in some images that one
word change globally changes the image, leading to poor correlation. This result, however, does not
contradict our original hypothesis, which is that small CMI implies that omitting a word will have
no effect. We generally observe this to be true. However, when the CMI is large, the effect may or
may not be correctly localized. The reason that the effect is not always correctly localized is that
generation is an iterative procedure: a small change in the first step can lead to global changes in the
image.

Fig. 15 and 16 visualize additional examples where we swap a word in a caption with a categorically
similar word. For the COCO-IT dataset described in §E, we explored the following word swaps:
dog ↔ cat, zebra ↔ horse, bed ↔ table, bear ↔ elephant, airplane ↔ kite, person ↔ clown,
plus plural versions. In these plots, and also Fig. 1 and 6, the pixel values represent io and are
shown with a colormap where the maximum value corresponds to 0.15 bits/pixel. However, the
“total information” shown in white text uses the unbiased estimate is, and hence can sometimes be
negative. Attention color maps are normalized as was done by Tang et al. (2022).

D EXPERIMENTAL SETTINGS

We provide code for reproducing our experiments at https://github.com/kxh001/
Info-Decomp.

D.1 RELATION TESTING WITH POINTWISE INFORMATION

We refer readers to Table 5 for additional implementation details for evaluating the ARO bench-
mark. All datasets are prepared following the official implementation of Yuksekgonul et al. (2022)
available at https://github.com/mertyg/vision-language-models-are-bows.
git. All experiments are run on NVIDIA RTX A6000 GPUs.

We evaluate the OpenCLIP checkpoint laion/CLIP-ViT-H-14-laion2B-s32B-b79K.
This checkpoint consists of a 330M BERT-style encoder trained on the LAION-2B Dataset. Its
text encoder is consistent with the one deployed by Stable Diffusion version 2.1 to ensure fair com-
parison. We use a batch size of 80 for all OpenCLIP evaluations.

18

https://github.com/kxh001/Info-Decomp
https://github.com/kxh001/Info-Decomp
https://github.com/mertyg/vision-language-models-are-bows.git
https://github.com/mertyg/vision-language-models-are-bows.git
https://huggingface.co/datasets/laion/laion2B-en


Under review as a conference paper at ICLR 2024

Table 5: Additional Experiment Details for the ARO Benchmark

VG-A VG-R COCO Flickr30k
Perturbation size 1 1 4 4
Dataset size 28,748 23,937 25,010 5,000
Inference batch size 10 10 5 5
SNR sample size 100 100 100 100

In the fourth-row of Table 6, we report the performance of OpenCLIP wherein the last layer of its
text encoder is removed. This setup is consistent with Stable Diffusion’s usage of text encoder,
but we observe the results to be similar for VG-Relation and VG-Attribution (1 perturbation), and
significantly worse for COCO-Order and Flickr30k-Order (4 perturbations). All other entries are
identical to Table 1 for reference.

We report fine-grained performance of Stable Diffusion and OpenCLIP systems across each relation
type in Table 10. In column 3, we report normalized prediction disagreement between uniform and
logistic sampling, and observe the predictions to be generally consistent.

Additionally, we assess the consistency of our estimator across random seeds. For each dataset, we
select the first 1000 samples, evaluate our estimator across 3 random seeds, and provide OpenCLIP
baseline on the same subsets as for reference. Numerical results are provided in Table 7. The
information estimates are relatively consistent, and establish statistically significant performance
gap compared to OpenCLIP.

Table 6: Additional Accuracy (%) of Stable Diffusion and OpenCLIP.

Method VG-A VG-R COCO Flickr30k
Baseline (Random Guess) 50.0 50.0 20.0 20.0
OpenCLIP Ilharco et al. (2021) 64.6 51.4 32.8 40.5
OpenCLIP (all-but-last) 65.6 50.9 22.4 28.8
Info. (Ours, Uniform) 71.2 68.5 39.3 48.7
Info. (Ours, Logistic) 72.0 69.1 40.1 49.3

Table 7: Mean Estimator Accuracy and Std. Dev. across Random Seeds

VG-A VG-R COCO Flickr30k
Acc.±Std. Dev. (%)

Info. (Unif.) 71.7 ± 0.59 72.3 ± 2.87 36.3 ± 0.87 50.5 ± 0.63
Info. (Log.) 72.7 ± 1.32 73.4 ± 1.13 36.8 ± 0.50 51.2 ± 0.73

D.2 LOCALIZING WORD INFORMATION IN IMAGES

In our word localization experiments, we utilized a pre-trained Stable Diffusion v2-1-base model
card available at Huggingface. Input images were resized to 512 × 512 and then normalized to the
[0, 1] pixel value range to ensure compatibility with the pre-trained model.

The DAAM Tang et al. (2022) is essentially an extension integrated into Stable Diffusion mod-
els, designed to generate attention-based heatmaps concurrently with the image generation process.
To leverage DAAM, it is imperative to pair it with a diffusion scheduler. In our experiments, we
draw inspiration from Liu et al. (2023) and employ a DDIM Song et al. (2022) scheduler as a base-
line. While our ITD model Kong et al. (2022) is capable of independently generating MI and CMI
heatmaps using the principles outlined in §2, we also had the option to enhance attention heatmaps
by integrating DAAM with the information-theoretic diffusion process. Hence, we established three
sets of comparative experiments: DAAM+DDIM (Attention), ITD (CMI), and DAAM+ITD (Atten-
tion+Info.) respectively. We opt not to use classifier-free guidance since it primarily aids in image
generation and introduces additional undesired content onto images in the denoising process. We
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utilize the “alphas cumprod” in the scheduler of the Stable Diffusion model to compute the α range
spans from -5 to 7. For specific t-to-α transformation calculations, you could refer to Appendix
B.2 in Kong et al. (2022). Thus, the parameters of the corresponding logistic distribution are [loc,
scale, clip] = [1, 2, 3]. Unfortunately, DAAM only supports a batch size of 1. For DAAM+DDIM
and DAAM+ITD, we utilize the following input: (x, y, y∗). In the case of ITD, the input config-
uration is (x, y, c). This distinction arises from the fact that DAAM generates heatmaps based on
the cross-attention map, enabling the direct calculation of the score for an individual object word on
each pixel. On the other hand, ITD relies on conditional mutual information, ioj(x; y∗|c).

Table 8: The hyper-parameters used in DDIM and ITD schedulers.

random seed batch size (DDIM/ITD) logistic distribution (ITD) guidance (DDIM)
42 1/10 [loc, scale, clip] = [1, 2, 3] 1

All experiments were conducted using Nvidia RTX 6000 GPU cards. The hyper-parameters used
in these experiments are summarized in Table 8, with variations in the number of diffusion steps
set at 50, 100, and 200. Once the heatmap of the image is computed, we initially rescale it to
the [0, 1] range and subsequently apply a uniform hard threshold on them for segmentation. After
experimenting with hard thresholds vary in [0, 1], we identify the optimal threshold that yields the
highest mIoU value, then record the mIoU in Table 3. Unless explicitly stated, all visualization for
MI, CMI, and attention heatmaps are based on 100 diffusion steps.

Table 9: Unsupervised Object Segmentation mIoU (%) Standard Error Analysis on COCO-IT

Method 1 step 50 steps 100 steps 200 steps
Whole Image Mask 14.94 ± 0.0022 14.94 ± 0.0022 14.94 ± 0.0022 14.94 ± 0.0022

Attention 37.89 ± 0.0030 34.52 ± 0.0030 34.90 ± 0.0030 35.35 ± 0.0030
CMI 21.73 ± 0.0023 32.31 ± 0.0026 33.24 ± 0.0026 33.63 ± 0.0026

Attention+Info. 37.96 ± 0.0030 42.46 ± 0.0032 42.71 ± 0.0032 42.84 ± 0.0032

We calculated the standard error of the IoU values for object segmentation experiments conducted
on COCO-IT, and the results are documented in Table 9. This indicates that the number of diffusion
steps does not significantly affect the variation in IoU values. Notice that Table 9 includes an addi-
tional column for the 1-step experiment results. The 1-step DAAM-DDIM diffusion process can be
regarded as denoising images with imperceptible noise, which is surprisingly effective compared to
the multi-step results. However, computing MI and CMI only at a single step, or α, is not directly
comparable. The steps in that case are interpreted as elements in a sum approximating an integral,
and we don’t expect a one step sum to be a good estimate. Additionally, as per the analysis in §C.2,
peaks are required for an accurate match between relevant pixels and object words, which cannot
be predicted in advance. Nonetheless, the results still demonstrate that the information-theoretic
diffusion process enhances attention with respect to object segmentation. Additionally, it’s note-
worthy to mention that the generation process for MI or CMI from ITD differs from the generation
of DAAM. DAAM requires continuous noise addition and denoising iterations to compute, while
ITD first samples a series of α, and then each α can undergo independent noise addition and de-
noising computations. Finally, MI or CMI is calculated by one integration, which facilitates parallel
computing, see Fig. 7.

E COCO-IT DATASET PREPARATION

While the MSCOCO Lin et al. (2015) dataset boasts ample image-text pairs, not every object present
in the images is mentioned in the captions, even if these objects have been labeled and annotated. In
our experiments, we would like to test (1) the mutual information between a complete prompt and
the corresponding image, and (2) the conditional mutual information between the object word and
the image. Therefore, we filtered the original COCO 2017 validation dataset using the following
steps:

(a) Traverse all the objects in an image.
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Figure 7: The diagram of two different diffusion processes.

(b) Match each object word to the caption containing that object.
(c) Generate one data point with four contains: [image, caption, context, object].
(d) If one object doesn’t appear in the captions, then omit that data point.

After applying this filter, we acquired a dataset, COCO-IT, comprising 6,927 validation image-text
data points and 79 categories. To facilitate more effective visualization, we further randomly selected
10 categories from it, choosing 10 image-text pairs for each to create a smaller dataset, COCO100-
IT. Additionally, we constructed a dataset, COCO-WL, for word localization by selecting 10 cases
for seven different entities (verb, num., adj., adv., prep., pron., conj.).
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Table 10: Fine-grained results in Visual Genome Relation dataset.

Info. (Unif.) (↑) Info. (Log.) (↑) Disagreement (↓) OpenCLIP (↑) # Samples

Accuracy (%) 68.5 69.1 6.7 51.4

Spatial Relationships

above 49.8 53.2 5.6 55.0 269
at 70.7 72.0 9.3 66.7 75
behind 39.9 39.9 4.5 54.4 574
below 49.3 46.4 7.7 49.8 209
beneath 50.0 50.0 0.0 90.0 10
in 76.7 79.9 5.5 51.6 708
in front of 70.2 68.7 7.3 63.1 588
inside 69.0 74.1 8.6 56.9 58
on 75.1 75.6 6.4 51.0 1684
on top of 62.7 63.7 9.0 46.3 201
to the left of 51.1 51.2 7.8 50.5 7741
to the right of 48.6 49.3 7.9 49.8 7741
under 47.0 46.2 3.8 43.9 132

Verbs

carrying 58.3 66.7 8.3 33.3 12
covered by 36.1 33.3 8.3 55.6 36
covered in 14.3 14.3 14.3 50.0 14
covered with 18.8 18.8 0.0 43.8 16
covering 63.6 72.7 15.2 54.5 33
cutting 91.7 91.7 0.0 66.7 12
eating 85.7 85.7 0.0 57.1 21
feeding 40.0 50.0 10.0 100.0 10
grazing on 60.0 60.0 0.0 30.0 10
hanging on 57.1 71.4 14.3 78.6 14
holding 90.1 87.3 5.6 52.1 142
leaning on 66.7 66.7 0.0 66.7 12
looking at 80.6 83.9 3.2 48.4 31
lying in 100.0 100.0 0.0 33.3 15
lying on 81.7 86.7 5.0 40.0 60
parked on 76.2 71.4 4.8 61.9 21
reflected in 71.4 64.3 7.1 61.9 14
resting on 69.2 84.6 15.4 15.4 13
riding 80.4 76.5 7.8 37.3 51
sitting at 65.4 69.2 3.8 38.5 26
sitting in 82.6 82.6 8.7 65.2 23
sitting on 80.6 78.9 8.6 49.7 175
sitting on top of 80.0 50.0 30.0 60.0 10
standing by 91.7 91.7 16.7 50.0 12
standing in 89.8 91.5 8.5 49.2 59
standing on 78.8 82.7 3.8 55.8 52
surrounded by 64.3 57.1 7.1 42.9 14
using 100.0 100.0 0.0 21.1 19
walking in 90.0 90.0 0.0 70.0 10
walking on 94.7 94.7 0.0 36.8 19
watching 72.7 77.3 4.5 31.8 22
wearing 82.7 84.1 6.4 44.9 949
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Figure 8: Examples of pixel-level MMSE visualization.
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Figure 9: Examples of pixel-level MMSE visualization.
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Figure 10: Examples of localizing noun words in images.
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Figure 11: Examples of localizing noun words in images.
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Figure 12: Examples of localizing noun words in images.

27



Under review as a conference paper at ICLR 2024

Figure 13: Examples of localizing abstract words in images.
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Figure 14: Examples of localizing abstract words in images.
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Figure 15: Examples of word swap interventions
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Figure 16: Examples of word swap interventions
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Figure 17: Examples of word omission interventions

32



Under review as a conference paper at ICLR 2024

Figure 18: Examples of word omission interventions
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