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ABSTRACT

The rising interest in leveraging higher-order interactions present in complex systems has
led to a surge in more expressive models exploiting higher-order structures in the data,
especially in topological deep learning (TDL), which designs neural networks on higher-
order domains such as simplicial complexes. However, progress in this field is hindered
by the scarcity of datasets for benchmarking these architectures. To address this gap, we
introduce MANTRA, the first large-scale, diverse, and intrinsically higher-order dataset for
benchmarking higher-order models, comprising over 43,000 and 250,000 triangulations
of surfaces and three-dimensional manifolds, respectively. With MANTRA, we assess
several graph- and simplicial complex-based models on three topological classification
tasks. We demonstrate that while simplicial complex-based neural networks generally
outperform their graph-based counterparts in capturing simple topological invariants, they
also struggle, suggesting a rethink of TDL. Thus, MANTRA serves as a benchmark for
assessing and advancing topological methods, paving the way towards more effective
higher-order models.

1 INTRODUCTION

Success in machine learning is commonly measured by a model’s ability to solve tasks on benchmark datasets.
While researchers typically devote a large amount of time to build their models, less time is devoted to data
and its curation. As a consequence, graph learning is facing some issues in terms of reproducibility and
wrong assumptions, which serve as obstructions to progress. An example of this was recently observed while
analyzing long-range features: additional hyperparameter tuning resolves performance differences between
message-passing (MP) graph neural networks on one side and graph transformers on the other (Tönshoff et al.,
2023). In a similar vein, earlier work pointed out the relevance of better taxonomies for existing datasets (Liu
et al., 2022), as well as the need for strong baselines, highlighting the fact that structural information is not
exploited equally by all models (Errica et al., 2020). Recently, new analyses even showed that for some
benchmark datasets, as well as their associated tasks, graph information may be detrimental for the overall
predictive performance (Bechler-Speicher et al., 2024; Coupette et al., 2025), raising concerns about the
future of graph learning as a research field (Bechler-Speicher et al., 2025).
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These troubling trends concerning data are accompanied by increased interest in leveraging higher-order
structures in data, with new models, usually called topological models, extending graph-learning concepts to
simplicial complexes, i.e., generalizations of graphs that incorporate higher-order relations, going beyond the
dyadic relations captured by graphs (Alain et al., 2024a; Bodnar et al., 2021c; Maggs et al., 2024; Ramamurthy
et al., 2023; Röell & Rieck, 2024; Yang et al., 2024). Some topological models already incorporate state-of-
the-art mechanisms for learning such as message-passing (Gilmer et al., 2017) or transformer layers (Ballester
et al., 2024), but adapted to higher-order domains, sometimes outperforming their original counterparts in
graph datasets. However, as pointed out in a recent position paper (Papamarkou et al., 2024), there is a dire
need for “higher-order datasets,” i.e., datasets that contain non-trivial higher-order structures. The scarcity of
such datasets impedes the development of reliable benchmarks for assessing (i) the utility of higher-order
structures present in data, and (ii) the performance of new models that leverage them, thus potentially eroding
trust in topological models among the broader deep learning community.

Some of the currently-available higher-order datasets belong to the realm of networks, complex systems,
and the life sciences. Benson et al. (2018) present a rich collection of such datasets, comprising nineteen
complex networks enhanced with higher-order information. Similar works have also employed higher-order
structures in data; for instance, Tadić et al. (2019) use clique complexes on top on graphs coming from brain
imaging data. Similarly, Giusti et al. (2016) propose modeling neural data with simplicial complexes by
constructing clique, concurrence (and its dual), and independence complexes on the data. However, most
of these datasets are either annotated or derived from simpler data like graphs or time series. In the case
of annotated data, it is unclear whether current non-higher-order (graph) neural networks or algorithms can
extract the information contained in the higher-order structures using only annotations on vertices and edges.
Similarly, for datasets obtained from simpler data, it is also uncertain whether non-higher-order algorithms
can recover the higher-order structural information by reconstructing the processes used to generate these
relationships explicitly. To the best of our knowledge, the only publicly-available purely higher-order dataset
is the “Torus” dataset proposed in Eitan et al. (2025), which consists of a small number of unions of torus
triangulations. Due to the nature of the dataset, the only varying topological property among the samples is
the number of connected components of each union, making it hard to assess the true capacity of the models
to learn and exploit higher-order structures. The lack of higher-order datasets is also remarked upon in a
recent benchmarking paper for topological models (Telyatnikov et al., 2024), which restricts itself to existing
graph datasets that were subjected to a variety of topological liftings, i.e., methods for endowing graph
datasets with higher-order structures (Bernárdez et al., 2024; Jonsson, 2007). It remains unclear whether
graph neural network architectures can also learn and take advantage of the information provided by the
topological liftings, as they are solely based on the graph structure.

Contributions. To address these issues, we present MANTRA, the manifold triangulations assemblage,
which constitutes the first instance of a large, diverse, and intrinsically higher-order dataset, consisting of
triangulations of combinatorial 2-manifolds and 3-manifolds. Along with the data, we provide a list of
tasks, as well as a preliminary assessment of the performance of existing methods, both graph-based and
higher-order-based. We focus on a subset of tasks concerned with the classification of simplicial complexes
according to topological labels, where we can interpret the success of a model by its effectiveness in extracting
higher-order topological information. However, these tasks are by no means exhaustive, and we believe
that the generality offered by MANTRA encourages the emergence of even more demanding tasks. Some
of these tasks, such as the prediction or approximation of the Betti numbers from topological data, have
been previously studied in learning (Paul & Chalup, 2019) and non-learning (Apers et al., 2023) contexts.
A noteworthy aspect of MANTRA is the conspicuous absence of any intrinsic vertex or edge features such
as coordinates or signals. We believe that this absence renders tasks more topological, as models can only
rely on topology, instead of non-topological information contained in features. Moreover, as manifold
triangulations are directly related to the topological structure of the underlying manifold, we study to which
extent higher-order models are invariant to transformations of a triangulation that preserve the topological
structure of the associated manifold.
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Figure 1: Geometric realizations of some manifold triangulations included in MANTRA. The precise
coordinates of vertices in Euclidean space are not geometrically significant; what matters is the topology of
the resulting polyhedra. Hence, MANTRA is a purely combinatorial dataset.

2 DATASET SPECIFICATION

MANTRA contains 43,138 and 250,359 simplicial complexes corresponding to triangulations of closed
connected two- and three-dimensional manifolds, respectively, with varying number of vertices, originally
curated by Frank H. Lutz and compiled in Lutz (2017). Manifolds have many applications: The configuration
space of a robotic arm can be seen as a manifold (e.g., a torus or hyperbolic space, see Jaquier et al., 2022);
3D shapes in geometry processing are triangulated manifolds (Crane & Wardetzky, 2017); physical fields
in climate forecasting naturally live on a sphere (Bonev et al., 2023), and the manifold hypothesis argues
that high-dimensional data often lies in or close to lower-dimensional manifolds (Fefferman et al., 2016).
Throughout the text, we use the term surface to refer to a two-dimensional manifold. A triangulation of
a manifold M is a pair consisting of a simplicial complex K and a homeomorphism between M and the
geometric realization of K. For brevity, we use the term triangulation to refer exclusively to the simplicial
complex K. See Appendix A.3 for precise definitions and further information.

Table 1: Number of triangu-
lations by manifold dimen-
sion (2 -M: 2-manifolds;
3 -M: 3-manifolds) and
number of vertices |V | in
a triangulation.

|V | 2 -M 3 -M
4 1 0
5 1 1
6 3 2
7 9 5
8 43 39
9 655 1,297

10 42,426 249,015

Total 43,138 250,359

Triangulations of surfaces and 3-manifolds encode higher-order topological
information that cannot be inferred solely from their underlying graphs. In-
deed, there exist non-homeomorphic surfaces with identical graph structures.
Specifically, for n > 7, the complete graph with n vertices triangulates both
a connected sum of tori and a connected sum of projective planes, which are
non-homeomorphic (Lawrencenko & Negami, 1999). Figure 1 contains exam-
ples of geometric realizations of MANTRA triangulations. Table 1 contains
the distribution of triangulations in terms of their number of vertices. Each
triangulation contains a set of labels based on its dimension. Common labels
are the number of vertices of the triangulation, the first three Betti numbers
β0, β1, β2, and torsion in homology with integer coefficients. Appendix A.2
provides definitions for these concepts. For triangulations of a Klein bottle K,
a real projective plane RP 2, a 2-dimensional sphere S2, or a torus T 2, the
homeomorphism type is included explicitly as a surface label. We additionally
specify the top Betti number β3 and the homeomorphism type, which can be
a 3-sphere S3, a product S2 × S1 of a 2-sphere and a circle, or a Möbius-like
S2-bundle along S1, denoted by S2 ∼× S1. An exploration of the distributions
of labels is made in Appendix A.5.

We make the dataset and benchmark code available via two repositories:

(i) https://github.com/aidos-lab/MANTRA
(ii) https://github.com/aidos-lab/mantra-benchmarks
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These repositories contain (i) the raw and processed datasets, and (ii) the code to reproduce all our results.
Detailed hyperparameter settings can be found in Appendix D. Step-by-step instructions on how to set up and
execute the benchmark experiments are attached in the README file of the repository. Docker images and
workflow, together with package dependencies are included to ensure a unique environment across different
machine configurations. Finally, random seeds were used to split the datasets in each run.

The dataset is available in two formats, namely a raw version and a version for PyTorch Geomet-
ric. The raw version currently consists of a pair of compressed files 2_manifolds.json.gz and
3_manifolds.json.gz, containing a JSON list with the triangulations of the corresponding dimension.
Each object of the JSON list consists of a set of the following fields, depending on the dimension of the
associated triangulation:

FIELD TYPE DESCRIPTION

id str This attribute refers to the original ID of the triangulation as used
by Lutz (2017) when compiling the triangulations. This facilitates
comparisons to the original dataset if necessary.

triangulation list A doubly-nested list of the facets of the triangulation.
n_vertices int The number of vertices in the triangulation.
name str Homeomorphism type of the triangulation. Possible values are '',

'Klein bottle', 'RPˆ2', 'Sˆ2', 'Tˆ2' for surfaces, where
'' indicates that the explicit homeomorphism type is not available.
For 3-dimensional manifolds, possible values are 'Sˆ2 twist
Sˆ1', 'Sˆ2 x Sˆ1', 'Sˆ3'.

betti_numbers list A list of Betti numbers of the triangulation, computed using R = Z,
i.e., integer coefficients.

torsion_coefficients list A list of the torsion subgroups of the triangulation. Possible values
are '', 'Z_2', where an empty string '' indicates that no torsion
is present in that dimension.

genus int For surfaces, contains the genus of the triangulation.
orientable bool For surfaces, specifies if the triangulation is orientable or not.

The PyTorch Geometric (Fey & Lenssen, 2019, PyG) version is available as a Python package that
can be installed using the command pip install mantra-dataset. Each example of the dataset is
implemented as a PyG Data object, containing the same attributes as JSON objects in the raw version. The
main difference with the data in the raw version is that numerical values are stored as PyTorch tensors. Both
formats, raw and processed, are versioned using the Semantic Versioning 2.0.0 convention (Preston-Werner)
and are also available via Zenodo,1 thus ensuring reproducibility and clear tracking of the dataset evolution.

Dataset limitations. In the present version of MANTRA, triangulations are restricted to two- and three-
dimensional complexes up to 10 vertices. This may pose a limitation concerning the transferability of our
findings to datasets with significantly higher number of vertices per sample, such as fine-grained mesh
datasets. While extending the dataset beyond 10 vertices is theoretically possible, it poses substantial storage
and computational challenges due to the exponential growth in possible triangulations—for example, there are
over 11 million surfaces for triangulations of 11 vertices—and the unavailability of complete enumerations
of triangulations for more than 13 vertices, which may potentially lead to incomplete datasets and skewed
label distributions. Note that this does not preclude the addition of triangulations with other properties, for
instance certain minimality properties (like vertex-transitive triangulations). Additionally, focusing solely on
two- and three-dimensional manifolds excludes higher-dimensional triangulations and data, which remain
active areas of research. Nevertheless, we believe that MANTRA provides a valuable benchmark for testing

1https://doi.org/10.5281/zenodo.14103581
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higher-order models on the most common types of higher-order structured data, that is, graphs, surfaces, and
volumes. Finally, we want to highlight the fact that MANTRA does not (yet) encompass the full spectrum
of properties present in real-world data—for example, the large simplicial complex sizes found in complex
networks or the geometric information contained in some datasets like the existence of vertex coordinates
in meshes. Therefore, although we consider MANTRA a valuable dataset for testing the capabilities of
higher-order models, it should be studied in conjunction with other conceptually diverse datasets to better
study the capabilities of models.

3 EXPERIMENTS

TL;DR: We assess twelve state-of-the-art simplicial complex- and graph-based architectures, on
various topological prediction tasks such as Betti number homeomorphism type classification, and
orientability detection. Our experiments confirm that simplicial complex-based neural networks
almost always achieve better results than graph-based ones in extracting the topological invariants
mentioned above. However, we also find that the performance of the assessed models may be
suboptimal, given that they use the moniker “topological models.” In particular, we discover that all
model performances deteriorate when applying barycentric subdivisions to the original test datasets,
suggesting that the tested models are unable to learn topologically invariant functions.

Sections 3.1 and 3.2 presents the comprehensive experimental design for MANTRA, outlining the key
scientific questions addressed. Section 3.3 provides a detailed analysis of the experimental results.

3.1 MAIN EXPERIMENTS

In this section, we demonstrate MANTRA’s effectiveness as a comprehensive benchmark for higher-order
models. Leveraging the extensive set of labels and triangulations available, our experiments are designed to
address the following critical research questions:

Q1 To what extent are higher-order models needed to perform inference tasks on higher-order domains
like simplicial complexes? Are graph-based models enough to successfully capture the full set of
combinatorial properties present in the data?

Q2 Do current neural networks, both graph- and simplicial complex-based, capture topological properties in
data? Are they able to predict basic topological invariants such as Betti numbers of simplicial complexes?

Q3 How invariant are state-of-the-art models to transformations that preserve topological properties of data?

The difference between Q1 and Q2, Q3 is subtle. Combinatorial information is related to the structure of the
data, input values, in our case, simplicial complexes, while topological information is related to properties
that are invariant under topological transformations of the data. For example, in prediction tasks involving
molecules, we expect combinatorial information than topological features, since the structure of a molecule
is crucial in predicting properties of the molecule. both types of information are intertwined: to properly
compute topological properties of data, we need to consider its the input as explained in Appendices A.2
and A.3. To answer the above questions, we benchmarked twelve models: five graph-based (Fey & Lenssen,
2019), using only zero- and one-dimensional simplices of complexes, and seven simplicial complex-based
models, four from the TopoModelX library (Hajij et al., 2024) and three extra cellular models, using the full
set of simplicial complexes in five different tasks per manifold dimension:

T1 Predicting the Betti numbers βi for triangulated surfaces and 3-dimensional manifolds.
T2 Predicting the homeomorphism type of triangulated surfaces.
T3 Predicting orientability of triangulated surfaces.
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These tasks are not challenging when viewed in the context of algebraic topology, since explicit algorithms
for all of them are known. However, we are interested in analyzing to what extent a neural network
can provide (approximate) solutions here, with the goal of ultimately addressing more challenging tasks
in (computational) algebraic topology. To address the high proportion of surfaces without explicitly assigned
homeomorphism type, we duplicated the experiments on both the full set of surfaces and the subset of surfaces
with known type. Throughout the paper, we denote by 2 -M0, 2 -M0

H , and 3 -M0 the full set of surfaces,
the set of surfaces with known homeomorphism type, and the full set of 3-manifolds, respectively.

Models. The graph-based models benchmarked are the Multi-Layer Perceptron (MLP), the Graph Con-
volutional Network (Kipf & Welling, 2017, GCN), the Graph Attention Network (Veličković et al., 2018,
GAT), the Graph Transformer (Shi et al., 2021, UniMP), and the Topology Adaptive Graph Convolutional
Network (Du et al., 2017, TAG). The simplicial complex-based benchmarked models are the Simplicial
Attention Network (Giusti et al., 2022, SAN), three convolution-based simplicial neural networks previously
benchmarked in Telyatnikov et al. (2024) and introduced in Yang et al. (2022, SCCN), Yang & Isufi (2023,
SCCNN), and Wu et al. (2024, SCN), respectively, the cellular message passing from (Bodnar et al., 2021b,
CellMP), the cellular transformer (Ballester et al., 2024, CT), and the Differentiable Euler Characteristic Trans-
form (Röell & Rieck, 2024, DECT). Note that except for the MLP model, the graph and cellular transformers,
and the DECT, all models implement some variant of a (higher-order) message-passing paradigm (Hajij et al.,
2023; Papillon et al., 2024). More information about the models can be found in Appendix C.

Features. All twelve models assume that simplicial complexes are equipped with feature vectors on top of a
subset of the simplices. The feature vectors for graph-based models and DECT are either: (1) scalars randomly
generated, (2) degrees of each vertex, (3) degree one-hot encodings of each vertex. For the rest of simplicial
complex-based models, the feature vectors are either: (1) eight-dimensional vectors generated randomly,
(2) number of upper-adjacent neighbors (upper-connectivity index) of each simplex of dimensions lower
than the dimension of the simplicial complex and number of lower-adjacent neighbors (lower-connectivity
index) for simplices of the same dimension as the simplicial complex. By definition, two simplices are
upper-adjacent, and both are upper-adjacent neighbors of the other, if they share a coface of one dimension
higher. Similarly, two simplices are lower-adjacent if they share a face of one dimension lower.

Training details. In total, our experiments span 240 training results across various tasks, feature generation,
and models. To ensure fairness, all configurations use the same learning rate of 0.01 and the same number of
epochs of 6; we observe that graph-based models already overfit after a single epoch, though. Hyperparameters
for graph-based models were mostly extracted from the default examples from PyTorch Geometric, while
hyperparameters for simplicial complex-based models were set to values similar to the ones from the
TopoBenchmarkX paper (Telyatnikov et al., 2024), specially for the already benchmarked SCCN, SCCNN,
and SCN models. Hyperparameter details can be found in Appendix D. To mitigate the effects of training
randomness, we re-ran each experiment five times and considered both the best and the mean (together with
standard deviation) performance obtained across these runs for each model and initialisation of features. Due
to the high imbalance in the datasets for most labels, we performed stratified train/validation/test splits for
each task individually, with 60/20/20 percentage of the data for each split, respectively. Splits were generated
using the same random seed for each run, ensuring that the same splits are used across all configurations. All
models were trained using the Adam optimizer.

Loss and metric functions. Each task (T1, T2, T3) was treated as a classification task during testing. We
report the area under the ROC curve (AUROC) (Bradley, 1997) as performance metric, which is standard
for imbalanced classification problems, on all tasks except for predicting β0, where we report accuracy due
to the fact that we only have the label 1, as all our triangulations correspond to connected manifolds. For
both the homeomorphism type and orientability tasks, we train the models using the standard cross-entropy
loss for classification problems. We also experimented with weighting the cross-entropy loss to penalize
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mispredictions in under-represented classes more heavily, but we did not obtain improvements. To avoid
increasing the computational complexity of our experiments, we chose not to implement more involved
methods for handling the class imbalances and leave this issue for future work. For Betti number prediction,
we approached training as a multivariate regression task, since Betti numbers can theoretically be arbitrarily
large. Our loss function in this case was the mean squared error, and the Betti number prediction was obtained
by rounding the model outputs to the nearest integer.

3.2 BARYCENTRIC SUBDIVISION EXPERIMENTS

The previous experiments try to answer Q1 and Q2: if performances are good for simplicial complex-based
graph-based ones, then we can conclude that higher-order models are needed to perform inference tasks on
domains with higher-order and topological information. By contrast, if performances are good for graph-based
models then we can conclude that graph models are enough to capture the full set of combinatorial and
topological features present in MANTRA’s dataset, questioning the need for higher-order models. However,
Q3 is more subtle. Although it is closely related to Q2, Q3 emphasizes the invariance of the models to
transformations that preserve the topological properties of the input data, a desirable property for TDL
models known as remeshing symmetry (Papamarkou et al., 2024). For example, if a model is well-trained
with a dataset containing only triangulations up to a certain number of vertices, we can expect the model
to perform correct predictions in new examples that also have at most the maximum number of vertices
seen in the training dataset. However, what happens if we try to predict from a refinement of a manifold
triangulation? For instance, barycentric subdivisions increase the (combinatorial) distances between the
original vertices in a triangulation, and this can be harmful for networks relying on the MP algorithm, since
distances determine how many layers are needed to propagate information from one vertex to another. In
fact, Horn et al. (2022) showed that MP-based graph neural networks with a small number of layers struggled
to obtain good performances on synthetic datasets where the number of cycles and connected components
played a crucial role.

To answer Q3, we performed an additional evaluation of the models trained on surface tasks with known
homeomorphism type for the experiments described in Section 3.1. Particularly, for each task, we evaluated
the performance of the trained models on a dataset obtained by performing one barycentric subdivision on
each triangulation in the original test dataset, and then we compared the performances of the models on both
datasets, original and subdivided. Throughout the text, we denote the subdivided test dataset as 2 -M1

H . We
did not analyze barycentric subdivisions of 3-dimensional manifolds due to computational constraints. Also,
for these experiments, we leave out the DECT model from the analysis, since the DECT is invariant with
respect to barycentric subdivision by construction if used appropiately.

3.3 ANALYSIS

Our analysis reports aggregated results and focuses primarily on the comparison between graph-based models
(G) and simplicial complex-based models (T ). Comprehensive results are available in Appendix E. Table 2
presents the mean and standard deviation of the maximum performance achieved by each combination of
feature vector initialization and model type across the 5 runs of each task for both graph-based (G) and
simplicial complex-based (T ) model families, including performances on the barycentric subdivisions of
the test triangulations for each experiment run in the set of surfaces with known homeomorphism type, as
described in Section 3.2. Notably, our experiments suggest that higher-order MP-based and transformer
models are not invariant relative to topological transformations and therefore cannot be considered topological
in the strictest sense of the term: higher-order models predicting better than random in any task suffer from
a performance degradation when testing on the subdivided examples, as shown by the full set of results
in sections E.1 to E.2 and tables 2 and 11.
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Table 2: Predictive performance of graph- and simplicial complex-based models on surface and 3-manifold
tasks. Results for the full set of surfaces (2 -M0), for the set of surfaces with known homeomorphism type
(2 -M0

H ), and for the full set of three-manifolds (3 -M0) are reported. Additionally, performance metrics
for the barycentric subdivision of the test set on the models trained on 2 -M0

H , i.e., 2 -M1
H , are included;

see Section 3.2 for details. For each family of models, G (graph-based) and T (simplicial complex-based),
we report the mean and standard deviation of the maximum performance achieved across five runs by each
combination of feature vector initialization and model contained in the family. The tasks reported are
prediction of β0, β1, β2, β3, prediction of the homeomorphism type, and prediction of orientability. For all
tasks except for prediction of β0, we report the AUROC metric. For β0, we report accuracy. Best average
result among both families for each task is in bold. Note that the reported averages and standard deviations are
not calculated from individual model performances across different random seeds. Instead, for each model,
we selected its best performance achieved across all seeds for each experiment. Then, we aggregated these
best performances within each category—graph-based and simplicial complex-based models—to compute
the averages and standard deviations reported in the table.

Accuracy AUROC

DATASET MODEL FAMILY β0 β1 β2 β3 HOMEO. TYPE ORIENTABILITY

2 -M0 G 1.00 ± 0.00 0.50 ± 0.00 0.50 ± 0.00 0.47 ± 0.01 0.50 ± 0.00
T 0.73 ± 0.39 0.68 ± 0.16 0.59 ± 0.10 0.69 ± 0.18 0.56 ± 0.07

2 -M0
H

G 1.00 ± 0.00 0.21 ± 0.00 0.50 ± 0.00 0.49 ± 0.01 0.50 ± 0.00
T 0.57 ± 0.44 0.25 ± 0.03 0.52 ± 0.02 0.66 ± 0.13 0.52 ± 0.02

2 -M1
H

G 0.47 ± 0.51 0.22 ± 0.00 0.50 ± 0.00 0.49 ± 0.04 0.50 ± 0.00
T 0.21 ± 0.38 0.25 ± 0.02 0.51 ± 0.01 0.60 ± 0.10 0.51 ± 0.01

3 -M0 G 1.00 ± 0.00 0.23 ± 0.00 0.12 ± 0.00 0.14 ± 0.00 0.14 ± 0.00
T 0.78 ± 0.41 0.25 ± 0.04 0.13 ± 0.03 0.16 ± 0.03 0.15 ± 0.02

Weaknesses in the MP-based models are not a recent phenomenon, as highlighted by oversmoothing (Li et al.,
2018) and oversquashing (Alon & Yahav, 2021; Topping et al., 2022), and the MP paradigm has required
numerous fixes since its existence (inlcuding, but not limited to, virtual nodes, feature augmentation, and
graph lifting). More recently, Eitan et al. (2025) argued that, in many cases, higher-order MP-based models
cannot distinguish combinatorial objects based on simple topological properties, and has devised another MP
variant to compensate for this.

Graph-based (G) vs. simplicial complex-based (T ) models. Table 2 together with the full results of
Appendix E show that simplicial complex-based models consistently obtain better or equivalent performances
predicting non-trivial topological properties of triangulated manifolds, meaning β1, β2, β3, orientability, and
homeomorphism type. We note that graph models always correctly detect the connectivity of triangulations
in 2 -M0, 2 -M0

H , and 3-dimensional manifolds, thus predicting β0 exactly, while topological models
consistently fail to predict connectivity, except for the CT, DECT, and SCCN architectures in our experiments.
The fact that some higher-order message passing networks cannot accurately predict connectivity was also
found, and theoretically proved, in Eitan et al. (2025, Proposition 4.3). Moreover, although simplicial
complex-based models obtain better results overall, these are far from being highly accurate, with averages
below 70 for all tasks, a high performance variance across the models in some tasks, and tasks for which
simplicial complex-based models obtain a performance similar to a random-guessing strategy. Nonetheless,
the best performances obtained by specific simplicial complex-based models, as described in the full results of
Appendix E, are promising, achieving excellent AUROC results in some tasks, such as homeomorphism type
prediction, where the CT and SCCN models obtained average AUROCs of 91 and 83 and 85 and 80 for the
full and known homeomorphism type surface datasets, respectively, and Betti number prediction for the full
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set of surfaces, where the CT and SCCN models obtained an average AUROC of 93 when predicting the first
Betti number. Overall, the results suggest that higher-order models are indeed necessary to capture topological
and higher-order characteristics of data, although several current models are not yet able to do so effectively,
partially answering questions Q1 and Q2. Such results were expected, given that one-dimensional structures
are insufficient, in principle, to fully characterize the topology of two- or three-dimensional triangulated
manifolds, as stated at the beginning of Section 2. However, it is plausible that graph-based networks can
accurately classify approximately 50% of homeomorphism types of surfaces, since the underlying graph
of a triangulation determines the Euler characteristic, which in turn defines the homeomorphism type up to
orientability (see Appendix A.4).

Orientability. Predicting orientability turns out to be the most difficult task for graph- and simplicial
complex-based models, obtaining performances equivalent to random guessing in most cases for surfaces and
performances worse than random for 3-manifolds. Moreover, we do not find significative differences between
the performances of predicting the Betti number β2 and orientability for surfaces as a binary problem. This is
consistent with the similar results obtained for predicting β2 and orientability type as a binary classification
problem for surface datasets.

Barycentric subdivisions. Table 2 shows that the performance of all models decreases when subdividing
the triangulations of the test dataset if the models were performing better than random guessing, indicating
that the models are not learning the invariance of topological properties with respect to subdivisions transfor-
mations that leave topological properties invariant. This is a crucial property that any model dealing with
topological domains should have, as real data is often highly variable in terms of combinatorial information
and representation, but not in terms of their topology. This phenomenon is particularly evident in mesh
datasets, where combinatorial structure varies with resolution. Meshes typically comprise more triangles,
yet all or nearly all input data represent triangulations of connected closed surfaces, regardless of resolution.
In fact, Papamarkou et al. (2024) posit the capacity of TDL models to capture this invariance, denoted
remeshing symmetry, as one of the reasons for using topological deep learning models. Our preliminary
experimental results challenge this claim, opening the door to a new line of research based on the invariance
of input transformations that leave topological properties of the input data unaltered. This is important from
the perspective of model nomenclature, as many current topological models can be viewed as graph-based
approaches that handle heterogeneous node types, with simplices of different dimensions effectively treated
as distinct node categories. We believe that if TDL is to emerge as a distinct research area, it must advance
the field by introducing higher-order mechanisms that cannot be replicated through straightforward adap-
tations of existing graph models, effectively moving beyond (unaugmented) message-passing approaches.
Also, we believe that some tools like (persistent) homology or MAPPER (Singh et al., 2007), which are at
presently not used in our experiments, could potentially be used to address or at least alleviate this issue: The
expressivity of persistent homology in the context of graph learning has already been studied, and was proven
to provide complementary information to traditional message-passing approaches (Ballester & Rieck, 2024;
Immonen et al., 2023; Rieck et al., 2019), whereas MAPPER was shown to be an effective graph-pooling
strategy (Bodnar et al., 2021a). Beyond these two frameworks, we believe that other techniques, drawing
upon geometrical-topological concepts, can address this challenge.

Experimental limitations. Although our results challenge the efficiency of state-of-the-art higher-order
models to predict topological properties of data and open the door to exciting new research avenues, they must
be interpreted with care. For example, we mostly tested message-passing networks in our experiments, leaving
aside interesting proposals such as higher-order state-space models (Montagna et al., 2024), combinatorial
complex networks (Bodnar et al., 2021b; Hajij et al., 2023), topological Gaussian processes (Alain et al.,
2024b) or equivariant higher-order neural networks (Battiloro et al., 2025). Due to computational limitations,
training procedures were limited to 6 epochs, model hyperparameters were not necessarily selected optimally,
and barycentric subdivisions experiments were limited to one subdivision. A significant computational
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bottleneck arose from the implementations of simplicial complex-based models, which processed data
noticeably slower than their graph counterparts as observed in Table 7, highlighting the need for more efficient
implementations of TDL methods as well as conceptual improvements. Despite these limitations, we believe
that each of our initially-stated questions should be investigated individually, requiring a broader set of
experiments and ablations to be fully answered.

4 CONCLUSION

We proposed MANTRA, a higher-order dataset of manifold triangulations that is (i) diverse, containing
triangulations of surfaces and three-dimensional manifolds with different topological invariants and homeo-
morphism types, (ii) large, with over 43,000 triangulations of surfaces and 250,000 triangulations of three-
dimensional manifolds, and (iii) naturally higher-order, as the triangulations are directly related to the
topological structure of the underlying manifold. Using MANTRA, we observed that existing models,
both graph-based and higher-order-based, struggle to learn topological properties of triangulations, such
as the orientability of two-dimensional manifolds, which was the hardest topological property to predict
for surface triangulations, suggesting that new approaches are needed to leverage higher-order structure
associated with the topological information in the dataset. However, we also observed that current higher-order
models outperform graph-based models in our benchmarks, substantiating the promises of this new trend
of higher-order machine-learning models. Regarding invariance, we observed that barycentric subdivision
deeply affects the performance of the models, suggesting that current state-of-the-art models fail to be
invariant to transformations that preserve the topological structure of data, opening an interesting research
direction for future work. In the case of MP-based models, this could be potentially related to sensitivity of
message-passing to the distances between simplices in simplicial complexes. Another interesting research
direction for barycentric subdivisions is their application as inputs to graph neural networks. The induced
graph of a barycentric subdivision represents each simplex of the original complex as a vertex, with edges
encoding face relationships on the original complex. This structure provides an effective representation of
simplicial complexes for graph-based neural architectures, potentially facilitating the processing of higher-
order topological information. We hope that MANTRA will serve as a benchmark for the development of
new models leveraging higher-order and topological structures in data, and as a reference for the development
of new higher-order datasets.
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A MATHEMATICAL BACKGROUND

A.1 SIMPLICIAL COMPLEXES

A simplicial complex K is a family of non-empty finite sets such that, if σ ∈ K and τ ⊆ σ, then τ ∈ K. Each
σ ∈ K is called a simplex of K, and σ is called a d-dimensional face or a d-face of K if its cardinality is d+ 1.
The 0-faces of K are called vertices and the 1-faces are called edges. We denote by Kd the set of d-faces
of K, and define the dimension of K as the largest d for which Kd is non-empty. A simplicial complex of
dimension 1 is called a graph.

A geometric realization of a simplicial complex K is the union of a collection of affine simplices ∆σ in a
Euclidean space Rn for some n ≥ 1, one for each simplex σ ∈ K, where σ is mapped bijectively to the
vertices of ∆σ, and two affine simplices ∆σ and ∆τ share a face corresponding to σ ∩ τ whenever this
intersection is non-empty. Any two geometric realizations of a simplicial complex K are homeomorphic
through a face-preserving map.

The barycentric subdivision of a simplicial complex K is the simplicial complex Sd(K) obtained by setting
its d-dimensional faces to be sequences of strict inclusions σ0 ⊂ σ1 ⊂ · · · ⊂ σd of simplices of K. It then
follows that K and Sd(K) have homeomorphic geometric realizations (Nanda, 2022, Proposition 1.13).

A.2 SIMPLICIAL HOMOLOGY AND BETTI NUMBERS

Simplicial homology of a simplicial complex K equipped with an order on its set of vertices is defined as
follows (Mun, 1984, § 34). Let R be any commutative ring with unit (including the ring of integers Z or
any field). The chain complex of K with coefficients in R is a sequence of R-modules (Cn(K))n∈Z whose
elements are formal sums of n-simplices of K with coefficients in R, i.e.,

Cn(K) =
{∑

σ∈Kn aσσ | aσ ∈ R
}
,

linked by boundary homomorphisms ∂n : Cn(K) → Cn−1(K) for all n ∈ Z, given by

∂n
(∑

σ∈Kn aσσ
)
=

∑
σ∈Kn aσ∂n(σ), ∂n(σ) =

∑n
i=0 (−1)i(σ ∖ {vi}),

if v0, . . . , vn are the ordered vertices of σ. The main property of the boundary homomorphisms is that
∂n ◦ ∂n+1 = 0 for all n, implying that Im(∂n+1) ⊆ Ker(∂n) for all n. This yields homology R-modules,
defined as quotients Hn(K) = Ker(∂n)/Im(∂n+1) for all n.

If K is a finite simplicial complex and R = Z, then Hn(K) is a finitely generated abelian group and therefore
it decomposes as a direct sum

Hn(K) ∼= Zβn ⊕Zq1 ⊕ · · · ⊕Zqt ,

where βn is the n-th Betti number of K, while q1, . . . , qt are prime powers. The sum Zq1 ⊕ · · · ⊕Zqt is the
torsion subgroup of Hn(K). Examples of Betti numbers are provided in Figure 2. The n-th Betti number
of a simplicial complex K counts the number of linearly independent n-dimensional cavities in a geometric
realization of K. In low dimensions, β0 is equal to the number of connected components, and β1 counts the
number of linearly independent loops that are not boundaries of any 2-dimensional region.

A.3 TRIANGULATED MANIFOLDS

An n-dimensional manifold is a second-countable Hausdorff topological space M such that every point of
M is contained in some open set, called a chart, equipped with a homeomorphism into an open subset of a
Euclidean space Rn (Mun, 1984, § 36). This definition does not include manifolds with boundary, which are
not considered in this article. A manifold is called closed if its underlying topological space is compact.
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β0 = 1
β1 = 0
β2 = 0

β0 = 1
β1 = 0
β2 = 1

β0 = 1
β1 = 3
β2 = 0

β0 = 4
β1 = 0
β2 = 0

Figure 2: From left to right, four simplicial complexes K1, K2, K3, and K4 with their respective Betti numbers
β0, β1, and β2. The n-th Betti number indicates the number of n-dimensional holes in a geometric realization
of a simplicial complex. Here K1 is a solid tetrahedron with β0 = 1, β1 = 0, and β2 = 0, since K1 has
only one connected component, no unfilled cycles, and no empty cavity enclosed by 2-faces; K2 is a hollow
tetrahedron with β0 = 1, β1 = 0, and β2 = 1 (the difference with K1 is that the triangles of K2 enclose a
cavity); K3 is the underlying graph, with β0 = 1, β1 = 3, and β2 = 0, since there is no cavity and there are
three linearly independent cycles; K4 consists of four vertices and has β0 = 4, β1 = 0, and β2 = 0, since
there are four connected components and no cycles nor cavities.

A collection of charts covering a manifold M is an atlas of M . A manifold M is called orientable if it admits
an atlas with compatible orientations in its charts. For a closed n-dimensional manifold M , orientability is
determined by its n-th Betti number βn, which is nonzero if and only if M is orientable.

A triangulation of a manifold M is a simplicial complex whose geometric realization is homeomorphic to M .
Radó (1925) proved that every surface admits a triangulation (which can be chosen to be finite if the surface
is compact), and that any two such triangulations admit a common refinement. Moise (1952) proved that the
same facts are true for 3-dimensional manifolds. For dimensions greater than 3, however, there are examples
of manifolds that cannot be triangulated.

A.4 CLASSIFICATION

Closed connected surfaces can be classified, up to homeomorphism, as given by the following list: (i) the
two-dimensional sphere S2; (ii) a connected sum of tori T 2; (iii) a connected sum of projective planes RP 2.
The genus of a surface M is defined as zero if M ∼= S2 and equal to g if M is a connected sum of g tori or g
projective planes. Thus the homeomorphism type of M is determined by its orientability and genus.

The Euler characteristic of a finite triangulation of a manifold M is the alternating sum of the numbers
of simplices of each dimension. It does not depend on the choice of a triangulation, and it is equal to the
alternating sum of the Betti numbers of M (Hatcher, 2002). The Euler characteristic of a closed connected
surface M of genus g is equal to 2− 2g if M is orientable and 2− g if M is not orientable.

The underlying graph of a finite triangulation of a closed surface M determines the Euler characteristic
v − e+ t. This is due to the fact that, in any triangulation of M , each edge bounds precisely two triangles,
so 3t = 2e. Therefore, the underlying graph of a triangulation of a closed surface M determines the
homeomorphism type of M up to orientability. As shown in Lawrencenko & Negami (1999), the torus and
the Klein bottle admit triangulations with the same underlying graph.

For manifolds of dimension greater than 2, classification up to homeomorphism is so far unfeasible. In
dimension 3, the geometrization theorem (Morgan & Tian, 2007) describes all possible geometries of prime
components of closed 3-manifolds. The Euler characteristic does not carry any information about the
homeomorphism type in dimension 3, since if M is any odd-dimensional closed manifold then χ(M) = 0
by Poincaré duality (Hatcher, 2002, 3.37). However, the underlying graph of a finite triangulation of a
closed 3-manifold determines the number t of triangles and the number f of 3-faces, since 4f = 2t and
v − e+ t− f = 0.
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A.5 DISTRIBUTION OF LABELS

Tables 3, 4, 5, and 6 contain statistical information about the distribution of labels in the dataset.

Table 3: Distribution of Betti numbers βi for triangulations of manifolds. Percentages are rounded to the
nearest integer and are computed for each pair of manifold dimension (2 or 3) and Betti number. Columns
represent values of Betti numbers and contain the number of manifolds with each value.

M 0 1 2 3 4 5 6

β0
2 -M - 43,138 - - - - -

(100%)
3 -M - 250,359 - - - - -

(100%)

β1
2 -M 1,670 4,655 14,146 13,694 7,917 1,022 34

(4%) (11%) (33%) (32%) (18%) (2%) (0%)
3 -M 249,225 1,134 0 0 0 0 0

(100%) (0%) (0%) (0%) (0%) (0%) (0%)

β2
2 -M 39,718 3,420 - - - - -

(92%) (8%)
3 -M 249,841 518 - - - - -

(100%) (0%)

β3
2 -M - - - - - - -
3 -M 616 249,743 - - - - -

(0%) (100%)

Table 4: Distribution of torsion subgroups for triangulations of manifolds. Percentages are rounded to the
nearest integer and are computed for each pair of manifold dimension and homological degree.

H0 H1 H2 H3

M 0 Z2 0 Z2 0 0

2 -M 43,138 39,718 3,420 0 43,138 -
(100%) (92%) (8%) (0%) (100%)

3 -M 250,359 0 250,359 616 249,743 250,359
(100%) (0%) (100%) (0%) (100%) (100%)

Table 5: Distribution of genus for triangulations of surfaces. Percentages are rounded to the nearest integer.

M 0 1 2 3 4 5 6 7

2 -M 306 3,593 5,520 11,937 13,694 7,052 1,022 14
(1%) (8%) (13%) (28%) (32%) (16%) (2%) (0%)
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Table 6: Distribution of homeomorphism types for triangulations of manifolds. Percentages are rounded to
the nearest integer and are computed for each manifold dimension. Surfaces classified as “Other” do not have
any explicit homeomorphism type assigned.

M S2 RP 2 T 2 K S3 S2 × S1 S2×̃S1 Other

2 -M 306 1,364 2,229 4,655 - - - 34,584
(1%) (3%) (5%) (11%) (80%)

3 -M - - - - 249,225 518 616 0
(100%) (0%) (0%) (0%)
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B DATASET DETAILS

This section provides additional details about the dataset and the design choices involved in its creation.

B.1 DATA FORMAT

This section is mostly information-oriented and provides a brief overview of the data format, followed
by a short example.

As a complement to Section 2 in the main text, we provide an extended description of dataset attributes. Each
dataset consists of a list of triangulations, with each triangulation having the following attributes:

• id (required, str): This attribute refers to the original ID of the triangulation following Lutz (2017).
This facilitates comparisons to the original dataset if necessary and simplifies future contributions by
other authors.

• triangulation (required, list of list of int): A doubly-nested list of the top-level sim-
plices of the triangulation.

• n_vertices (required, int): The number of vertices in the triangulation. This is not the number
of simplices.

• name (required, str): A canonical name of the triangulation, such as Sˆ2 for the two-dimensional
sphere. If no canonical name exists, we store an empty string.

• betti_numbers (required, list of int): A list of the Betti numbers of the triangulation,
computed using Z coefficients. This implies that torsion coefficients are stored in another attribute.

• torsion_coefficients (required, list of str): A list of the torsion coefficients of the
triangulation. An empty string '' indicates that no torsion coefficients are available in that dimension.
Otherwise, the original spelling of torsion coefficients is retained, so a valid entry might be 'Z_2'.

• genus (optional, int): For 2-manifolds, contains the genus of the triangulation.

• orientable (optional, bool): Specifies whether the triangulation is orientable or not.

We picked JSON as our underlying data format, since it facilitates exchanging information, extending the
dataset, and can be easily processed in all major programming languages. By only ever storing the top-level
simplices of a simplicial complex, the dataset can be easily compressed. Moreover, the textual format
facilitates tracking changes over different versions of the dataset. The subsequent listing depicts a simple
example of the data format; see below for additional design choices.
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1 [
2 {
3 "id": "manifold_2_4_1",
4 "triangulation": [
5 [1,2,3],
6 [1,2,4],
7 [1,3,4],
8 [2,3,4]
9 ],

10 "dimension": 2,
11 "n_vertices": 4,
12 "betti_numbers": [
13 1,
14 0,
15 1
16 ],
17 "torsion_coefficients": [
18 "",
19 "",
20 ""
21 ],
22 "name": "S^2",
23 "genus": 0,
24 "orientable": true
25 },
26 {
27 "id": "manifold_2_5_1",
28 "triangulation": [
29 [1,2,3],
30 [1,2,4],
31 [1,3,5],
32 [1,4,5],
33 [2,3,4],
34 [3,4,5]
35 ],
36 "dimension": 2,
37 "n_vertices": 5,
38 "betti_numbers": [
39 1,
40 0,
41 1
42 ],
43 "torsion_coefficients": [
44 "",
45 "",
46 ""
47 ],
48 "name": "S^2",
49 "genus": 0,
50 "orientable": true
51 }
52 ]
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B.2 DESIGN CHOICES

This section is understanding-oriented and provides additional justifications for our data format.

The datasets are converted from their original (mixed) lexicographical format (Lutz, 2008). A triangulation in
lexicographical format could look like this:

1 manifold_lex_d2_n6_#1=[[1,2,3],[1,2,4],[1,3,4],[2,3,5],[2,4,5],[3,4,6],
2 [3,5,6],[4,5,6]]

A triangulation in mixed lexicographical format could look like this:

1 manifold_2_6_1=[[1,2,3],[1,2,4],[1,3,5],[1,4,6],
2 [1,5,6],[2,3,4],[3,4,5],[4,5,6]]

This format is hard to parse and error-prone. Moreover, any additional information about the triangulations,
including information about homology groups or orientability, for instance, requires additional files. We thus
decided to use a format that permits us to keep everything in one place, including any additional attributes for
a specific triangulation. A desirable data format needs to satisfy the following properties:

1. It should be easy to parse and modify, ideally in a number of programming languages.
2. It should be human-readable and diff-able in order to permit simplified comparisons.
3. It should scale reasonably well to larger triangulations.

After some considerations, we decided to opt for gzip-compressed JSON files. JSON is well-specified and
supported in virtually all major programming languages out of the box. While the compressed file is not
human-readable on its own, the uncompressed version can easily be used for additional data analysis tasks.
This also greatly simplifies maintenance operations on the dataset. While it can be argued that there are
formats that scale even better, they are not well-applicable to our use case since each triangulation typically
consists of different numbers of top-level simplices. This rules out column-based formats like Parquet.

We are open to revisiting this decision in the future. Our current API can be adjusted to accommodate
other data formats. End users are not interacting with the raw data.

As for the storage of the data as such, we decided to keep only the top-level simplices (as is done in the
original format) since this substantially saves disk space. The drawback is that the client has to supply the
remainder of the triangulation. Given that the triangulations in our dataset are not too large, we deem this
to be an acceptable compromise. Moreover, data structures such as simplex trees can be used to further
improve scalability if necessary. Finally, our data format includes, whenever possible and available, additional
information about a triangulation, including the Betti numbers and a name, i.e., a canonical description, of the
topological space described by the triangulation. We opted to minimize any inconvenience that would arise
from having to perform additional parsing operations.

Overall, this data format remains extensible—permitting additional information about a triangulation or
attributes like coordinates—while still benefiting from easy accessibility. We make our code and data publicly
available and use Zenodo for long-term archival with DOIs. The most recent version of our dataset is
accessible via:

https://doi.org/10.5281/zenodo.14103582

Old versions are archived and can be accessed using our data loader. We hope that this system, while not
perfect, may serve as a suitable starting point for other benchmark datasets.
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C MODEL DETAILS

We provide a brief description of the models used in the experiments.

Message passing neural networks. Most of the models used in the literature for graphs and higher-order
structures such as simplicial or cell complexes are based on the message-passing paradigm. For graph
and simplicial complexes, these models pass messages between neighboring nodes or simplices in the
graph or complex, updating their features based on the features of their neighbors. Let K be a simplicial
complex or a graph seen as a simplicial complex with simplicial features given by a family of maps {Fi}dim K

i=0

where Fi : Ki → Rdi . A message-passing layer updates the features of a simplex σ using the following
steps (Papillon et al., 2024):

1. Selection of neighborhoods: Given a simplex σ, we first start by defining sets of neighboring
simplices {Ni(σ)}i where the neighborhoods are defined depending on the context. For example,
adjacent or incident simplices are two types of neighborhoods that can be defined in an arbitrary
simplicial complex. Usually, neighborhoods are defined in the same way for the same dimension of
simplices, and each set of neighboring simplices contain simplices of the same dimension.

2. Message computation: For each set of neighboring simplices N (x)i, we compute messages
{mτ→σ}i from the features of the simplices in Ni(x) and the features of σ, this is

mτ→σ = MN (x)(Fdim τ (τ), Fdimσ(σ),Θ),

where Θ are the learnable parameters of the layer.

3. Intra-aggregation: The messages are aggregated to obtain a single message for each neighborhood
Ni(x), this is

mNi(x) = AggNi(x)
({mτ→σ}τ∈Ni(x)),

where AggNi(x)
is an permutation invariant aggregation function, for example, a sum, mean, or any

other function that aggregates the messages.

4. Inter-aggregation: The aggregated messages for the neighborhoods are then aggregated together to
obtain a single message for the simplex σ, this is

mσ = Aggσ({mNi(x)}i),

where Aggσ is a permutation invariant aggregation function again.

5. Update: The message mσ is used to update the features of the simplex σ, this is

Fdimσ(σ) = Update(Fdimσ(σ),mσ,Θ).

For graphs, GCN (Kipf & Welling, 2017), GAT (Veličković et al., 2018), and UniMP (Shi et al., 2021) are
examples of message-passing networks. In the case of GCN and GAT, adjacency with self-loops is used as
neighborhood sets for nodes, whereas UniMP uses concatenated adjacencies up to a order k, meaning that we
consider as neighbors of a vertex all the other vertices of the graph at a distance of at most k from the vertex.
In the case of GAT, the fundamental difference lie in the message computation, where the message from a
simplex τ to a simplex σ depends on a concept of attention, which is computed using the features of τ and σ
and a learnable parameter Θ.

In the case of simplicial complexes, SAN (Giusti et al., 2022) and SCN (Wu et al., 2024) use (upper and
lower) higher-order Laplacians to define neighborhoods, SCCN (Yang et al., 2022) uses (co)adjacency and
incidence structures, and SCCNN (Yang & Isufi, 2023) uses all together.
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Non-message passing neural networks Although the message-passing paradigm is predominant in the lit-
erature, there are other state-of-the-art models that do not follow this paradigm, such as transformers (Ballester
et al., 2024), state-space topological models (Montagna et al., 2024), or TDA-based networks (Horn et al.,
2022). In our case, we only select graph and cellular transformers and multi-layer perceptrons (MLP)
for comparison. Graph and cellular transformers are based on the original transformer’s decoder architec-
ture (Vaswani et al., 2017). Original transformer architectures are permutation-invariant networks that use
positional encoding to break the symmetry of the input data by means of localizing the position of each
element in the input sequence. In the case of graph and cellular transformers, which do not always have a
linear structure as text, positional encodings encode the position of the different simplices in the simplicial
complex using the combinatorial structure of the complex. Famous positional encodings for graphs are built
using eigenvectors of the graph Laplacian and random walks (Müller et al., 2024). For simplicial transformers,
preliminary positional encodings are based also on eigenvectors of combinatorial Laplacians, random walks,
and graph positional encodings for barycentric subdivisions of the simplicial complexes.
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D HYPERPARAMETER DETAILS

More information on the meaning of specific hyperparameters can be found in the PyTorch geometric,
TopoModelX, CellMP, CT and DECT original implementations.

GRAPH MODELS & DECT

GAT
Hidden neurons 64
Hidden layers 4
Readout Mean
Dropout last linear layer 0.5
Activation last layer Identity

GCN
Hidden neurons 64
Hidden layers 4
Readout Mean
Dropout last linear layer 0.5
Activation last layer Identity

MLP
Hidden neurons 64
Hidden layers 4
Readout Mean
Dropout last linear layer 0.0
Activation last layer Identity

TAG
Hidden channels 64
Hidden layers 4
Readout Mean
Dropout last linear layer 0.5
Activation last layer Identity

UNIMP
Hidden channels 64
Hidden layers 4
Readout Mean
Dropout last linear layer 0.5
Activation last layer Identity

DECT
Hidden channels 64
Hidden layers 3
Number of θ 32
Bump steps 32
r 1.1
Normalized True

TOPOLOGICAL MODELS

SAN
Hidden channels 64
Hidden layers 1
n-filters 2
Order harmonic 5
Epsilon harmonic 1e-1
Readout Sum of sums per dimension

SCCN
Hidden channels 64
Hidden layers 2
Maximum rank 2
Aggregation activation function Sigmoid
Readout Sum of sums per dimension

SCCNN
Hidden channels 64
Hidden layers 2
Order of convolutions 1
Order of simplicial complexes 1
Readout Sum of sums per dimension

SCN
Hidden channels per dimension Same as input
Hidden layers 2
Readout Sum of sums per dimension

CELLMP
Hidden channels 64
Hidden layers 10
Dropout 0.5
Hidden dimension mul-
tiplier for final linear
layer

2

Readout Sum of sums per dimension

CT
Hidden channels 64
Positional encoding type Hodge Laplacian Eigenvectors
Positional encoding lengths 8
Hidden layers 2
Number of heads 8
Dropout 0
Hidden layers in the final MLP 2
Attention tensor diagram Adjacent dimensions
Mask type Sum
Readout Average of dimension zero features
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E ADDITIONAL EXPERIMENTAL DETAILS

Table 7 reports the mean and standard deviation of training iterations processed per second for each model
and dataset. Sections E.1 to E.3 report the full set of experimental results.

Feature vector initialization analysis We observe different behaviours for the two families of models,
graph-based and simplicial complex-based. For the graph models, random initialization works slightly
better or equal than the degree features. On the other hand, for the simplicial complex models, upper-
and lower-connectivity index initializations consistently outperform their random counterparts on average.
Degrees and upper-connectivity indices for vertices coincide for both families of models, suggesting that
higher-order connectivity indices contain more useful information than their dimension zero counterpart
to predict topological properties, supporting the need for models that leverage higher-order information of
the input. Having signal contained in features can make sense if the task in question requires additional
information. For example, molecules are more than just combinatorial or topological objects: the types of
atoms and the nature of bonds are important for predicting their properties. However, in purely topological
tasks, such as predicting topological invariants, the need to enforce topological information into features
raises the question: do MP-based models correctly capture topological properties in the first place? Still,
standard deviations in the aggregated data for simplicial complex-based models is large, and better ablation is
needed to fully understand the differences in initializations and the expressivity of higher-order indices in the
context of topological prediction tasks.

Table 7: Mean and standard deviation of training iterations processed per second (↑), as measured by PyTorch
Lightning (Falcon & The PyTorch Lightning team, 2019), across all experiments for each model and dataset.
The measurements are subject to variations caused by external server usage fluctuations.

MODEL (CLASS) 2 -M0 2 -M0
H 3 -M0

MLP (G) 9.72 ± 4.54 12.39 ± 13.22 13.29 ± 8.36
GAT (G) 9.41 ± 4.02 11.33 ± 10.60 11.01 ± 6.52
UniMP (G) 9.31 ± 3.79 11.71 ± 10.72 12.42 ± 6.80
TAG (G) 9.41 ± 3.53 11.46 ± 10.66 9.76 ± 6.55
GCN (G) 9.45 ± 3.79 12.10 ± 11.43 12.72 ± 7.59
SAN (T ) 0.65 ± 0.97 1.21 ± 2.93 0.53 ± 0.31
SCN (T ) 0.83 ± 2.63 1.72 ± 6.99 0.83 ± 0.64
SCCN (T ) 0.85 ± 3.06 1.89 ± 7.90 0.80 ± 0.53
SCCNN (T ) 0.73 ± 1.93 1.67 ± 5.79 0.79 ± 0.53
CellMP (T ) 2.31 ± 2.38 2.32 ± 2.43 0.25 ± 0.19
CT (T ) 1.06 ± 2.19 1.16 ± 2.77 0.59 ± 0.28
DECT (T ) 6.59 ± 3.63 6.61 ± 3.65 12.78 ± 8.03
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E.1 BETTI NUMBER PREDICTION

Table 8: Full results for the Betti number prediction task on all datasets with mean and standard deviation
reported over 5 runs. In this table, we report AUROC as performance metric. Transforms are abbreviated as
DT (Degree Transform), DTO (Degree Transform Onehot) and RNF (Random Node Features).

AUROC

β1 β2 β3

DATASET MODEL (CLASS) DT DTO RNF DT DTO RNF DT DTO RNF

2 -M0

GAT (G) 0.50 ± 0.00 0.50 ± 0.00 0.50 ± 0.00 0.50 ± 0.00 0.50 ± 0.00 0.50 ± 0.00
GCN (G) 0.50 ± 0.00 0.50 ± 0.00 0.50 ± 0.00 0.50 ± 0.00 0.50 ± 0.00 0.50 ± 0.00
MLP (G) 0.50 ± 0.00 0.50 ± 0.00 0.50 ± 0.00 0.50 ± 0.00 0.50 ± 0.00 0.50 ± 0.00
TAG (G) 0.50 ± 0.00 0.50 ± 0.00 0.50 ± 0.00 0.50 ± 0.00 0.50 ± 0.00 0.50 ± 0.00
UniMP (G) 0.50 ± 0.00 0.50 ± 0.00 0.50 ± 0.00 0.50 ± 0.00 0.50 ± 0.00 0.50 ± 0.00
CellMP (G) 0.62 ± 0.07 0.84 ± 0.00 0.49 ± 0.06 0.52 ± 0.02
CT (T ) 0.93 ± 0.01 0.66 ± 0.02 0.55 ± 0.00 0.53 ± 0.01
DECT (T ) 0.50 ± 0.00 0.50 ± 0.00 0.50 ± 0.00 0.50 ± 0.00 0.50 ± 0.00 0.50 ± 0.00
SAN (T ) 0.55 ± 0.05 0.69 ± 0.06 0.52 ± 0.21 0.53 ± 0.01
SCCN (T ) 0.93 ± 0.04 0.78 ± 0.04 0.55 ± 0.00 0.53 ± 0.01
SCCNN (T ) 0.50 ± 0.01 0.50 ± 0.02 0.50 ± 0.19 0.52 ± 0.04
SCN (T ) 0.56 ± 0.13 0.51 ± 0.03 0.63 ± 0.17 0.48 ± 0.07

3 -M0

GAT (G) 0.23 ± 0.00 0.23 ± 0.00 0.23 ± 0.00 0.12 ± 0.00 0.12 ± 0.00 0.12 ± 0.00 0.14 ± 0.00 0.14 ± 0.00 0.14 ± 0.00
GCN (G) 0.23 ± 0.00 0.23 ± 0.00 0.23 ± 0.00 0.12 ± 0.00 0.12 ± 0.00 0.12 ± 0.00 0.14 ± 0.00 0.14 ± 0.00 0.14 ± 0.00
MLP (G) 0.23 ± 0.00 0.23 ± 0.00 0.23 ± 0.00 0.12 ± 0.00 0.12 ± 0.00 0.12 ± 0.00 0.14 ± 0.00 0.14 ± 0.00 0.14 ± 0.00
TAG (G) 0.23 ± 0.00 0.23 ± 0.00 0.23 ± 0.00 0.12 ± 0.00 0.12 ± 0.00 0.12 ± 0.00 0.14 ± 0.00 0.14 ± 0.00 0.14 ± 0.00
UniMP (G) 0.23 ± 0.00 0.23 ± 0.00 0.23 ± 0.00 0.12 ± 0.00 0.12 ± 0.00 0.12 ± 0.00 0.14 ± 0.00 0.14 ± 0.00 0.14 ± 0.00
CellMP (G) 0.23 ± 0.00 0.23 ± 0.00 0.12 ± 0.00 0.12 ± 0.00 0.14 ± 0.00 0.14 ± 0.00
CT (T ) 0.23 ± 0.00 0.23 ± 0.00 0.12 ± 0.00 0.12 ± 0.00 0.14 ± 0.00 0.14 ± 0.00
DECT (T ) 0.23 ± 0.00 0.23 ± 0.00 0.23 ± 0.00 0.12 ± 0.00 0.12 ± 0.00 0.12 ± 0.00 0.14 ± 0.00 0.14 ± 0.00 0.14 ± 0.00
SAN (T ) 0.17 ± 0.09 0.24 ± 0.01 0.12 ± 0.05 0.12 ± 0.00 0.19 ± 0.04 0.15 ± 0.01
SCCN (T ) 0.23 ± 0.00 0.23 ± 0.00 0.12 ± 0.00 0.12 ± 0.00 0.14 ± 0.00 0.14 ± 0.00
SCCNN (T ) 0.21 ± 0.11 0.20 ± 0.05 0.12 ± 0.04 0.11 ± 0.01 0.11 ± 0.05 0.13 ± 0.02
SCN (T ) 0.20 ± 0.04 0.23 ± 0.00 0.15 ± 0.04 0.12 ± 0.00 0.11 ± 0.07 0.14 ± 0.02

2 -M0
H

GAT (G) 0.21 ± 0.00 0.21 ± 0.00 0.21 ± 0.00 0.50 ± 0.00 0.50 ± 0.00 0.50 ± 0.00
GCN (G) 0.21 ± 0.00 0.21 ± 0.00 0.21 ± 0.00 0.50 ± 0.00 0.50 ± 0.00 0.50 ± 0.00
MLP (G) 0.21 ± 0.00 0.21 ± 0.00 0.21 ± 0.00 0.50 ± 0.00 0.50 ± 0.00 0.50 ± 0.00
TAG (G) 0.21 ± 0.00 0.21 ± 0.00 0.21 ± 0.00 0.50 ± 0.00 0.50 ± 0.00 0.50 ± 0.00
UniMP (G) 0.21 ± 0.00 0.21 ± 0.00 0.21 ± 0.00 0.50 ± 0.00 0.50 ± 0.00 0.50 ± 0.00
CellMP (G) 0.23 ± 0.01 0.29 ± 0.01 0.52 ± 0.04 0.51 ± 0.02
CT (T ) 0.27 ± 0.01 0.21 ± 0.00 0.52 ± 0.03 0.50 ± 0.00
DECT (T ) 0.21 ± 0.00 0.21 ± 0.00 0.21 ± 0.00 0.50 ± 0.00 0.50 ± 0.00 0.50 ± 0.00
SAN (T ) 0.25 ± 0.01 0.22 ± 0.02 0.48 ± 0.04 0.50 ± 0.02
SCCN (T ) 0.29 ± 0.01 0.23 ± 0.01 0.52 ± 0.01 0.50 ± 0.02
SCCNN (T ) 0.20 ± 0.05 0.23 ± 0.03 0.49 ± 0.03 0.51 ± 0.02
SCN (T ) 0.22 ± 0.00 0.21 ± 0.00 0.49 ± 0.02 0.50 ± 0.01

2 -M1
H

GAT (G) 0.22 ± 0.00 0.21 ± 0.00 0.21 ± 0.00 0.50 ± 0.00 0.50 ± 0.00 0.50 ± 0.00
GCN (G) 0.22 ± 0.00 0.21 ± 0.00 0.21 ± 0.00 0.50 ± 0.00 0.50 ± 0.00 0.50 ± 0.00
MLP (G) 0.21 ± 0.01 0.21 ± 0.00 0.21 ± 0.00 0.50 ± 0.00 0.50 ± 0.00 0.50 ± 0.00
TAG (G) 0.22 ± 0.00 0.22 ± 0.00 0.22 ± 0.00 0.50 ± 0.00 0.50 ± 0.00 0.50 ± 0.00
UniMP (G) 0.22 ± 0.00 0.22 ± 0.00 0.22 ± 0.00 0.50 ± 0.00 0.50 ± 0.00 0.50 ± 0.00
CellMP (T ) 0.23 ± 0.03 0.26 ± 0.00 0.49 ± 0.01 0.49 ± 0.01
CT (T ) 0.23 ± 0.02 0.21 ± 0.00 0.50 ± 0.00 0.50 ± 0.00
SAN (T ) 0.24 ± 0.01 0.22 ± 0.01 0.50 ± 0.00 0.49 ± 0.01
SCCN (T ) 0.27 ± 0.01 0.22 ± 0.01 0.52 ± 0.02 0.51 ± 0.01
SCCNN (T ) 0.21 ± 0.03 0.22 ± 0.02 0.50 ± 0.01 0.50 ± 0.01
SCN (T ) 0.21 ± 0.00 0.21 ± 0.00 0.49 ± 0.02 0.51 ± 0.01
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Table 9: Full results for the Betti number prediction task on all datasets with mean and standard deviation
reported over 5 runs. In this table, we report accuracy as performance metric. Transforms are abbreviated as
DT (Degree Transform), DTO (Degree Transform Onehot) and RNF (Random Node Features).

Accuracy

β0 β1 β2 β3

DATASET MODEL (CLASS) DT DTO RNF DT DTO RNF DT DTO RNF DT DTO RNF

2 -M0

GAT (G) 1.00 ± 0.00 1.00 ± 0.00 1.00 ± 0.00 0.31 ± 0.00 0.31 ± 0.00 0.31 ± 0.00 0.92 ± 0.00 0.92 ± 0.00 0.92 ± 0.00
GCN (G) 1.00 ± 0.00 1.00 ± 0.00 1.00 ± 0.00 0.31 ± 0.00 0.31 ± 0.00 0.31 ± 0.00 0.92 ± 0.00 0.92 ± 0.00 0.92 ± 0.00
MLP (G) 1.00 ± 0.00 1.00 ± 0.00 1.00 ± 0.00 0.31 ± 0.00 0.31 ± 0.00 0.31 ± 0.00 0.92 ± 0.00 0.92 ± 0.00 0.92 ± 0.00
TAG (G) 1.00 ± 0.00 1.00 ± 0.00 1.00 ± 0.00 0.32 ± 0.01 0.33 ± 0.01 0.32 ± 0.00 0.92 ± 0.00 0.92 ± 0.00 0.92 ± 0.00
UniMP (G) 1.00 ± 0.00 1.00 ± 0.00 1.00 ± 0.00 0.33 ± 0.00 0.32 ± 0.01 0.32 ± 0.01 0.92 ± 0.00 0.92 ± 0.00 0.92 ± 0.00
CellMP (G) 0.46 ± 0.50 1.00 ± 0.00 0.39 ± 0.35 0.90 ± 0.01 0.46 ± 0.44 0.92 ± 0.00
CT (T ) 1.00 ± 0.00 1.00 ± 0.00 0.93 ± 0.00 0.87 ± 0.00 0.93 ± 0.00 0.92 ± 0.00
DECT (T ) 1.00 ± 0.00 1.00 ± 0.00 1.00 ± 0.00 0.32 ± 0.00 0.32 ± 0.00 0.32 ± 0.00 0.92 ± 0.00 0.92 ± 0.00 0.92 ± 0.00
SAN (T ) 0.09 ± 0.04 0.57 ± 0.18 0.12 ± 0.10 0.54 ± 0.11 0.52 ± 0.14 0.73 ± 0.08
SCCN (T ) 1.00 ± 0.00 0.71 ± 0.06 0.93 ± 0.00 0.67 ± 0.05 0.93 ± 0.00 0.79 ± 0.04
SCCNN (T ) 0.00 ± 0.00 0.01 ± 0.00 0.03 ± 0.02 0.03 ± 0.01 0.33 ± 0.37 0.49 ± 0.12
SCN (T ) 0.33 ± 0.38 0.29 ± 0.07 0.21 ± 0.26 0.25 ± 0.10 0.62 ± 0.36 0.65 ± 0.08

3 -M0

GAT (G) 1.00 ± 0.00 1.00 ± 0.00 1.00 ± 0.00 1.00 ± 0.00 1.00 ± 0.00 1.00 ± 0.00 1.00 ± 0.00 1.00 ± 0.00 1.00 ± 0.00 1.00 ± 0.00 1.00 ± 0.00 1.00 ± 0.00
GCN (G) 1.00 ± 0.00 1.00 ± 0.00 1.00 ± 0.00 1.00 ± 0.00 1.00 ± 0.00 1.00 ± 0.00 1.00 ± 0.00 1.00 ± 0.00 1.00 ± 0.00 1.00 ± 0.00 1.00 ± 0.00 1.00 ± 0.00
MLP (G) 1.00 ± 0.00 1.00 ± 0.00 1.00 ± 0.00 1.00 ± 0.00 1.00 ± 0.00 1.00 ± 0.00 1.00 ± 0.00 1.00 ± 0.00 1.00 ± 0.00 1.00 ± 0.00 1.00 ± 0.00 1.00 ± 0.00
TAG (G) 1.00 ± 0.00 1.00 ± 0.00 1.00 ± 0.00 1.00 ± 0.00 1.00 ± 0.00 1.00 ± 0.00 1.00 ± 0.00 1.00 ± 0.00 1.00 ± 0.00 1.00 ± 0.00 1.00 ± 0.00 1.00 ± 0.00
UniMP (G) 1.00 ± 0.00 1.00 ± 0.00 1.00 ± 0.00 1.00 ± 0.00 1.00 ± 0.00 1.00 ± 0.00 1.00 ± 0.00 1.00 ± 0.00 1.00 ± 0.00 1.00 ± 0.00 1.00 ± 0.00 1.00 ± 0.00
CellMP (G) 1.00 ± 0.00 1.00 ± 0.00 1.00 ± 0.00 1.00 ± 0.00 1.00 ± 0.00 1.00 ± 0.00 1.00 ± 0.00 1.00 ± 0.00
CT (T ) 1.00 ± 0.00 1.00 ± 0.00 1.00 ± 0.00 1.00 ± 0.00 1.00 ± 0.00 1.00 ± 0.00 1.00 ± 0.00 1.00 ± 0.00
DECT (T ) 1.00 ± 0.00 1.00 ± 0.00 1.00 ± 0.00 1.00 ± 0.00 1.00 ± 0.00 1.00 ± 0.00 1.00 ± 0.00 1.00 ± 0.00 1.00 ± 0.00 1.00 ± 0.00 1.00 ± 0.00 1.00 ± 0.00
SAN (T ) 0.01 ± 0.00 0.51 ± 0.12 0.49 ± 0.13 0.71 ± 0.11 0.51 ± 0.22 0.78 ± 0.10 0.01 ± 0.01 0.52 ± 0.07
SCCN (T ) 1.00 ± 0.00 1.00 ± 0.00 1.00 ± 0.00 1.00 ± 0.00 1.00 ± 0.00 1.00 ± 0.00 1.00 ± 0.00 1.00 ± 0.00
SCCNN (T ) 0.00 ± 0.00 0.00 ± 0.00 0.48 ± 0.14 0.48 ± 0.05 0.60 ± 0.08 0.49 ± 0.12 0.00 ± 0.00 0.00 ± 0.00
SCN (T ) 0.95 ± 0.06 0.95 ± 0.08 0.85 ± 0.19 0.99 ± 0.01 0.80 ± 0.16 0.99 ± 0.00 0.58 ± 0.31 0.92 ± 0.08

2 -M0
H

GAT (G) 1.00 ± 0.00 1.00 ± 0.00 1.00 ± 0.00 0.54 ± 0.00 0.54 ± 0.00 0.54 ± 0.00 0.70 ± 0.00 0.70 ± 0.00 0.70 ± 0.00
GCN (G) 1.00 ± 0.00 1.00 ± 0.00 1.00 ± 0.00 0.54 ± 0.00 0.54 ± 0.00 0.54 ± 0.00 0.70 ± 0.00 0.70 ± 0.00 0.70 ± 0.00
MLP (G) 1.00 ± 0.00 1.00 ± 0.00 1.00 ± 0.00 0.54 ± 0.00 0.54 ± 0.00 0.54 ± 0.00 0.70 ± 0.00 0.70 ± 0.00 0.70 ± 0.00
TAG (G) 1.00 ± 0.00 1.00 ± 0.00 1.00 ± 0.00 0.54 ± 0.00 0.54 ± 0.00 0.54 ± 0.00 0.70 ± 0.00 0.70 ± 0.00 0.70 ± 0.00
UniMP (G) 1.00 ± 0.00 1.00 ± 0.00 1.00 ± 0.00 0.54 ± 0.00 0.54 ± 0.00 0.54 ± 0.00 0.70 ± 0.00 0.70 ± 0.00 0.70 ± 0.00
CellMP (G) 0.05 ± 0.09 0.98 ± 0.00 0.18 ± 0.24 0.65 ± 0.01 0.14 ± 0.31 0.69 ± 0.01
CT (T ) 1.00 ± 0.00 1.00 ± 0.00 0.36 ± 0.06 0.54 ± 0.00 0.64 ± 0.17 0.70 ± 0.01
DECT (T ) 1.00 ± 0.00 1.00 ± 0.00 1.00 ± 0.00 0.54 ± 0.00 0.54 ± 0.00 0.54 ± 0.00 0.70 ± 0.00 0.70 ± 0.00 0.70 ± 0.00
SAN (T ) 0.07 ± 0.06 0.26 ± 0.16 0.26 ± 0.05 0.26 ± 0.11 0.43 ± 0.09 0.43 ± 0.06
SCCN (T ) 1.00 ± 0.00 0.48 ± 0.03 0.69 ± 0.03 0.40 ± 0.03 0.71 ± 0.01 0.52 ± 0.01
SCCNN (T ) 0.00 ± 0.00 0.01 ± 0.00 0.08 ± 0.10 0.12 ± 0.08 0.27 ± 0.29 0.35 ± 0.08
SCN (T ) 0.01 ± 0.02 0.13 ± 0.03 0.20 ± 0.01 0.19 ± 0.03 0.25 ± 0.35 0.43 ± 0.03

2 -M1
H

GAT (G) 0.00 ± 0.00 0.64 ± 0.50 1.00 ± 0.00 0.20 ± 0.00 0.43 ± 0.16 0.54 ± 0.00 0.70 ± 0.00 0.70 ± 0.00 0.70 ± 0.00
GCN (G) 0.00 ± 0.00 0.68 ± 0.46 1.00 ± 0.00 0.20 ± 0.00 0.47 ± 0.15 0.54 ± 0.00 0.70 ± 0.00 0.70 ± 0.00 0.70 ± 0.00
MLP (G) 0.53 ± 0.49 1.00 ± 0.00 1.00 ± 0.00 0.34 ± 0.14 0.54 ± 0.00 0.54 ± 0.00 0.70 ± 0.00 0.70 ± 0.00 0.70 ± 0.00
TAG (G) 0.00 ± 0.00 0.00 ± 0.00 0.01 ± 0.01 0.20 ± 0.00 0.20 ± 0.00 0.20 ± 0.01 0.70 ± 0.00 0.70 ± 0.00 0.70 ± 0.00
UniMP (G) 0.00 ± 0.00 0.01 ± 0.01 0.02 ± 0.01 0.20 ± 0.00 0.20 ± 0.00 0.20 ± 0.01 0.70 ± 0.00 0.70 ± 0.00 0.70 ± 0.00
CellMP (T ) 0.00 ± 0.00 0.00 ± 0.00 0.03 ± 0.06 0.04 ± 0.02 0.09 ± 0.21 0.30 ± 0.00
CT (T ) 1.00 ± 0.00 1.00 ± 0.00 0.54 ± 0.00 0.54 ± 0.00 0.62 ± 0.18 0.70 ± 0.00
SAN (T ) 0.00 ± 0.00 0.01 ± 0.01 0.00 ± 0.00 0.09 ± 0.06 0.56 ± 0.31 0.41 ± 0.31
SCCN (T ) 0.07 ± 0.15 0.03 ± 0.03 0.05 ± 0.12 0.02 ± 0.01 0.10 ± 0.13 0.25 ± 0.10
SCCNN (T ) 0.00 ± 0.00 0.00 ± 0.00 0.12 ± 0.11 0.07 ± 0.09 0.48 ± 0.32 0.24 ± 0.33
SCN (T ) 0.00 ± 0.00 0.03 ± 0.01 0.16 ± 0.09 0.13 ± 0.05 0.28 ± 0.39 0.35 ± 0.16
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E.2 ORIENTABILITY PREDICTION

Table 10: Full results for the orientability prediction task on all datasets with AUROC and accuracy reported.
Mean and standard deviation are taken over 5 runs. Transforms are abbreviated as DT (Degree Transform),
DTO (Degree Transform Onehot) and RNF (Random Node Features).

AUROC Accuracy

DATASET MODEL (CLASS) DT DTO RNF DT DTO RNF

2 -M0

GAT (G) 0.50 ± 0.00 0.50 ± 0.00 0.50 ± 0.00 0.92 ± 0.00 0.92 ± 0.00 0.92 ± 0.00
GCN (G) 0.50 ± 0.00 0.50 ± 0.00 0.50 ± 0.00 0.92 ± 0.00 0.92 ± 0.00 0.92 ± 0.00
MLP (G) 0.50 ± 0.00 0.50 ± 0.00 0.50 ± 0.00 0.92 ± 0.00 0.92 ± 0.00 0.92 ± 0.00
TAG (G) 0.50 ± 0.00 0.50 ± 0.00 0.50 ± 0.00 0.92 ± 0.00 0.92 ± 0.00 0.92 ± 0.00
UniMP (G) 0.50 ± 0.00 0.50 ± 0.00 0.50 ± 0.00 0.92 ± 0.00 0.92 ± 0.00 0.92 ± 0.00
CellMP (T ) 0.65 ± 0.07 0.55 ± 0.00 0.64 ± 0.26 0.93 ± 0.00
CT (T ) 0.55 ± 0.00 0.50 ± 0.00 0.93 ± 0.00 0.92 ± 0.00
DECT (T ) 0.50 ± 0.00 0.50 ± 0.00 0.50 ± 0.00 0.92 ± 0.00 0.92 ± 0.00 0.92 ± 0.00
SAN (T ) 0.52 ± 0.03 0.51 ± 0.02 0.92 ± 0.00 0.92 ± 0.01
SCCN (T ) 0.55 ± 0.01 0.54 ± 0.01 0.93 ± 0.00 0.93 ± 0.00
SCCNN (T ) 0.55 ± 0.09 0.53 ± 0.02 0.87 ± 0.11 0.91 ± 0.01
SCN (T ) 0.53 ± 0.04 0.50 ± 0.01 0.91 ± 0.02 0.92 ± 0.01

3 -M0

GAT (G) 0.14 ± 0.00 0.14 ± 0.00 0.14 ± 0.00 1.00 ± 0.00 1.00 ± 0.00 1.00 ± 0.00
GCN (G) 0.14 ± 0.00 0.14 ± 0.00 0.14 ± 0.00 1.00 ± 0.00 1.00 ± 0.00 1.00 ± 0.00
MLP (G) 0.14 ± 0.00 0.14 ± 0.00 0.14 ± 0.00 1.00 ± 0.00 1.00 ± 0.00 1.00 ± 0.00
TAG (G) 0.14 ± 0.00 0.14 ± 0.00 0.14 ± 0.00 1.00 ± 0.00 1.00 ± 0.00 1.00 ± 0.00
UniMP (G) 0.14 ± 0.00 0.14 ± 0.00 0.14 ± 0.00 1.00 ± 0.00 1.00 ± 0.00 1.00 ± 0.00
CellMP (T ) 0.18 ± 0.04 0.14 ± 0.00 1.00 ± 0.00 1.00 ± 0.00
CT (T ) 0.14 ± 0.00 0.14 ± 0.00 1.00 ± 0.00 1.00 ± 0.00
DECT (T ) 0.14 ± 0.00 0.14 ± 0.00 0.14 ± 0.00 1.00 ± 0.00 1.00 ± 0.00 1.00 ± 0.00
SAN (T ) 0.14 ± 0.00 0.14 ± 0.00 1.00 ± 0.00 1.00 ± 0.00
SCCN (T ) 0.14 ± 0.00 0.14 ± 0.00 1.00 ± 0.00 1.00 ± 0.00
SCCNN (T ) 0.14 ± 0.00 0.14 ± 0.00 1.00 ± 0.00 1.00 ± 0.00
SCN (T ) 0.14 ± 0.00 0.14 ± 0.00 1.00 ± 0.00 1.00 ± 0.00

2 -M0
H

GAT (G) 0.50 ± 0.00 0.50 ± 0.00 0.50 ± 0.00 0.70 ± 0.00 0.70 ± 0.00 0.70 ± 0.00
GCN (G) 0.50 ± 0.00 0.50 ± 0.00 0.50 ± 0.00 0.70 ± 0.00 0.70 ± 0.00 0.70 ± 0.00
MLP (G) 0.50 ± 0.00 0.50 ± 0.00 0.50 ± 0.00 0.70 ± 0.00 0.70 ± 0.00 0.70 ± 0.00
TAG (G) 0.50 ± 0.00 0.50 ± 0.00 0.50 ± 0.00 0.70 ± 0.00 0.70 ± 0.00 0.70 ± 0.00
UniMP (G) 0.50 ± 0.00 0.50 ± 0.00 0.50 ± 0.00 0.70 ± 0.00 0.70 ± 0.00 0.70 ± 0.00
CellMP (T ) 0.51 ± 0.01 0.50 ± 0.01 0.31 ± 0.02 0.70 ± 0.01
CT (T ) 0.52 ± 0.03 0.50 ± 0.00 0.72 ± 0.02 0.70 ± 0.00
DECT (T ) 0.50 ± 0.00 0.50 ± 0.00 0.50 ± 0.00 0.70 ± 0.00 0.70 ± 0.00 0.70 ± 0.00
SAN (T ) 0.50 ± 0.02 0.51 ± 0.02 0.59 ± 0.08 0.60 ± 0.03
SCCN (T ) 0.54 ± 0.01 0.50 ± 0.01 0.73 ± 0.00 0.65 ± 0.02
SCCNN (T ) 0.50 ± 0.01 0.50 ± 0.01 0.54 ± 0.23 0.59 ± 0.10
SCN (T ) 0.51 ± 0.02 0.51 ± 0.01 0.55 ± 0.23 0.61 ± 0.01

2 -M1
H

GAT (G) 0.50 ± 0.00 0.50 ± 0.00 0.50 ± 0.00 0.70 ± 0.00 0.70 ± 0.00 0.70 ± 0.00
GCN (G) 0.50 ± 0.00 0.50 ± 0.00 0.50 ± 0.00 0.70 ± 0.00 0.70 ± 0.00 0.70 ± 0.00
MLP (G) 0.50 ± 0.00 0.50 ± 0.00 0.50 ± 0.00 0.70 ± 0.00 0.70 ± 0.00 0.70 ± 0.00
TAG (G) 0.50 ± 0.00 0.50 ± 0.01 0.50 ± 0.00 0.64 ± 0.15 0.65 ± 0.10 0.70 ± 0.00
UniMP (G) 0.50 ± 0.01 0.50 ± 0.00 0.50 ± 0.00 0.60 ± 0.15 0.70 ± 0.00 0.70 ± 0.00
CellMP (T ) 0.50 ± 0.01 0.50 ± 0.00 0.38 ± 0.19 0.70 ± 0.00
CT (T ) 0.50 ± 0.00 0.50 ± 0.00 0.70 ± 0.00 0.70 ± 0.00
SAN (T ) 0.50 ± 0.00 0.50 ± 0.01 0.54 ± 0.22 0.49 ± 0.18
SCCN (T ) 0.50 ± 0.00 0.51 ± 0.01 0.70 ± 0.00 0.69 ± 0.02
SCCNN (T ) 0.50 ± 0.00 0.50 ± 0.01 0.46 ± 0.22 0.55 ± 0.17
SCN (T ) 0.50 ± 0.00 0.50 ± 0.00 0.54 ± 0.22 0.68 ± 0.04
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E.3 HOMEOMORPHISM PREDICTION

Table 11: Full results for the homeomorphism type prediction task on the full set of surfaces. Performances
are reported with mean and standard deviation over five runs with different seeds.

AUROC Accuracy

DATASET MODEL (CLASS) DT DTO RNF DT DTO RNF

2 -M0

GAT (G) 0.46 ± 0.00 0.46 ± 0.00 0.47 ± 0.01 0.80 ± 0.00 0.80 ± 0.00 0.80 ± 0.00
GCN (G) 0.46 ± 0.00 0.46 ± 0.00 0.47 ± 0.01 0.80 ± 0.00 0.80 ± 0.00 0.80 ± 0.00
MLP (G) 0.46 ± 0.00 0.46 ± 0.00 0.46 ± 0.01 0.80 ± 0.00 0.80 ± 0.00 0.80 ± 0.00
TAG (G) 0.46 ± 0.00 0.46 ± 0.00 0.46 ± 0.01 0.80 ± 0.00 0.80 ± 0.00 0.80 ± 0.00
UniMP (G) 0.46 ± 0.00 0.46 ± 0.00 0.46 ± 0.01 0.80 ± 0.00 0.80 ± 0.00 0.80 ± 0.00
CellMP (T ) 0.85 ± 0.11 0.89 ± 0.01 0.80 ± 0.34 0.94 ± 0.01
CT (T ) 0.91 ± 0.01 0.69 ± 0.15 0.94 ± 0.00 0.92 ± 0.01
DECT (T ) 0.45 ± 0.00 0.45 ± 0.00 0.45 ± 0.00 0.80 ± 0.00 0.80 ± 0.00 0.80 ± 0.00
SAN (T ) 0.54 ± 0.10 0.67 ± 0.16 0.35 ± 0.36 0.72 ± 0.26
SCCN (T ) 0.85 ± 0.08 0.66 ± 0.03 0.78 ± 0.35 0.77 ± 0.30
SCCNN (T ) 0.54 ± 0.10 0.61 ± 0.02 0.11 ± 0.00 0.26 ± 0.07
SCN (T ) 0.37 ± 0.12 0.50 ± 0.04 0.50 ± 0.41 0.73 ± 0.09

2 -M0
H

GAT (G) 0.48 ± 0.00 0.49 ± 0.00 0.48 ± 0.00 0.54 ± 0.00 0.54 ± 0.00 0.54 ± 0.00
GCN (G) 0.49 ± 0.00 0.48 ± 0.01 0.50 ± 0.02 0.54 ± 0.00 0.54 ± 0.00 0.54 ± 0.00
MLP (G) 0.49 ± 0.00 0.49 ± 0.00 0.48 ± 0.01 0.54 ± 0.00 0.54 ± 0.00 0.54 ± 0.00
TAG (G) 0.49 ± 0.00 0.49 ± 0.00 0.49 ± 0.01 0.54 ± 0.00 0.54 ± 0.00 0.54 ± 0.00
UniMP (G) 0.49 ± 0.00 0.49 ± 0.00 0.49 ± 0.01 0.54 ± 0.00 0.54 ± 0.00 0.54 ± 0.00
CellMP (T ) 0.63 ± 0.14 0.82 ± 0.00 0.19 ± 0.03 0.73 ± 0.00
CT (T ) 0.83 ± 0.01 0.50 ± 0.02 0.74 ± 0.00 0.54 ± 0.00
DECT (T ) 0.50 ± 0.00 0.50 ± 0.00 0.48 ± 0.01 0.54 ± 0.00 0.54 ± 0.00 0.54 ± 0.00
SAN (T ) 0.49 ± 0.10 0.59 ± 0.10 0.54 ± 0.03 0.61 ± 0.03
SCCN (T ) 0.80 ± 0.00 0.65 ± 0.05 0.73 ± 0.00 0.57 ± 0.03
SCCNN (T ) 0.59 ± 0.10 0.52 ± 0.02 0.51 ± 0.12 0.55 ± 0.01
SCN (T ) 0.53 ± 0.11 0.49 ± 0.06 0.30 ± 0.14 0.43 ± 0.03

2 -M1
H

GAT (G) 0.41 ± 0.03 0.53 ± 0.02 0.50 ± 0.01 0.54 ± 0.00 0.54 ± 0.00 0.54 ± 0.00
GCN (G) 0.42 ± 0.04 0.51 ± 0.04 0.50 ± 0.01 0.54 ± 0.00 0.54 ± 0.00 0.54 ± 0.00
MLP (G) 0.43 ± 0.04 0.49 ± 0.06 0.50 ± 0.01 0.54 ± 0.00 0.54 ± 0.00 0.54 ± 0.00
TAG (G) 0.42 ± 0.04 0.50 ± 0.03 0.43 ± 0.01 0.51 ± 0.09 0.33 ± 0.15 0.54 ± 0.00
UniMP (G) 0.45 ± 0.03 0.42 ± 0.03 0.41 ± 0.01 0.45 ± 0.13 0.54 ± 0.00 0.54 ± 0.00
CellMP (T ) 0.57 ± 0.06 0.62 ± 0.02 0.47 ± 0.17 0.55 ± 0.01
CT (T ) 0.72 ± 0.13 0.49 ± 0.01 0.51 ± 0.20 0.54 ± 0.00
SAN (T ) 0.49 ± 0.02 0.53 ± 0.04 0.48 ± 0.18 0.54 ± 0.00
SCCN (T ) 0.67 ± 0.04 0.53 ± 0.04 0.54 ± 0.00 0.54 ± 0.00
SCCNN (T ) 0.51 ± 0.01 0.51 ± 0.01 0.54 ± 0.00 0.54 ± 0.00
SCN (T ) 0.51 ± 0.07 0.49 ± 0.04 0.35 ± 0.18 0.53 ± 0.03
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