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Roadmap The appendix is composed as follows. Section [A presents all the notations and their
meaning we use in this paper. Section |B| presents the rest of the Related Work. Section [C] gives
the proof of our theoretical analysis. Section D gives a more detailed explaination of the proposed
algorithm. Section [E shows the additional experiment results with more details that are not given in
the main paper due to the page limit.

A NOTATION TABLE

The notations we use in the paper is summaried in the Table 5]

Table 5: Notation used in this paper

Notations | Description
K The number of class in the dataset
DXy The general dataset distribution, the feature space and the label space
D The dataset D € D
Dy, D,, Dy | The training set, remaining set and forgetting set
Om The distribution of models learned using mechanism M
(7] The model weight
0* The optimal model weight
0% 15 The optimal model weight trained with D whose label is smoothed
116]] The 2-norm of the model weight
n The size of dataset
€ The up-weighted weight of datapoint z in influence function
Z(2) Influence function of data point z
he A function h parameterized by 0
L(he, 2i) Loss of hg(z;) and y;
R (0) The empirical risk of training set when the model weight is
R;(0) The empirical risk of forgetting set when the model weight is 8
R,(0) The empirical risk of remaining set when the model weight is 6
Hg The Hessian matrix w.r.t. @
Ve The gradient w.r.t. 8
B Data batch
BS:e The smoothed batch using «
z; = (x;,9;) | A data point z; whose feature is x; and label is y;
i The one-hot encoded vector form of y;
?LS’O‘ The smoothed one-hot encoded vector form of y; where the smooth rate is «
o Smooth rate in general label smoothing

B RELATED WORK

Label Smoothing (LS) or positive label smoothing (PLS) (Szegedy et al.,2016) is a commonly used
regularization method to improve the model performance. Standard training with one-hot labels
will lead to overfitting easily. Empirical studies have shown the effectiveness of LS in noisy label
(Szegedy et al.| 2016} |Pereyra et al., 2017} [Vaswani et al.| |2017; |(Chorowski & Jaitly, [2016). In
addition, LS shows its capability to reduce overfitting, improve generalization, etc. LS can also
improve the model calibration (Miiller et al., 2019). However, most of the work about LS is PLS.
(Wei et al., [2021) first proposes the concept of negative label smoothing and shows there is a wider
feasible domain for the smoothing rate when the rate is negative, expanding the usage of LS.

Influence Function is a classic statistical method to track the impact of one training sample. [Koh
& Liang (2017) uses a second-order optimization approximation to evaluate the impact of a training
sample. Additionally, it can also be used to identify the importance of the training groups (Basu
et al., 2020; [Koh et al.| 2019). The influence function is widely used in many machine-learning
tasks. such as data bias solution (Brunet et al., |2019; Kong et al., [2021), fairness (Sattigeri et al.,
2022 |Wang et al., [2022a), security (Liu et al.||2022a), transfer learning (Jain et al., [2022), out-of-
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distribution generalization (Ye et al.| 2021), etc. The approach also plays an important role as the
algorithm backbone in the MU tasks (Jia et al., 2023; Warnecke et al., 2021} |Izzo et al.,|[2021).

Differential Privacy (DP) is a mathematical framework designed to quantify and mitigate privacy
risks in machine learning models. It ensures that the inclusion or exclusion of a single data point
in a dataset does not significantly affect the model’s output, thus protecting individual data points
from being inferred by adversaries [Dwork et al. (2006). In machine learning, DP mechanisms
such as noise addition and gradient clipping are employed during the training process to provide
formal privacy guarantees while maintaining model utility |Abadi et al.| (2016). These techniques
help balance the trade-off between data privacy and model performance, making DP a cornerstone
of privacy-preserving machine learning [Shokri et al.|(2015)); McMahan et al.[(2018).

A multitude of privacy risk assessment tools have been proposed to gauge the degree of leakage
associated with the training data. Specifically targeted at the training data, model attacks are often
used as a proxy metric for privacy leakage in pretrained models. For example, model inversion at-
tacks are designed to extract aggregate information about specific sub-classes rather than individual
samples [Fredrikson et al. (2015). Data extraction attacks aim to reverse engineer individual sam-
ples used during training [Carlini et al.| (2020), while property inference attacks focus on inferring
properties of the training data|Ganju et al. (2018).

More relevant to the current work are Membership Inference Attacks (MIA), which predict
whether a particular sample was used to train the model. First introduced by Homer et al. |Homer
et al.| (2008)), membership attack algorithms were later formalized in the context of DP, enabling
privacy attacks and defenses for machine learning models(Rahman et al. (2018)). Shokri et al. Shokr1
et al. (2017) introduced MIA based on the assumption of adversarial queries to the target model. By
training a reference attack model (shadow model) based on the model inference response, this type
of MIA has proven to be powerful in scenarios such as white-box |Leino et al. (2019); Nasr et al.
(2019); |Sablayrolles et al.|(2019)), black-box |Chen et al. (2020); [Hisamoto et al.| (2019); |Song et al.
(2020), and label-only |(Choquette-Choo et al.| (2020); |Li et al.| (2021) access. However, most MIA
mechanisms often require training a large number of shadow models with diverse subsets of queries,
making them prohibitively expensive. As a result, some recent works have focused on developing
cheaper MIA mechanisms [Steinke et al.| (2023).

Basics of Influence Function Given a dataset D = {z; : (z;,y;)}}, and a function h parameterized
by 6 which maps from the input feature space X to the output space ). Recall the standard empirical
risk minimization writes as:

1
6 = argmin — Z l(hg,z). 9)
o N 2eD

To find the impact of a training point 2, we up-weight its weight by an infinitesimal amount ¢'| The
new model parameter 0?2} can be obtained from

o

1 5
{r) = argmin > U(hg,z) +e-L(hg,2) (10)

zeD

When ¢ = —%, it is indicating removing 2. According to|Koh & Liang|(2017), 0?2} can be approxi-
mated by using the first-order Taylor series expansion as

07, ~ 0" —c- Hy' - Vol (hov,2), (1

where Hp- is the Hessian with respect to (w.r.t.) 8*. The change of 8 due to changing the weight
can be given using the influence function Z (%) as

€ * A daii} -1 .
A6 =67, -0" =I(2) = — =—Hy. - Vol (he+,2).

e=0

"To distinguish from the e in differential privacy, we use ¢ here.
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C PROOFS

C.1 PROOF FOR THEOREMII]

Proof. For p(x), the Taylor expansion at = = a is

p() = pa) + 2D (0 —a) o (12)
Here, p(6) = VR (0) +e Xp, V/(hg, 2! so we have

p(0) = VR (a) +e Z VL(hg, zf) +
zfeDy

V2R (a) + € Z V2€(ha,zf)](0—a)+o (13)

zfeDy

For Eq. (2), we expand p(67}) at 6 = 65, as

p(0}) = VR, (0],) +c > ve(h%,zf)

zfeDy
(14)
+

VR (0;) +¢ > Vi(hg; 2T )[(07-6;)+0=0
zfeDy )

Since we have V Ry, (0;,.) = 0 and ignore o, we can get the approximation as

-1
0;—0;~_[ > VU(he: 2T e Y v%(hg;,zf)] le > ve(h,,;,zf)] (15)

2treDy, zfeDy zfeDy

Similarly, we can expand ¢(6},.) = VR:-(0;.) at @ = 0 as
q(0;.)= > Vil(he:, 2" )+ Y. V(hes,2"")(6;,-6;)~0

ztreDy, 2treDy,
-1 (16)
0;-6; ~| > V(he:,2") Y. Vl(he, ")
2treDy,. ztTeDy,
Because of gradient ascent, € = —1 and we have
-1
0: - 0; = 0: - 0;’ - (02’;" - 0;) = Z V2£(h9:72tr) Z vg(heﬁvztr)
ztreDy, ztreDy,
NG,
1 )
- Z VQZ(hgrr,Zr) Z Vg(hg;er72f)
zreD,. ) zfeDf )
A6
Thus, [|6; - 0%[| = 0if and only if A8y = AB,., where
-1
Z vg(he,’ﬁazt’r) = Z V2€(h9:7ztr) [ Z V2£(h0:’r7zr):| Z vg(he,frwzf)
ztreDy, ztreDy, zreD, ) zfeDy ) (18)
H(67,67.)
]
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C.2 PROOF FOR THEOREM [2]

Proof. Recall the loss calculation in label smoothing and we have

1-K o ,
K a)g(hga(‘r7y))+Ey[§\y£(h97(xay )))7 (19)

(g, 295 = (1 +

where we use notations £(hg, (z,y)) = £(hg,z) to specify the loss of an example z = {z,y}
existing in the dataset and £(hg, (x, ")) to denote the loss of an example when its label is replaced
with y'. Vel(he, (x,y)) is the gradient of the target label and ¥, /cyn, Vol(he, (x,y")) is the sum
of the gradient of non-target labels.

With label smoothing in Eq. (I9), Eq. becomes

1-K 1-K
9:‘9;,LS“A0T+(1+ % a)-(-Ab) + a-A8,
. (20)
=A0, - Ay + a- (A8, - Aby)
where
-1
NG, :=| > vgl(her,z'") > Vel(hg:,2'")
2t7€Dyy 2tTeDyy
-1
AHf = [ Z Vgﬁ(hgrr,zr)] Z Vge(hg:T,Zf)
zreD, zfeDy
as given in Eq. ([T7). So we have
. . 1-K
Or—Of,LSwAOT—AGer a- (A6, - Aby) 2n
where
1 -1
A0, =——| ¥ Villhe; , ZW] > Vo >, (e, (x'.y)
K-1 27eD, zfeDy y'eV\yl '
When we have
(AB, - ABf,AB, - AB;) <0, (22)
a < 0 can help with MU, making
167 = 0% nusll < (167 — 0% (23)
O]

C.3 PROOF FOR THEOREM[3]

Proof. When the optimization is gradient ascent (GA) with negative label smoothing (NLS), Eq. (6)
can be written as

1-K

ho, M5 == (1425 0) - £lhe, (2.9) - = 3 Ulha(@y')a<0. 4

y'eV\y

Recall Ry (0) = X.irep, {(he,z'""). Denote by RI}ILS(O;a) = Yaseep, l(hg, NS5 a0 < 0
the empirical risk of forgetting data with NLS. After MU with label smoothing on D by gradient
ascent, the resulting model can be seen as minimizing the risk v - Ry, () — 2 ~RI}’LS (0; ), which is
a weighted combination of the risk from two phases: 1) machine learning on D, with weight y; >0
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and 2) machine unlearning on Dy with weight v, > 0. Consider an example (z,y) in the forgetting
dataset. The loss of this example is:

1l he, (x,y)) = 72L(he, 2°5*) = [’Yl — 72 (1 + 1o 04)] L(hg, (z,y))

o ’
_?72 Z é(hea(x7y))
y'eV\y

When [71 -2 (1 + ﬂa)] > 0, the optimal solution by minimizing this loss is

K
Y1 72(1+ K o) ) e

fyp :y
_ ,predy _ (’71 ’Yz(1+ ))_70m{ 1 ,

P(M(y) =y>%) = ) .
i (5 a)) Bam; LY # Y-

Accordingly, for another label ', we have

Y172 . bred
P(M(y) pred) (72— ’Yz(l+ a)) Edo,, if y =y,
ifyprediy/.

(ni- 72(1+70¢)) Elay,’
Then the quotient of two probabilities can be upper bounded by:

P(M(y) = y**=) -7 (1+55a) ~ K - .
log(P(M(y/):ypred))Sllog( _%‘72 —‘log(g(l—%)+1—f()‘_

D THE DETAILS OF ALGORITHM

D.1 ALGORITHM DETAILS

We provide a more detailed explanation of UGradSL and UGradSL+ in Algorithm [I] here. For
UGradSL+, we first sample abatch B, = {27 : (27, yr)}. 5" from D, (Line 3-4). Additionally, we

sample a batch Bf = {z : () ,ylf)}l | from Dy Where np, = ng, (L1ne 5). We compute the

distance d(z;, 2; 7Y € [0,1] for each (27, z
f

) pa1r where 2] € B, and z € By (Line 6). For each
2 ) < 3, where § is the distance threshold. This count

is denoted by ci (Line 7). Then we get the smooth rate by normalizing the count as «; = c; ! |Byl,
where «; € [0,1] (Line 8). GA with NLS is to decrease the model confidence of D . The larger the

absolute value of a;, the lower confidence will be given. Our intuition is that a smaller d(z], sz )

(R Z

, we count the number of z] whose d(z], z

means z; is more similar to D, and the confidence of z7f should not be decreased too much.

D.2 ADDITIONAL RESULTS

As mentioned in Section |4} to avoid the smooth rate selection, we propose a self-adaptive smooth
rate version. We compare the performance with and without self-adaptive smooth on CIFAR-10 and
SVHN. The forgetting scenario is random forgetting. The results are given in Table

E EXPERIMENTS

E.1 ADDITIONAL EXPERIMENTAL SETTINGS

The datasets and model configurations for the original model training and retraining are given in
Table[6] We run all the experiments using PyTorch 1.12 on NVIDIA A5000 GPUs and AMD EPYC
7513 32-Core Processor.

The settings of the baseline methods are:

19



Under review as a conference paper at ICLR 2026

Table 6: The hyperparameters used in the original training and retraining for different models and
datasets.

Settings CIFAR-10 SVHN CIFAR-100 | ImageNet | 20 NewsGroup
g ResNet-18 | VGG-16 | ViT | ResNet-18 | ResNet-18 | ResNet-18 Bert
Batch Size 256 256 256 256 256 1024 128
Learning rate le™2 le™ le 6 le™2 le™2 le7? le™
Epochs 160 160 160 160 160 90 60

* Fine-tuning (FT): FT is to fine-tune the original model 6, trained from Dy, using D,..
We fix the epoch of FT for 10 epochs for all the datasets except ImageNet. We fine-tune
ImageNet for 5 epochs. The learning rate is the same as the original training.

* Fisher forgetting (FF): FF is to perturb the 6, by adding the Gaussian noise, which with a
zero mean and a covariance corresponds to the 4th root of the Fisher Information Matrix
with respect to (w.r.t.) 8, on D, (Golatkar et al., |2020). We perform a greedy search for
hyperparameter tuning between le™ and 1e7°.

* Influence unlearning (IU): IU uses influence function (Koh & Liang}, |2017) to estimate the
change from 8, to 8,, when one training sample is removed.

* Boundary unlearnin (BU): BU unlearns the data by assigning pseudo label and manip-
ulating the decision boundary. It contains boundary shrink and boundary expansion, two
types of unlearning methods. The hyper-parameters are the default value in the paper.

o /! 1-spars {1 -sparse improves machine unlearning by integrating the /; norm-based sparse
penalty to the loss function. The learning rate is 1e™® and we search vy in [1e™>, 1e7!] as
given in (Jia et al., [2023).

* SCRUB: SCRUB casts the unlearning problem into a teacher-student framework. We fol-
low the settings exact the same in the original rep where v = 0.99 and o = 0.001.

* Random Labeling (RL): Unlike FT, RL is to train the model with the random label rather
than the fixed label. The settings are the same as for FT.

. SalUNE} SalUN takes the weight saliency into consideration. We search  from [0.5,0.9].

E.2 DATASET SPLIT OF DIFFERENT FORGETTING PARADIGMS

We also provide the details of dataset split for different forgetting paradigms. For classwise forget-
ting, we remove the whole class from Dy, and D;.. In CIFAR-10 and CIFAR-100, the size of Dy
is 500 and 5000, respectively. For the other datasets, the size of Dy ranges from the smallest class
size to the largest class size because we remove the whole class completely. The selected class to be
forgotten is totally random. For random forgetting, we randomly select 10% data from Dy, as Dy.
We make sure the distribution of Dy is the same as Dy,. For CIFAR-20 in group forgetting, each
fine-grained class is in the same size which is 500. The coarse class is 2500.

E.3 ADDITIONAL CLASS-WISE FORGETTING RESULTS

We present the performance of class-wise forgetting in 20 Newsgroup and SVHN datasets in Table[7]
The observation is similar in CIFAR-100 and ImageNet given in Table[I] UGradSL and UGradSL+
can improve the MU performance with acceptable time increment, showing the generalization of the
proposed method in different modalities and different dataset size.

E.4 ADDITIONAL RANDOM FORGETTING RESULTS

We present the performance of random forgetting in CIFAR-10 and SVHN dataset in Table |8} The
observation is similar in CIFAR-100 and Tiny ImageNet given in Table

https://github.com/TY-LEE-KR/Boundary-Unlearning-Code
*https://github.com/OPTML-Group/Unlearn-Sparse
‘nttps://github.com/meghdadk/SCRUB/tree/main
*https://github.com/OPTML-Group/Unlearn-Saliency
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Table 7: The experiment results of class-wise forgetting in 20 Newsgroup and SVHN datasets.

20 Newsgroup | UA MIAGore RA TA | Avg. Gap (1) | RTE ({, min)
Retrain ‘ 100.0040.00  100.00+0.00 98.3112.56 81.9541 69 ‘ - ‘ 26.25
FT 4144911 9.23.3.40 98.83.0.86 82.63.0.73 46.96 1.77
GA 1712948  62.03.584  99.99.0.01 85.41.0.37 30.80 0.37
U 0.004000  0.25.015  100.00.000 85.58.0.90 51.27 1.52
BS 78.33.347 9263010 9728009  90.93.0.81 9.76 1.42
UGradSL 100'0010.00 100~00i0.00 96.31i4_02 78.543:5_10 1.35 0.39
UGradSL+ 100.0010.00 100.0040.00  99.76.0.23 84.21.0.41 0.93 2.13

SVHN | UA MIAG ore RA TA | Avg Gap (1) | RTE ({, min)
Retrain ‘ 100.0040.00 100.00.0.00 100.0040.01  95.94.0.11 ‘ - ‘ 37.05
FT 6.49.1.49 99.98.0.04  100.0040.01 96.08.0.01 23.42 242
GA 8749100 99.85.000  99.52:003 95.27.001 3.45 0.15
U 93.55,075  100.0010.00 99.541003  95.6420.91 1.80 0.23
BE 85.56.3.07  99.98,0.02  99.55.0.01  95.53.0.07 3.83 3.17
BS 96.62:1.14  99.95.000  99.99.000 95.39:0.18 1.00 391
{1-sparse 99.78.0.31  100.00L0.00 98.63.0.01  97.36:0.18 0.75 291
RL 99.99,001  100.0010.00 100.004000 95.444013 0.13 3.53
EU-k 100.0040.00 100.00.0.00 99.61.008 65.56.2.38 7.59 4.93
CF-k 0.0940.03 218,901 99.34,0.02  69.87.4.13 55.88 5.02
SCRUB 99.99,002  100.005000 100.00:000 95.7940.96 0.04 4.97
RL 99.99,001  100.0010.00 100.004000 95.4440.13 0.13 3.53
SalUN 99.74,0.30  100.00:0.00  99.5310.02  95.00.1.50 0.53 4.77
UGradSL 90.71.4.08 99.90.0.16 99.54,40.04  95.64.0.25 2.54 0.23
UGradSL+ | 100.0010.00 100.00s0.00 99.8240.62  94.35.0.70 0.44 4.56

Table 8: The experiment results of random forgetting in CIFAR-10 and SVHN.

CIFAR-10 | UA MIAg ore RA TA | Avg. Gap (}) | RTE ({, min)
Retrain ‘ 8.07i0,47 17-4110,69 100.001001 91.61i0,g4 ‘ - ‘ 24.66
FT 1.1040.19 4.0640.41 99.8340.03  93.70.0.10 5.65 1.58
GA 0.5640.01 1.19.0.05 99.48.0.02  94.55.0.05 6.80 0.31
U 17.51i019 21.39.170  83.2840.41 78.13.045 10.91 1.18
BE 0.00:000 0261002  100.0010.00 95.35:0.15 7.24 3.17
BS 0.48.0.07 1.16.0.04 99.47,0.01  94.58.0.03 6.84 1.41
Zl-sparse 1-2110.38 4-3310.52 97.3910.31 95.4910,13 6.61 1.82
SCRUB 0.7010.50  3.88:125 9959034  94.22.0.26 5.98 4.05
Random Label 2.80&)_37 18”591:3.48 99‘971:0_01 9408*0_]2 224 1.98
UGradSL 5.87i0_51 13.3?)*0_70 98.82i0_28 92'1710.23 2.01 0.45
UGradSL+ 6.0340.17 10.65.0.13  99.79.0.03  93.64.0.16 2.76 3.07
UGradSL (Adp) 6.04i0_11 1375&:0.32 99~11i0.01 92.07&)_02 1.76 1.35
UGradSL+ (Adp) | 7.54.0.43 13.57.0.12 99.67.0.00 92.97.0.17 1.52 9.23
SVHN | uA MIAgcore RA TA | Avg Gap(}) | RTE (J, min)
Retrain | 4.95.005 1559003 99.99.001 95.61.000 | - | 35.65
FT 0450014 23020014 99.99:0.00  95.78.0.01 4.49 2.76
GA 0.58:000 1132002 99561001  95.6240.01 4.86 0.31
FF 0.45.0.00 1.3040.12 99.5540.01  95.49.0.03 4.84 6.02
BE 0.0040.02 0.0240.17  100.00.0.01  96.14.0.02 5.27 1.03
BS 0.45.0.14 1.13.0.05 99.57.0.03  95.66.0.01 4.86 4.24
Zl—sparse 3.73i0_7g 8.44i0_34 978410.28 96.18i0_33 2.77 0.07
SCRUB 0.35.0.20 4.9640.93 99.94,0.02  95.36.0.23 3.88 3.24
RL 8.0040.64 294041192  98.72.045 94.0441 .10 4.93 1.79
UGradSL 3.2912,53 14-3214.56 99.8910.02 94.3810,28 1.07 0.57
UGradSL+ 5-7712.93 15-9512,26 1000010‘00 95-1210.50 0.42 4.44
UGradSL (Adp) 3.9710,29 14.6312,15 99.8910,01 94.4010,12 0.81 2.20
UGradSL+ (Adp) 5-071()‘34 15.89i1‘03 100001()‘00 95.211()‘44 0.21 14.33

E.5 MU WITH THE OTHER CLASSIFIER

To validate the generalization of the proposed method, we also try the other classification model. We
test vision transformer (ViT) and VGG-16 on the task of class-wise forgetting and random forgetting
using CIFAR-10, respectively. The results are given in Table[9]and[TI0] The observation is similar in
Table [T]and [2] respectively.
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Table 9: The experiment results of class-wise forgetting in CIFAR-10 using ViT.

CIFAR-10 |  UA MIAGore RA TA | Avg. Gap()) | RTE (J, min)
Retrain ‘ IOO.OOio_OO IOU.OOio,oo 61-4110.81 58.9411,09 ‘ - ‘ 189.08
FT 3.97.0.87 7.6041.76 98.29.0.05 80.44.0.22 61.70 2.99
GA 33.77.6.36  40.47.663 89.47.401 T1.65.2.79 41.63 0.32
U 1742000  2.16.061  73.96:001 68.8840.00 54.65 0.24
BE 85.56.307  99.98,002  99.55:0.01 95.53.0.07 22.30 3.17
UGradSL 68.113:11_03 73.84i9_5g 84.113:2,70 68‘33i1_69 22.54 0.22
UGradSL+ 99.99,:0'01 99.9910402 94‘4611.06 77‘2611_19 12.85 5.86

Table 10: The experiment results of random forgetting across all the classes in CIFAR-10 using
VGG-16

CIFAR-10 |  UA MIAgcore RA TA | Avg. Gap (1) | RTE (I, min)
Retrain | 11.41.041  11.97.050 T74.65.003  66.13:0.16 | - \ 9.48
FT 1.32.0.13 3481013  74.2d4004  67.040.10 4.96 0.60
GA 1.35.00s 2184066  73.95.001  66.88.0.01 5.33 0.14
10 1.74.0.09 2.16.0.61 73.96.001  68.88.0.00 5.73 0.24
FF 1.35.0.09 2.21.0.58 73.9540.02  66.87.0.04 5.63 1.02
BE 0.01.0.01 0.2340.05  99.98.0.00  94.04.0.21 19.10 1.09
BS 0.0lig_()l O~2210.03 99'9810.01 94~0010_14 19.09 3.17
Zl-sparse 1.2711_13 3.6012_41 98.9711_13 92-18i1.46 17.22 0.08
SCRUB 61.16.50.80 44.65.43.31 39.2645057 36.95.46.68 36.75 0.91
UGradSL 13-4510,63 11.7710,54 65.0510,48 58.5210,38 4.86 0.19
UGradSL+ 12.411()‘32 149610‘52 65.9010,52 58.58i0,35 5.13 1.08

E.6 STREISAND EFFECT

From the perspective of security, it is important to make the predicted distributions are almost the
same from the forgetting set D and the testing set D, which is called Streisand effect. We inves-
tigate this effect in the random forgetting on CIFAR-10 by plotting confusion matrix as shown in
Figure (3} It can be found that our method will not lead to the extra hint of Dy.

Confusion Matrix Confusion Matrix
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Figure 3: The confusion matrix of testing set and forgetting set Dy using our method on CIFAR-10
with random forgetting across all the classes. There is no big difference between the prediction
distribution. Our method will not make Dy more distinguishable.

E.7 GRADIENT ANALYSIS
As mentioned in Section[3.3| (A8, — A@f, AB,, — ABy) < 0 is always practically valid. We practi-

cally check the results on CelebA dataset. The distribution of (A8, — A@¢, AB,, — Afy) is shown
in Figure [ which aligns with our assumption.

22



Under review as a conference paper at ICLR 2026

—300 —250 —200 —150 —100 —50 0
Gradient Inner Product

Figure 4: The distribution of (A6, — A8, Af,, — Afy) on CelebA dataset.

E.8 THE DIFFERENCE BETWEEN UGRADSL AND UGRADSL+

Although UGradSL and UGradSL+ look similar, the intuition of these two method is totally different
because of the difference between FT and GA. We conducted experiments to illustrate the difference
between GA and FT as well as UGradSL and UGradSL+. The results are given in Table [TI] The
dataset and forgetting paradigm is CIFAR-10 random forgetting. It can be found that the difference
becomes much larger when the number of epochs is over 8. When the number of epochs is 10, the
model is useless because TA is less than 10%. We also report the performance of UGradSL and
UGradSL+ in different epochs. For UGradSL, when the epochs are over 14, the model cannot be
used at all. For UGradSL+, the algorithm is much more stable, showing the very good adaptive
capability.

Table 11: The difference between GA and FT as well as UGradSL and UGradSL+ on CIFAR-10
regarding the number of epochs. The forgetting paradigm is random forgetting.

| Gradient Ascent Fine-tuning
Epoch | UA MIAg,. RA TA |Avg Gap(l) || UA MIAgeoe RA  TA | Avg Gap(})
5 0 0.32 95.31 100 3.98 0.04 0.34 95.13  99.99 3.96
6 0 0.40 95.34 100 3.96 - - - - -
7 0.82 222 93.24  99.26 3.95 - - - - -
8 3.44 4.78 90.80 96.18 4.03 - - - -
9 10.34 12.76 83.42  89.00 7.44 - - - - -
10 76.26 7222 649 2424 74.21 0.04 0.24 94.97  99.99 4.02
15 - - - - - 0.02 0.80 94.68  99.96 3.97
| UGradSL UGradSL+
Epoch | UA  MIAg.oe RA TA | Avg.Gap(}) || UA  MIAg.oe RA TA | Avg. Gap (1)
10 14.98 3322 77.18  84.07 16.51 6.26 14.10 93.39  99.62 1.33
11 24.26 34.38 68.22  75.06 23.61 6.52 11.66 93.04 99.37 1.21
12 28.70 24.62 68.17 7439 22.46 21.46 27.38 89.41 97.07 10.36
13 38.46 72.90 61.78 64.72 40.99 29.48 31.92 87.74 9493 14.46
14 99.86 86.74 0.45 0.20 91.26 31.62 32.68 86.53 93.36 15.88
Retrain ‘ 4.5 11.62 95.21 100 ‘ - H 4.5 11.62 95.21 100 ‘ -
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Figure 5: The loss land scape of ,. on CIFAR-10 and the model is ResNet-18.
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