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ABSTRACT

Stein Variational Gradient Descent (SVGD) is a widely used sampling algorithm
that has been successfully applied in several areas of Machine Learning. SVGD
operates by iteratively moving a set of n interacting particles (which represent
the samples) to approximate the target distribution. Despite recent studies on the
complexity of SVGD and its variants, their long-time asymptotic behavior (i.e.,
after numerous iterations k) is still not understood in the finite number of particles
regime. We study the long-time asymptotic behavior of a noisy variant of SVGD.
First, we establish that the limit set of noisy SVGD for large k is well-defined. We
then characterize this limit set, showing that it approaches the target distribution as
n increases. In particular, noisy SVGD avoids the variance collapse observed for
SVGD. Our approach involves demonstrating that the trajectories of noisy SVGD
closely resemble those described by a McKean-Vlasov process.

1 INTRODUCTION

Sampling is a fundamental task in machine learning, central to Bayesian inference and generative
modeling. Mathematically, the task of sampling can be formulated as generating samples, i.e., random
variables, from a given (or learned) probability distribution π. This can be accomplished using a
sampling algorithm that iteratively generates samples intended to asymptotically approximate the
target distribution.

The question of convergence in distribution of the samples to the target distribution π is therefore
of primary interest in the theory of sampling. This question has been investigated in several works
within the sampling literature, with precise convergence rates established for certain algorithms, such
as the celebrated Langevin algorithm. For an overview, see Chewi (2023).

Stein Variational Gradient Descent (SVGD) (Liu & Wang, 2016) is an algorithm for sampling from a
target distribution π whose density with respect to the Lebesgue measure is known up to a normalizing
constant and is written in the form

π(x) ∝ exp(−F (x)), where F : Rd → R.

SVGD (and its variants) is an alternative to the Langevin algorithm and has been successfully applied
in various areas of machine learning; see Liu et al. (2017); Zhang et al. (2018; 2019); Tao et al.
(2019); Pu et al. (2017); Kassab & Simeone (2020); Messaoud et al. (2024), among others. For
example, the SVGD dynamics can be viewed as a ’kernelized’ version of the probability flow ODE
used in generative modeling (Song et al., 2020; Chen et al., 2024). The SVGD algorithm takes the
form of an interacting particles system with n particles. The empirical distribution of the n particles
at iteration k, denoted by µnk , is designed to approximate the target distribution π as the number of
iterations k becomes large.

1.1 RELATED WORKS

Several works have investigated the convergence of SVGD, specifically the convergence of µnk to the
target distribution π.

Most of these works have considered the hypothetical regime n = ∞, referred to as the population
limit (Korba et al., 2020; Salim et al., 2022; Sun et al., 2023; Nüsken & Renger, 2021). More precisely,
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in the population limit, Korba et al. (2020); Salim et al. (2022); Sun et al. (2023) demonstrated that
for every k > 0,

Istein(µ
∞
k ||π) < C

k
, (1)

where C > 0 is a constant, and Istein denotes the Stein Fisher Information, which measures the
discrepancy between the current iterate µ∞

k and the target distribution π. The convergence in
distribution of SVGD to the target π in the population limit can be deduced by letting k → ∞ in (1),
see Salim et al. (2022).

More recently, several works have considered the finite particles regime n < ∞ (Shi & Mackey,
2024; Das & Nagaraj, 2024; Carrillo & Skrzeczkowski, 2023; Liu et al., 2024; Karimi et al., 2023).
In this regime, it has been shown that SVGD approximates its population limit provided that k is
sufficiently small(Korba et al., 2020; Shi & Mackey, 2024; Lu et al., 2019; Liu, 2017). Combining
this result with (1), Shi & Mackey (2024); Carrillo & Skrzeczkowski (2023) demonstrated that
Istein(µ

n
k ||π) < C′

k , where C ′ > 0 is a constant, provided that k is small enough (e.g., k < log log(n)
in Shi & Mackey (2024)). The recent preprint by Balasubramanian et al. (2024), which is concomitant
to this paper, presents a similar result to the previously cited works, offering an improved bound.
Due to this upper bound on k, the convergence of SVGD in the finite particles regime cannot be
established by letting k → ∞.

Indeed, SVGD does not converge to the target distribution when n <∞. This is because the iterates
of SVGD are discrete measures with a finite support of n points, whereas the target π has a continuous
density with respect to the Lebesgue measure. Therefore, we pose the following question:

What does SVGD converge to (i.e., as k → ∞) in the finite particles regime (i.e., when n < ∞ is
fixed)?

To the best of our knowledge, this question remains unanswered, except in the specific case where π
is a centered Gaussian distribution (see Liu et al. (2024, Theorem 10)). For a fixed n, Karimi et al.
(2023) demonstrates that SVGD converges in expectation to a system of n continuous-time particles,
but this result does not establish consistency with the target distribution π as n becomes large.

Nevertheless, we can already make a few observations.

• As mentioned above, SVGD does not converge to the target distribution π because the
SVGD iterates are discrete, while π has a continuous density.

• The best outcome we can generally expect is for the SVGD iterates to converge to some
"limit" distribution L n, which approaches π as n increases.

• Even if we were able to demonstrate that the limit L n is well-defined (a non-trivial task, as
some particles could diverge, for instance), whether L n approaches the target distribution
π as n grows remains an open question. This question is challenging because, empirically,
SVGD has been shown not to converge to the target π in high-dimensional settings when
n is not too large. Specifically, SVGD has been observed to underestimate the variance of
the target distribution, and the particles tend to collapse to certain modes of the distribution,
see Ba et al. (2021); Zhuo et al. (2018); D’Angelo & Fortuin (2021).

1.2 CONTRIBUTIONS

In this paper, we introduce a new noisy variant of SVGD, where each iteration is regularized by noise
in the form of an iteration of the Langevin algorithm. We study the "limit" L n of our algorithm,
noisy SVGD (NSVGD), with n <∞ particles as the number of iterations k → ∞. More precisely,
our contributions are as follows:

• We propose a novel noisy variant of SVGD, where each iteration is regularized by noise in
the form of an iteration of the Langevin algorithm.

• First, we show that when the number of particles n <∞ is fixed, NSVGD converges to a
well-defined limit set L n as k → ∞ (Th. 1).

• Next, we describe this limit set L n: while it does not contain the target π, we demonstrate
that L n approaches π as n increases (Th. 2).
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• Finally, we establish Cor. 1 on the convergence of NSVGD in the regime lim
n→∞

lim
k→∞

. Since

convergence in the regime lim
k→∞

lim
n→∞

can be derived from existing works, Cor. 1 implies

that the limits lim
n→∞

and lim
k→∞

can be interchanged.

• Our approach is based on proving that the trajectories of NSVGD mimic those of a McKean-
Vlasov process (Bianchi et al., 2024), a result of independent interest (Proposition 3). It
consists of showing that the limit of L n, as n grows, is a stationary measure of a McKean-
Vlasov process. For the pure SVGD algorithm, the target distribution π is included in the
set of stationary distributions. The noisy variant we propose ensures that π is the unique
stationary distribution of the associated McKean-Vlasov process. Thus, we are able to show
that L n converges to π.

• NSVGD avoids the variance collapse observed in SVGD, a fact we verify experimentally by
comparing NSVGD to SVGD (Fig. 1).

1.3 PAPER STRUCTURE

This paper is organized as follows. We review some background material in Section 2. In Section 3, we
introduce our main algorithm, NSVGD. Next, we present our main results regarding the convergence
of NSVGD in Section 4. In Section 5, we provide a sketch of our convergence proof, which relies
on relating the trajectories of NSVGD to those of a McKean-Vlasov process. In Section 6, we
empirically demonstrate that NSVGD, unlike SVGD, does not suffer from particles collapse. Finally,
we conclude in Section 7. The proofs are deferred to the Appendix.

2 BACKGROUND

2.1 NOTATIONS

The Euclidean inner product and norm of Rd are denoted ⟨·, ·⟩ and ∥ · ∥. We consider a Reproducing
Kernel Hilbert Space (RKHS) H0 whose kernel is denoted K : Rd × Rd → R. For x, y ∈ Rd, we
denote by ∇yK(x, y) the gradient of K with respect to y. The product space H := Hd

0 , is a Hilbert
space whose inner product and norm are denoted ⟨·, ·⟩H and ∥ · ∥H. We denote by [n] the set of
integers {1, . . . , n}. We say that a quantity ℓnt converges as (t, n) → (∞,∞) in some sense to ℓ if,
for every sequence (tn, φn) → (∞,∞), ℓφn

tn converges as n→ ∞ to ℓ.

2.2 OPTIMAL TRANSPORT

For every topological space E, we denote by P(E) the set of probability measures on the Borel
σ-field B(E). If E is a Polish (complete, metrizable) space, then P(E) equipped with the weak⋆
topology is Polish as well. A subset A of random variables on E is called tight, if, for every ε > 0,
there exists a compact set A ⊂ E, such that P(X ∈ A) > 1− ε, for every X ∈ A. If E is a Banach
space, we define

P2(E) := {µ ∈ P(E) :

∫
∥x∥2dµ(x) <∞} ,

and the Wasserstein-2 distance by

W2(µ, ν) :=

(
inf

ς∈Π(µ,ν)

∫
∥x− y∥2dς(x, y)

)1/2

,

where Π(µ, ν) is the set couplings of µ ∈ P2(E) and ν ∈ P2(E), i.e., the set of measures ς ∈
P(E × E) such that ς( · × E) = µ and ς(E × · ) = ν. The Wasserstein space, i.e., the set P2(E)
endowed with the distance W2, is a Polish space.

In the proofs, we need to consider the case where the space E coincides with the set C of continuous
function on [0,∞) to Rd. Eventhough C is not a Banach space, the definitions follow the same
lines. The set C is equipped with the topology of uniform convergence on compact intervals. For
every ρ ∈ P(C), we denote by ρT the restriction of ρ to functions on the compact interval [0, T ]
(that is, ρT = (π[0,T ])#ρ, the pushforward of ρ by the map π[0,T ] which, to every function f ∈ C,
associates its restriction to the compact interval [0, T ]). We denote by P2(C) the set of measures
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ρ ∈ P(C) such that ρT ∈ P2(C([0, T ],Rd)) for all T > 0. This space is naturally equipped with
the following topology: a sequence ρn converges to ρ in the Wasserstein-2 sense if ρTn → ρT in the
Wasserstein-2 sense, for every T > 0. Then, P2(C) is metrizable, and we denote by W2(ρ, ρ

′) a
proper distance (Bianchi et al., 2024, Sec. 2.2).

2.3 FUNCTIONAL INEQUALITIES

Let π ∈ P2(Rd) be the target distribution, i.e., π ∝ exp(−F ). The Kullback-Leibler divergence with
respect to π is defined for every µ ∈ P2(Rd) by:

DKL(µ||π) =
∫

log
dµ

dπ
dµ ,

if µ has a density dµ
dπ w.r.t. π, and DKL(µ||π) = +∞ else. The Fisher Information w.r.t. π is defined

by:

I(µ||π) :=
∫ ∥∥∥∥∇ log

dµ

dπ

∥∥∥∥2 dµ(x) .
We recall the Log Sobolev Inequality (LSI) that relates the Kullback-Leibler divergence and the
Fisher Information.
Definition 1 (Logarithmic Sobolev Inequality). The distribution π satisfies the Logarithmic Sobolev
Inequality, if there exists α > 0 such that for every µ ∈ P2(Rd),

DKL(µ||π) ≤
1

2α
I(µ||π).

The LSI is satisfied when F is α-strongly convex but can also be used to study the convergence of
sampling algorithms in the case where F is not convex (Villani, 2009, Section 21) (see also Vempala
& Wibisono (2019)). Finally, we define the Stein Fisher Information w.r.t. π by:

Istein(µ||π) :=
∥∥∥∥Pµ∇ log

dµ

dπ

∥∥∥∥2
H
,

where Pµ : L2(µ) → H is the so-called kernel integral operator Pµf =
∫
K(·, y)f(y)dµ(y).

3 NOISY STEIN VARIATIONAL GRADIENT DESCENT (NSVGD)

The Stein Variational Gradient Descent (SVGD) algorithm (Liu & Wang, 2016) is used to sample from
a distribution π ∝ exp(−F ), where F : Rd → R is a differentiable function. At every iteration k, the
algorithm updates the values of n Rd-valued vectors, refered to as the particles X1,n

k , · · · , Xn,n
k . We

study a generalization of SVGD, called NSVGD, that incorporates noise in the form of a Langevin
iteration at each step of SVGD.

Let (Ω,F ,P) be a probability space, λ ≥ 0 and (γk) be a positive deterministic sequence in R.
Starting with a n–uple (X1,n

0 , . . . , Xn,n
0 ) of Rd-valued random variables, the particles are updated

according to Algorithm 1 where (ξi,nk )i,k is a family of i.i.d standard Gaussian vectors in Rd.

Algorithm 1 Noisy Stein Variational Gradient Descent (NSVGD)

Initialization: generate n particles (X1,n
0 , . . . , Xn,n

0 )
for k = 0, 1, 2, . . . do

for i = 1, 2, . . . , n do

Xi,n
k+1 = Xi,n

k − γk+1

n

∑
j∈[n]

(
K(Xi,n

k , Xj,n
k )∇F (Xj,n

k )−∇yK(Xi,n
k , Xj,n

k )
)

−λγk+1∇F (Xi,n
k ) +

√
2λγk+1ξ

i,n
k+1︸ ︷︷ ︸

Langevin regularization

. (2)

end for
end for
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NSVGD boils down to the standard deterministic SVGD algorithm when λ = 0. The regularization
parameter λ > 0 introduces noise into the algorithm, which ensures that the set of limiting distribu-
tions is unique and coincides with the target. This is a property that the pure SVGD algorithm does
not exhibit, as described in the introduction (see Sec. 6 for a more detailed discussion).
Assumption 1. Let the following holds.

i) (γk) is a non-negative deterministic sequence satisfying limk→∞ γk = 0, and
∑
k γk = +∞.

ii) (ξi,nk )k∈N,i∈[n] is an i.i.d. sequence of standard Gaussian variables, independent of (Xi,n
0 )i∈[n].

NSVGD allows for the approximation of linear functionals of the form
∫
f dπ, where f is an arbitrary

integrand, by the discrete sum 1
n

∑n
i=1 f(X

i,n
k ) . The latter can be written as

∫
f dµnk , where µnk is

the empirical measure of the particles, defined by:

µnk :=
1

n

∑
i∈[n]

δXi,n
k
.

Note that (µnk )k is a sequence of random measures. A useful convergence result for NSVGD involves
studying the convergence in probability of this sequence towards the target distribution π. In some
situations, it is more convenient to study the averaged empirical measure µ̄nk , defined for k, n ∈ N∗

by:

µ̄nk :=

∑
i∈[k] γiµ

n
i∑

i∈[k] γi
.

4 CONVERGENCE RESULTS OF NSVGD

4.1 LIMIT SET OF NSVGD IS WELL-DEFINED

We start our analysis by studying the limit set of NSVGD as k tend to infinity, for a fixed number n of
particles. As the number of particles is fixed, it cannot be expected that the limit of µnk coincides with
π as k → ∞, because a discrete measure with a fixed number of atoms cannot approach a density.

We begin by stating the assumptions that ensure the stability of our algorithm.
Assumption 2. There exists two non-negative constant c, C, such that for every x, y ∈ Rd, the
following holds.

i) The hessian H(F )(x) is well-defined and ∥H(F )(x)∥op ≤ C.

ii) c ∥x∥2 − C ≤ min(∥∇F (x)∥2 , |F (x)|).

iii) ∥K(·, y)∥H0
+ ∥∇yK(·, y)∥H ≤ C.

iv) supn E
(
(X1,n

0 )4
)
<∞.

This assumption is satisfied, for instance, when π is a mixture of Gaussians andK is either a Gaussian
or a polynomial kernel. Given the previous assumption, we can establish the stability of our algorithm,
in the form of the following propposition.

Proposition 1. Let Assumptions 1 and 2 be satisfied. Assume λ > 0. Then, supk,n E∥X
1,n
k ∥4 <∞.

We formally describe the limit set of the empirical measures in a distributional sense.
Definition 2 (Distributional limit set). Let ν, (νk : k ∈ N) be random variables on P(Rd). We say
that ν is a distributional cluster point of (νk), if νk converges in distribution to ν along a subsequence.
The distributional limit set L ((νk)) of the sequence (νk) is defined as the set of distributional cluster
points of (νk).

We denote by L n := L ((µnk )) the distributional limit set of the sequence (µnk : k ∈ N), when
k → ∞, n being fixed. In words, L n is the set of random measures νn such that µnk converges to νn
in distribution, along a subsequence. Similarly, we denote by L

n
the limit set of the sequence (µ̄nk ).
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Prop. 1 is the key component for establishing our first theorem.
Theorem 1. Let Assumptions 1 and 2 hold. Assume λ > 0. Then, for every n ∈ N∗, the sequence of
random variables (µnk )k is tight. As a consequence, the sets L n and L

n
are non empty. Finally, all

random measures of L n and L
n

belong almost surely to P2(Rd).

It remains to characterize the limit sets. As mentioned earlier, the random variable equal to π a.s.
does not belong to the set L n. Therefore, the question is whether L n reduces to the singleton π as
n goes to infinity.

4.2 DESCRIPTION OF THE LIMIT SET

The following assumption is technical and ensures that the limiting measures of L
n

and L n, in the
sense of the definition below, admit a density with respect to the Lebesgue measure. In other words,
it ensures that the marginals of the McKean-Vlasov distributions in Definition 4 have a density.
Assumption 3. There exists β > 0, such that for every x, x′, y ∈ Rd, we obtain

|K(x, y)−K(x′, y)|+ ∥∇yK(x, y)−∇yK(x′, y)∥ ≤ C ∥x− x′∥β .

Definition 3. For every n ≥ 1, let E n be a set of random measures on P2(Rd). We say that the
sequence of random sets (E n : n ∈ N∗) converges in probability to π, denoted by E n P−→ π, if the
Hausdorff-Wasserstein distance between E n and π converges in probability to zero:

∀ε > 0, lim
n→∞

P( sup
ν∈E n

W2(ν, π) > ε) = 0 .

The following theorem establishes the convergence of the averaged empirical measure, in the sense
of Def. 3, to the target by first taking the limit as k → ∞ and then the limit as n→ ∞.
Theorem 2. Let Assumptions 1 , 2, and 3 hold. Assume λ > 0. Then,

L
n P−−−−→

n→∞
π .

The motivation for studying the limit set L
n

of the averaged measure µ̄nk is technical. However, the
same result for the empirical measure µnk can also be obtained, provided an additional assumption on
the target density is satisfied.
Assumption 4. The distribution π satisfies the Logarithmic Sobolev Inequality for a constant α > 0.
Theorem 3. Let Assumptions 1 , 2, 3 and 4 hold. Assume λ > 0. Then,

L n P−−−−→
n→∞

π .

4.3 LONG-TIME CONVERGENCE OF THE EMPIRICAL MEASURE

As a consequence of Th. 2 and Th. 3 respectively, we can characterize the long-time convergence of
the empirical measure of the particles, averaged and non-averaged respectively.
Corollary 1. Let Assumptions 1 , 2 and 3 hold. Assume λ > 0. Then, for every ε > 0,

lim
n→∞

lim sup
k→∞

P(W2(µ̄
n
k , π) > ε) = 0 .

If Assumption 4 also holds, the same result applies when µ̄nk is replaced by µnk .

Since the convergence in the regime lim
k→∞

lim sup
n→∞

can be deduced from the existing works mentioned

above, Cor. 1 implies that lim
n→∞

and lim
k→∞

can be exchanged.

5 SKETCH OF THE CONVERGENCE PROOF OF NSVGD

To briefly explain our proof technique, we first show the stability of our algorithm, which, by a
compactness argument, establishes the existence of a limiting distribution (Prop. 2). Secondly, the
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limiting distributions have a specific structure: they are solutions to the McKean-Vlasov equation
(Prop. 3). Since the limiting distributions are also stationary, we must identify the stationary distri-
bution of the McKean-Vlasov equation. We first show that the Kullback-Leibler (KL) divergence
with respect to the target decreases along the trajectories of the McKean-Vlasov solutions (Prop. 4).
This implies that the target is the unique stationary distribution of the McKean-Vlasov solution and
therefore coincides with the marginal of the limiting distributions.

5.1 INTERPOLATED PROCESS

We consider for each i ∈ [n] the random continuous-time process X̄i,n : [0,∞) → Rd, t 7→ X̄i,n
t

defined as the piecewise linear interpolation of the particles (Xi,n
k )k. Specifically, writing τk :=∑k

j=1 γj , for each k ∈ N, we define:

∀t ∈ [τk, τk+1), X̄i,n
t := Xi,n

k +
t− τk
γk+1

(
Xi,n
k+1 −Xi,n

k

)
.

The interpolated processes X̄i,n, for i ∈ [n], are elements of the set C of continuous functions
on [0,∞) → Rd. Rather than solely examining the empirical measure of the particles Xi,n

k , our
approach focuses on analyzing the empirical measure of the interpolated processes X̄i,n across the
entire positive real line. Define:

mn
t :=

1

n

n∑
i=1

δX̄i,n
t+·
,

for each n and t. For a function x ∈ C, we used the notation xt+· as an element of C defined by
s 7→ xt+s. Note that mn

t is a random variable on P2(C). The empirical measure µnk of the discrete
particles can be deduced from mn

t by marginalization, which is why we focus on mn
t from now on.

5.2 MCKEAN-VLASOV DISTRIBUTIONS

For a fixed n, the particles Xi,n
k , for i ∈ [n], can be interpreted as an Euler discretization scheme of

a stochastic differential equation involving n continuous-time particles. As the discretization step
γk tends to zero, the interpolated processes eventually share the same behavior as the continuous-
time particles as k tends to infinity. Moreover, in the population limit where n is large, any of
the continuous-time particles coincides, in law, with the solution to a McKean-Vlasov equation, as
defined below. This phenomenon is known as the propagation of chaos. We refer to Chaintron &
Diez (2022) for a detailed exposition.
Definition 4. We say that a measure ρ ∈ P2(C) is a McKean-Vlasov distribution, if it coincides with
the pathwise law of a weak solution (Xt)t≥0 to the nonlinear Stochastic Differential Equation (SDE)

dXt = −
∫

(K(Xt, y)∇F (y)−∇yK(Xt, y)) dρt(y) dt− λ∇F (Xt) dt+
√
2λ dWt,

where (Wt)t≥0 is a standard Brownian motion. Denote by V2 the set of McKean-Vlasov distributions.

5.3 LIMIT MEASURES OF NSVGD ARE MCKEAN-VLASOV DISTRIBUTIONS

It remains to explain in which sense, the empirical measures mn
t converge to a McKean-Vlasov

distribution as (t, n) → (∞,∞). The question requires the introduction of the following measure:

Mn
t :=

1

t

∫ t

0

δmn
s
ds .

To summarize, we introduced the following of random variables: (process level) X̄i,n is a r.v. on
C; (process-measure level) mn

t is a r.v. on P2(C); (process-measure-measure level) Mn
t is a r.v. on

P(P2(C)). As a consequence of Prop. 1, we obtain the following result.

Proposition 2. Let Assumptions 1 and 2 be satisfied. Assume λ > 0. For every n ∈ N∗, the sequence
of random variables (Mn

t )t is tight.
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In particular, Proposition 2 implies Th. 1 and the fact that the limit set of SVGD is non-empty. It
remains to characterize the latter in the doubly asymptotic regime where t, n both tend to infinity.
To that end, we study the (distributional) limit points of (Mn

t ), as (t, n) → (∞,∞). The following
result is a extracted from Bianchi et al. (2024, Lem. 9).
Proposition 3. Let Assumptions 1 and 2 be satisfied. Assume λ > 0. Let M be a random measure
on P(P2(C)) such that Mn

t converges in distribution to M as (t, n) → (∞,∞), along some
subsequence. Then, M(V2) = 1 a.s.

Let us explain the main consequence of this result. Let f be the function defined by f(ρ) =W2(ρ,V2)
for every ρ ∈ P2(Rd). When Mn

t tends to M in distribution along some subsequence, our definition
of Mn

t implies that:∫
fdMn

t =
1

t

∫ t

0

W2(m
n
s ,V2)ds

D−→
∫
W2(ρ,V2)dM(ρ) = 0 ,

where the symbol D−→ stand for convergence in distribution. This shows that, in an ergodic sense, mn
t

converges in probability to the set of McKean-Vlasov distributions, as (t, n) → (∞,∞).

5.4 LIMIT MEASURES OF NSVGD ARE TIME-SHIFT RECURRENT

More can be said about the particular McKean-Vlasov distribution in the limit set. For every τ > 0,
denote by Φτ : P(C) → P(C) the map which shifts a process-measure by a time τ , namely,
Φτ (ρ) : f 7→

∫
f(xτ+·)dρ(x). Obviously, Φτ (mn

t ) = mn
τ+t, which in turn implies that, as t→ ∞,

for every bounded continuous function G : P(C) → R,∫
G(Φτ (ρ))dM

n
t (ρ) =

1

t

∫ t

0

G(mn
τ+s)ds ≃

1

t

∫ t

0

G(mn
s )ds =

∫
G(ρ)dMn

t (ρ) ,

where the precise statement is found in the supplementary (see also Bianchi et al. (2024, Lem. 10)).
Passing to the limit, this implies that every distributional limit point M of Mn

t is shift-invariant, in
the sense that

∫
G ◦ ΦτdM =

∫
GdM a.s., for every bounded continuous G and every τ > 0.

5.5 CONVERGENCE OF NSVGD TO THE TARGET

For any process-measure ρ ∈ P(C), we denote by (ρt : t ≥ 0) its marginals in P(Rd).
Proposition 4. Let Assumption 2 and 3 hold. Assume λ > 0. Let t2 > t1 > 0. For every ρ ∈ V2 and
every t ∈ [t1, t2], ρt admits a differentiable density w.r.t. the Lebesgue measure. Moreover,

DKL(ρt2 ||π)−DKL(ρt1 ||π) = −
∫ t2

t1

(Istein(ρt||π) + λI(ρt||π)) dt .

We are now able to obtain Th. 2. Let M ∈ P(P(C)) be the random variable given by Prop. 3. Recall
that by Sec. 5.4, the measure M is time-shift recurrent. Hence, putting aside technical details, for
every t > 0, τ > 0, almost surely, we obtain∫

DKL(ρt||π)dM(ρ) =

∫
DKL(ρt+τ ||π)dM(ρ) .

By Prop. 3 and 4, this implies
∫∫ t+τ
t

(Istein(ρs||π) + λI(ρs||π)) dsdM(ρ) = 0 . The l.h.s. of this
equation is zero if and only if ρ = π for every ρ in the support of M . Thus, in an ergodic sense, the
marginals of the measure mn

t converges in probability to π, as (t, n) → (∞,∞) (see Prop. 7 in the
Appendix). Leveraging some technical details, this in turn yields Th. 2.

The last step is to establish Th. 3 under the additional Assumption 4. In other words, one should
discard the time-averaging. This can be done in the situation where, as t→ ∞, the marginal ρt of
any McKean-Vlasov distribution ρ ∈ V2 converges to π uniformly in the initial point ρ0 in a compact
set. This can be established using the LSI, as shown by the following result.
Proposition 5. Let the assumptions of Prop. 4 hold. Moreover, we assume that Assumption 4 is
satisfied with α > 0 and λ > 0. For any compact set K ⊂ P2(C), for every t2 > t1 > 0, there exists
a constant Ct1,K > 0 depending on t1 and K, such that

sup
ρ∈V2∩K

W2(ρt2 , π) ≤ Ct1,Ke
−αλ(t2−t1) .
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6 NSVGD AVOIDS THE PARTICLES COLLAPSE

The convergence results of Sec. 4 show the convergence of NSVGD in a doubly asymptotic regime
(k, n) → (∞,∞). These convergence results could be reproduced for the deterministic SVGD
algorithm. However, in the case of SVGD, our approach would show the convergence of SVGD to a
set that includes the target π, but can also include Dirac measures at stationary points of F . Indeed,
the McKean-Vlasov process of SVGD (i.e., the case λ = 0) is stationary at δx for any x ∈ Rd such
that ∇F (x) = 0 and ∇yK(x, x) = 01.

This observation is in line with empirical results showing that the deterministic SVGD algorithm
may not converge in high dimensions and instead collapse to some Diracs, which represent modes of
the target distribution (Ba et al., 2021; Zhuo et al., 2018; D’Angelo & Fortuin, 2021). Specifically,
Ba et al. (2021) shows that variance collapse occurs for SVGD in the regime when d/n > 1. We
showed (Th.2 and3) that NSVGD converges to the target and, in particular, does not collapse to Dirac
measures. Our theoretical results are given for a fixed dimension d and cannot be computed uniformly
in the dimension. Therefore, we show experimentally that NSVGD, in the setup of Ba et al. (2021)
(d/n > 1), does not exhibit variance collapse.

Fig. 1 (see Appendix for larger figures) reproduces an experiment from Ba et al. (2021) on the
variance collapse of SVGD. We added our algorithm, NSVGD, to the plot. In Fig. 2, we show that
the collapse occurs even when the number of particles n is large compared to the dimension d.
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Figure 1: Dimension-averaged Marginal Variance of SVGD and NSVGD at convergence for sampling
from a standard Gaussian.
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Figure 2: Dimension-averaged Marginal Variance of SVGD and NSVGD at convergence for sampling
from a standard Gaussian of fixed dimension d = 10.

1On the contrary, every stationary distribution of the McKean-Vlasov process of NSVGD (i.e., the case
λ > 0) must have a density w.r.t. Lebesgue thanks to the noise injection.
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The setup is the following. We consider the task of sampling from a standard Gaussian with NSVGD
and SVGD. We use the two most standard kernels for running SVGD: the Radial Basis Function
(RBF) kernel, a.k.a. Gaussian kernel K(x, y) = exp(− 1

2∥x− y∥2) and the Inverse Multi-Quadratic
(IMQ) kernel (Gorham & Mackey, 2017; Kanagawa et al., 2022) K(x, y) = 1√

1+ 1
2∥x−y∥2

. We

simulate NSVGD until convergence (i.e., after a large number k = 200 of iterations) for different
values of the dimension d, the number of particles n, and the regularization parameter λ. When
λ = 0, NSVGD boils down to the deterministic SVGD. The particles are initialized randomly from a
standard Gaussian and the step size is set to γk = 10/k.

Given a probability distribution over Rd, the Dimension-Averaged Marginal Variance (DAMV) is
a statistics of the distribution equal to the average across the d coordinates of the variance of each
coordinate. We reproduce an experiment from Ba et al. (2021) where they plotted the DAMV of
SVGD after a large number of iterations against the dimension. We added NSVGD to the plot, see
Fig. 1 and 2. Since NSVGD is random, its DAMV is a random number, therefore we plotted the
averaged value of the DAMV over 10 runs and represented the standard deviation of the DAMV in
the shaded area behind the curve. Our Python script is available in the Supplementary Material and
Fig. 1 and 2 are available in the Appendix in a larger format.

From Fig. 1 and 2, two important observations can be made:

• Since each point in the figure represents a statistical measure (the DAMV) for NSVGD after
numerous iterations, our theoretical analysis predicts that as n increases, the DAMV values
for NSVGD should converge to the DAMV of the standard Gaussian, which is 1. This
convergence towards 1 with increasing n is indeed what we observe in the NSVGD data.

• Contrasting this, SVGD shows a different behavior where its DAMV tends to zero as the
dimension increases, as discussed in Ba et al. (2021). Unlike SVGD, NSVGD does not
exhibit this variance collapsing behavior.

The Langevin regularization We studied a mixture of the Langevin algorithm and the SVGD
algorithm. We have shown that the Langevin component is useful both in practice and in theory.
However, the Langevin part does not need to be large. SVGD has demonstrated superiority in several
applications (faster convergence, adaptability, etc.). By setting λ sufficiently small, we retain the
advantages of the SVGD algorithm while ensuring convergence guarantees. The optimal balance
between Langevin and SVGD (in terms of the optimal convergence rate of the Wasserstein distance
between the empirical measure and the target distribution) is application-dependent, and a detailed
study of this balance is left for future work. In Sec. C, we compare NSVGD with the Langevin and
SVGD algorithms for various values of λ.

7 CONCLUSION

What does a user do? A user sets a finite value for the number n of particles and then runs the
algorithm until convergence. Therefore, understanding what the algorithm converges to when n is
finite is of primary importance. In this work, we provided insights into the limit set L n of NSVGD
after a large number of iterations. We showed that this limit set is well-defined and approaches the
target as n increases. Several conclusions follow from these results. In particular, NSVGD, unlike
SVGD, provably avoids collapsing to certain modes of the target distribution.

Our work raises several questions regarding the convergence speed of NSVGD. First, can we quantify
the convergence of NSVGD to the set L n? Then, can we quantify the convergence of the set L n to
the target? Finally, how should the regularization parameter λ be chosen, and what is its effect on the
convergence rate?

These problems, which are not addressed in the existing literature on SVGD and its variants, would
deepen our understanding of interacting particles systems for sampling, in a regime that matters from
a practical perspective.
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Figure 3: Dimension-averaged Marginal Variance of SVGD and NSVGD at convergence for sampling
from a standard Gaussian.
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B FIG. 2 IN LARGER FORMAT
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Figure 4: Dimension-averaged Marginal Variance of SVGD and NSVGD at convergence for sampling
from a standard Gaussian for fixed dimension d = 10.
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C ADDITIONAL EXPERIMENTS

In this section, we compare the Langevin algorithm (which is Eq. (2) with λ = 1 and K = 0) with
NSVGD using various values of λ and SVGD (which is NSVGD with λ = 0).

We consider the Neal funnel distribution (Neal, 2003), defined as:

π((x1, x2)) = N (x1; 0, 3)N (x2; 0, e
x1),

where x 7→ N (x; 0, σ2) denotes the density of a centered Gaussian with variance σ2.

We recall that the Maximum Mean Discrepancy (MMD) with a kernel K̃ between two distributions
µ1 and µ2 is defined as:

MMD2(µ1, µ2) :=

∫
K̃(x, x′) dµ1(x) dµ1(x

′) +

∫
K̃(y, y′) dµ2(y) dµ2(y

′)

− 2

∫
K̃(x, y) dµ1(x) dµ2(y).

Given a sample of the target distribution (N = 500), denoted as (X1, . . . , XN ), we plot the MMD
distance between µnk and 1

N

∑
i∈[N ] δXi as a function of k in Fig. 5.
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Figure 5: The RBF kernel is taken for both the MMD distance and the NSVGD algorithm. We
consider n = 100 particles, γk = 0.1 and d = 2.

With this particular type of target distribution, the Langevin algorithm fails to recover the thin part
of the distribution (see Fig. 6 when x1 ≤ 2), whereas SVGD successfully does so. This explains
why SVGD performs better in this scenario. As described in Sec. 6, the performance of NSVGD
lies between that of the Langevin and SVGD algorithms. By setting λ small, NSVGD replicates the
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Figure 6: Plot of the particles Xi,n
k after one run of the Langevin algorithm (K = 0 and λ = 1) and

one run of the SVGD algorithm (λ = 0) with the RBF kernel and n = 100, γk = 0.1 k = 500.

performance of SVGD, while setting λ large recovers the performance of the Langevin algorithm.
The conclusion in this example is to use NSVGD with a small λ to achieve similar performance to
SVGD while maintaining convergence guarantees.
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D ADDITIONAL NOTATIONS

In this section, we introduce further notations, extending what is provided in Sec. 2.

Let d ∈ N∗. For k ∈ N∪{∞}, we denote by Ck(Rd,Rq) the set of functions which are continuously
differentiable up to the order k. We denote by Cc(Rd,R) the set of Rd → R continuous functions
with compact support. Given p ∈ N∗∪{∞}, we denote as Cpc (Rd,R) the set of compactly supported
Rd → R functions which are continuously differentiable up to the order p.

The notation f#µ stands for the pushforward of the measure µ by the map f , that is, f#µ = µ ◦ f−1.

For t ≥ 0, we define the projections πt and π[0,t] as πt : (Rd)[0,∞) → Rd, x 7→ xt, and π[0,t] :
(Rd)[0,∞) → (Rd)[0,t], x 7→ (xu : u ∈ [0, t]).

Define:
P2(C) = {ρ ∈ P(C) : ∀T > 0,

∫
sup
t∈[0,T ]

∥xt∥2dρ(x) <∞} .

For every ρ, ρ′ ∈ P2(C), we define:

W2(ρ, ρ
′) =

∞∑
n=1

2−n(1 ∧W2((π[0,n])#ρ, (π[0,n])#ρ
′)) ,

where we equipped the space of the [0, n] → Rd continuous function with the uniform norm for
every n ∈ N∗. We equip P2(C) with the distance W2. By Bianchi et al. (2024, Prop. 1), P2(C) is a
Polish space.

For ρ ∈ P2(C), we denote
ρt := (πt)#ρ .

E PROOF OF PROP. 1

In this section, we let Assumptions 1 and 2 hold. Additionally, we assume λ > 0. Furthermore,
C > 0 will denote a generic and sufficiently large constant independent of k and n.

We define:
Ik,n :=

1

n

∑
i∈[n]

F (Xi,n
k ) .

We will proceeds in three steps. First, we will obtain:
Lemma 1. The following holds:

sup
k,n

E(Ik,n) <∞ .

Secondly:
Lemma 2. The following holds:

sup
k,n

E(I2k,n) <∞ .

The latter lemma gives a bound on the cross terms of the form E(F (Xi,n
k )F (Xj,n

k )) for i ̸= j. With
this at hand, we obtain:
Lemma 3. The following holds:

sup
k,n

E(F (X1,n
k )2) <∞ .

F (x) ≥ c′ ∥x∥2 − C by Assumtion 2. Hence, by Lem. 3, Prop. 1 is proven.
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Proof of Lem. 1 By Taylor-Lagrange formula, there exists ti,nk+1 ∈ [0, 1] such that:

F (Xi,n
k+1) = F (Xi,n

k ) + ⟨∇F (Xi,n
k ), Xi,n

k+1 −Xi,n
k ⟩+

1

2

((
Xi,n
k+1 −Xi,n

k

)T
H(F )

(
Xi,n
k+1 + ti,nk+1

(
Xi,n
k+1 −Xi,n

k

))
(Xi,n

k+1 −Xi,n
k )

)
. (3)

We recall the iteration Eq. (2)

Xi,n
k+1 −Xi,n

k = −γk+1

n

∑
j∈[n]

(
K(Xi,n

k , Xj,n
k )∇F (Xj,n

k )−∇yK(Xi,n
k , Xj,n

k )
)

− λγk+1∇F (Xi,n
k ) +

√
2γk+1λξ

i,n
k+1 .

By Assumption 2, ∥H(F )(x)∥op ≤ C for every x ∈ Rd. Using Eq. (3), we obtain

F (Xi,n
k+1) ≤ F (Xi,n

k )− γk+1

n

∑
j∈[n]

⟨∇F (Xi,n
k ),∇F (Xj,n

k )⟩K(Xi,n
k , Xj,n

k )

+
γk+1

n

∑
j∈[n]

⟨∇F (Xi,n
k ),∇yK(Xi,n

k , Xj,n
k )⟩+

√
2γk+1λ⟨∇F (Xi,n

k ), ξi,nk+1⟩

+ Cγ2k+1


∥∥∥∥∥∥ 1n

∑
j∈[n]

K(Xi,n
k , Xj,n

k )∇F (Xj,n
k )

∥∥∥∥∥∥
2

+

∥∥∥∥∥∥ 1n
∑
j∈[n]

∇yK(Xi,n
k , Xj,n

k )

∥∥∥∥∥∥
2


− λγk+1

∥∥∥∇F (Xi,n
k )
∥∥∥2 + Cλ2γ2k+1

∥∥∥∇F (Xi,n
k )
∥∥∥2 + Cλγk+1

∥∥∥ξi,nk+1

∥∥∥2 .
Note that

1

n

∑
j∈[n]

⟨∇F (Xi,n
k ),∇yK(Xi,n

k , Xj,n
k )⟩ ≤ C

∥∥∥∇F (Xi,n
k )
∥∥∥ .

We remark that for an arbitrary Φ = (Φℓ)ℓ∈[d] ∈ H, and for every y ∈ Rd

∥Φ(y)∥2 =
∑
ℓ∈[d]

⟨Φℓ,K(·, y)⟩2H0
≤
∑
ℓ∈[d]

∥Φℓ∥2H0
∥K(·, y)∥2H0

≤ C ∥Φ∥2H .

Therefore, ∥∥∥∇yK(Xi,n
k , Xj,n

k )
∥∥∥2 ≤ C

∥∥∥∇yK(·, Xj,n
k )
∥∥∥2
H

≤ C ,

and ∥∥∥∥∥∥
∑
j∈[n]

K(Xi,n
k , Xj,n

k )∇F (Xj,n
k )

∥∥∥∥∥∥
2

≤ C

∥∥∥∥∥∥
∑
j∈[n]

K(·, Xj,n
k )∇F (Xj,n

k )

∥∥∥∥∥∥
2

H

.

Consequently, we obtain

F (Xi,n
k+1) ≤ F (Xi,n

k )− γk+1

n

∑
j∈[n]

⟨∇F (Xi,n
k ),∇F (Xj,n

k )⟩K(Xi,n
k , Xj,n

k )

+ γk+1C
∥∥∥∇F (Xi,n

k )
∥∥∥+√2γk+1λ⟨∇F (Xi,n

k ), ξi,nk+1⟩

+ Cγ2k+1


∥∥∥∥∥∥ 1n

∑
j∈[n]

K(·, Xj,n
k )∇F (Xj,n

k )

∥∥∥∥∥∥
2

H

+ 1


− λγk+1(1− Cλγk+1)

∥∥∥∇F (Xi,n
k )
∥∥∥2 + Cλγk+1

∥∥∥ξi,nk+1

∥∥∥2 . (4)
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We define Jk,n := 1
n

∑
i∈[n]

∥∥∥∇F (Xi,n
k )
∥∥∥2. Hence, we obtain

Ik+1,n ≤ Ik,n − γk+1(1− Cγk+1)

∥∥∥∥∥∥ 1n
∑
j∈[n]

K(·, Xj,n
k )∇F (Xj,n

k )

∥∥∥∥∥∥
2

H

− λγk+1(1− Cλγk+1)Jk,n + γk+1C
√
Jk,n

+
√
2γk+1λ

1

n

∑
i∈[n]

⟨∇F (Xi,n
k ), ξi,nk+1⟩+ Cλγk+1

1

n

∑
i∈[n]

∥∥∥ξi,nk+1

∥∥∥2 + Cγ2k+1 .

By Assumption 2, c′Ik,n−C ≤ Jk,n ≤ C ′Ik,n+C. Hence, for k large enough, there exist a constant
c > 0 small enough

Ik+1,n ≤ Ik,n(1− cγk+1) + Cγk+1

√
C ′Ik,n + C

+
√
2γk+1λ

1

n

∑
i∈[n]

⟨∇F (Xi,n
k ), ξi,nk+1⟩+ Cλγk+1

1

n

∑
i∈[n]

∥∥∥ξi,nk+1

∥∥∥2 + Cγk+1 . (5)

Taking the expectation in Eq. (5), we obtain by Assumption 1:

E [Ik+1,n] ≤ E [Ik,n] (1− cγk+1) + Cγk+1

√
C ′E [Ik,n] + C + Cγk+1 .

There exists a constant κ large enough satisfying

cκ ≥ C
√
C ′κ+ C + C .

Hence, as soon as there exists k large enough such that E [Ik,n] ≥ κ, we obtain E [Ik+1,n] ≤ E [Ik,n].
Consequently, since κ is independent of n, Lem. 1 is proven.

Proof of Lem. 2 Raising Eq. (5) to the square and taking the expectation, we obtain for k large
enough, the existence of a constant c̃ > 0 small enough, such that

E
[
I2k+1,n

]
≤ E

[
I2k,n

]
(1− c̃γk+1) + Cγk+1E

[
I2k,n

]3/4
+ Cγk+1E

[
I2k,n

]1/2
+ Cγ2k+1 .

As in the proof of Lem. 1, Lem. 2 is proven.

Proof of Lem. 3 By Assumption 1, the sequence (Xi,n
k )i∈[n] is exchangeable, i.e. the sequence is

invariant in law by permutation of the indices i ∈ [n]. Then, by Lem. 2, we obtain

sup
k,n

(
n− 1

n
E
[
F (X1,n

k )F (X2,n
k )

]
+

1

n
E
[
F (X1,n

k )2
])

<∞ . (6)

Going back to Eq. (4) and raising it to the square and taking the expectation, using ∥∇F (x)∥2 ≤
C(|F (x)|+ 1) and the exchangeability of (Xk,n

i )i∈[n], we obtain the existence of a constant c̃ small
enough, such that

E
[
F (X1,n

k+1)
2
]
≤ E

[
F (X1,n

k )2
]
(1− c̃γk+1)

+ Cγk+1

(
n− 1

n
E
∣∣∣⟨∇F (X1,n

k ),∇F (X2,n
k )⟩F (X1,n

k )
∣∣∣+ 1

n
E
[∥∥∥∇F (X1,n

k )
∥∥∥2 ∣∣∣F (X1,n

k )
∣∣∣])

+ Cγk+1E
[∥∥∥∇F (X1,n

k )
∥∥∥ ∣∣∣F (X1,n

k )
∣∣∣]+ Cγk+1E

[∣∣∣F (Xi,n
k )
∣∣∣]+ Cγk+1 .

(7)

In the above inequality, we didn’t write the terms in γ2k as they are dominated by the terms in γk. In
the rest of the proof, we bound the second term on the right-hand side of the above inequality. The
other terms are easier and are left to the reader. By Cauchy-Schwarz inequality, we obtain

E
[
⟨∇F (X1,n

k ),∇F (X2,n
k )⟩F (X1,n

k )
]
≤
√

E
[
F (X1,n

k )2
]√

E
[∥∥∥∇F (X1,n

k )
∥∥∥2 ∥∥∥∇F (X2,n

k )
∥∥∥2] .
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Moreover, by Assumption 2, ∥∇F (x)∥2 ≤ C ′F (x) + C, and∥∥∥∇F (X1,n
k )

∥∥∥2 ∥∥∥∇F (X2,n
k )

∥∥∥2 ≤ C ′2F (X1,n
k )F (X2,n

k ) + CC ′F (X1,n
k ) + C ′CF (X2,n

k ) + C2 .

By Eq. (6),

E
∣∣∣∣∥∥∥∇F (X1,n

k )
∥∥∥2 ∥∥∥∇F (X2,n

k )
∥∥∥2∣∣∣∣ ≤ C(1 +

√
E
[
F (X1,n

k )2
]
) .

Hence, we obtain

E
∣∣∣⟨∇F (X1,n

k ),∇F (X2,n
k )⟩F (X1,n

k )
∣∣∣ ≤ C

(
E
[
F (X1,n

k )2
]1/2

+ E
[
F (X1,n

k )2
]3/4)

.

By Eq. (6), we also obtain

1

n
E
[∥∥∥∇F (X1,n

k )
∥∥∥2 ∣∣∣F (X1,n

k )
∣∣∣] ≤ C

n
(E
[
F (X1,n

k )2
]
+ E

∣∣∣F (X1,n
k )

∣∣∣) ≤ C .

Going back to Eq. (7), we obtain

E
[
F (X1,n

k+1)
2
]
≤ E

[
F (X1,n

k )2
]
(1− c̃γk+1) + Cγk+1(E

[
F (X1,n

k )2
] 1
2
+ E

[
F (X1,n

k )2
] 3
4
+ 1) .

Hence, supk,n E
[
F (X1,n

k )2
]
<∞.

F TIGHTNESS RESULTS

We define the intensity of a random variable ν : Ω → P2(Rd), as the measure I(ν) ∈ P(Rd) that
satisfies

∀A ∈ B(Rd), I(ν)(A) := E (ν(A)) .

Lemma 4. A sequence (µn) of random variables on P2(Rd) is tight if the sequence (I(µn)) is
relatively compact in P2(Rd).

Proof. This proof is identical to the one presented in Bianchi et al. (2024, Lem. 2).

F.1 PROOF OF TH. 1 AND PROP. 2

First, we state a more general result, which is a consequence of Prop. 1.

Lemma 5. Bianchi et al. (2024, Prop. 4) The collection of measure (I(mn
t ))t,n is relatively compact

in P2(C). Moreover, the collection of random variables (mn
t )t,n is tight.

Next, as the consequence of the above lemma, we obtain the proof of Prop. 2.

Proof of Prop. 2 This is given by Bianchi et al. (2024, Lem. 8).

Proof of Th. 1 Remark that (π0)#mn
τk

= µnk , for every k. Hence, (π0)#I(mn
τk
) = I(µnk ). For a

compact set K ⊂ P2(C), one can obtain that (π0)#K is a compact set in P2(Rd). Consequently,
since I(mn

t )t,n is relatively compact in P2(C) by Lem. 5, (I(µnk ))k,n is relatively compact in P2(Rd).
This yields the first claim of the theorem, by Lem. 4.

Moreover,

I(µ̄nk ) =
∑
i∈[k] γiI(µni )∑

i∈[k] γi
.

Since, (I(µnk ))k,n is relatively compact in P2(Rd), the same holds for (I(µ̄nk ))k,n. The proof is left
to the reader. By Lem. 4, this finishes the proof.
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G THE MCKEAN-VLASOV MEASURES

For every µ ∈ P2(Rd), we define L(µ) which, to every test function ϕ ∈ C2
c (Rd,R), associates the

function L(µ)(ϕ) given by

L(µ)(ϕ)(x) = ⟨
∫
(−K(x, y)∇F (y) +∇yK(x, y))dµ(y)− λ∇F (x),∇ϕ(x)⟩+ λ∆ϕ(x) . (8)

Let (Xt : t ∈ [0,∞)) be the canonical process on C. Denote by (FX
t )t≥0 the natural filtration (i.e.,

the filtration generated by {Xs : 0 ≤ s ≤ t}).

By a weak solution of the McKean-Vlasov SDE in Definition 4, we mean a solution of the martingale
problem defined hereafter. Hence, for the rest of the appendix, we will take the subsequent definition
of V2 into account.
Definition 5. We say that a measure ρ ∈ P2(C) belongs to the class V2 if, for every ϕ ∈ C2

c (Rd,R),

ϕ(Xt)−
∫ t

0

L(ρs)(ϕ)(Xs)ds

is a (FX
t )t≥0-martingale on the probability space (C,B(C), ρ).

We define the function

b(x, y) := −K(x, y)∇F (y) +∇yK(x, y)− λ∇F (x)

With a slight abuse of notation, for a measure µ ∈ P(Rd), we denote b(x, µ) :=
∫
b(x, y)dµ(y).

Therefore, L(µ)(ϕ)(x) = ⟨b(x, µ),∇ϕ(x)⟩+ λ∆ϕ(x). When b is continuous with linear growth, i.e.
∥b(x, y)∥ ≤ C(1 + ∥x∥+ ∥y∥) for every x, y ∈ Rd, the space V2 is Polish.
Lemma 6. Bianchi et al. (2024, Prop. 3) Let Assumption 2 holds. V2 is closed. Consequently, the
space (V2,W2) is Polish.

In the rest of the appendix, we will use the following property to derive results about the space V2.
Proposition 6. Let ρ ∈ V2. Let Assumption 2 holds. Let ψ ∈ C∞

c (R+ × Rd), then for every
t2 ≥ t1 ≥ 0, we obtain∫

ψ(t2, x)dρt2(x)−
∫
ψ(t1, x)dρt1(x) =

∫ t2

t1

∫
∂tψ(t, x)dρt(x)dt

+

∫ t2

t1

∫
⟨∇ψ(t, x), b(x, ρt)⟩dρt(x)dt+ λ

∫ t2

t1

∫
∆ψ(t, x)dρt(x)dt . (9)

Proof. Let ϕ ∈ C∞
c (Rd). Let ρ ∈ V2. By Def. 5, the function

t ∈ R+ 7→
∫
ϕ(x)dρt(x)−

∫ t

0

∫
L(ρs)(ϕ)(x)dρs(x)ds

is constant. Hence, the function Φ(t) :=
∫
ϕ(x)dρt(x) is absolutely continuous, with derivative

Φ′(t) =
∫
L(ρt)(ϕ)(x)dρt(x), which is bounded on compacts under Assumption 2. Let η ∈

C∞
c (R+), by an integration by parts, we obtain for every t2 > t1 ≥ 0

Φ(t2)η(t2)− Φ(t1)η(t1) =

∫ t2

t1

Φ′(t)η(t) + Φ(t)η′(t)dt .

Hence, if we define ψ(t, x) := ϕ(x)η(t), we obtain Eq. (9). It suffices to remark that functions of the
form (t, x) 7→ ϕ(x)η(t) for every (η, ϕ) ∈ C∞

c (R+)× C∞
c (Rd) are dense in C∞

c (R+ × Rd), and
the proof is finished.

Lemma 7. Let Assumptions 2 and 3 hold. Moreover, we assume λ > 0. Let ρ ∈ V2. For every t > 0,
ρt admits a density x 7→ ϱ(t, x) ∈ C1(Rd,R). Moreover, for every R > 0, t2 > t1 > 0, there exists
a constant CR,t1,t2 > 0 such that:

inf
t∈[t1,t2],∥x∥≤R

ϱ(t, x) ≥ CR,t1,t2 , (10)
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and there exist a constant Ct1,t2 > 0, such that

sup
x∈Rd,t∈[t1,t2]

∥∇ϱ(t, x)∥+ ϱ(t, x) ≤ Ct1,t2 . (11)

Additionally,

sup
t∈[t1,t2]

∫
(1 + ∥x∥2) ∥∇ϱ(t, x)∥ dx <∞ . (12)

Finally,
sup
ρ∈K

DKL(ρt1 ||π) <∞ , (13)

for every compact set K ⊂ V2.

Proof. The result is an application of Menozzi et al. (2021, Th. 1.2) with the non homogeneous
vector field b̃(t, x) :=

∫
b(x, y)dρt(y). The proof consists in verifying the conditions of the latter

theorem. By Assumptions 2 and 3, for every (x, y, T ) ∈ (Rd)2 × R+,

sup
t∈[0,T ]

∥∥∥b̃(t, x)− b̃(t, y)
∥∥∥ ≤ λ ∥∇F (x)−∇F (y)∥

+ sup
t∈[0,T ]

∫
∥∇yK(x, z)−∇yK(y, z)∥ dρt(z)

+ sup
t∈[0,T ]

∫
∥∇F (z)∥ |K(x, z)−K(y, z)| dρt(z)

≤ C(∥x− y∥β ∨ ∥x− y∥) ,
Moreover,

sup
t∈[0,T ]

b̃(t, x) ≤ C(1 + ∥x∥+
∫

sup
t∈[0,T ]

∥yt∥ dρ(y)) ≤ C(1 + ∥x∥) . (14)

As λ > 0, Menozzi et al. (2021, Th. 1.2) applies: ρ admits a density x 7→ ϱ(t, x) ∈ C1(Rd), for
0 < t ≤ T , and there exists four constants (Ci,T , λi,T )i∈[2], such that:

1

C1,T td/2

∫
exp

(
−∥x− θt(y)∥2

λ1,T t

)
dρ0(y) ≤ ϱ(t, x)

ϱ(t, x) ≤ C1,T

td/2

∫
exp

(
−λ1,T

t
∥x− θt(y)∥2

)
dρ0(y)

∥∇ϱ(t, x)∥ ≤ C2,T

t(d+1)/2

∫
exp

(
−λ2,T

t
∥x− θt(y)∥2

)
dρ0(y) ,

where the map t 7→ θt(y) is a solution to the ordinary differential equation: dθt(y)dt = b̃(t, θt(y)) with
initial condition θ0(y) = y. By Grönwall’s lemma and Eq. (14), there exists a constant CT such that
∥θt(y)∥ ≤ CT ∥y∥, for every n, y, and t ≤ T . For every t1 ≤ t ≤ t2, and every x, we obtain using a
change of variables:

(C1,t2t1
d/2)−1 ≥ ϱ(t, x) ≥ C1,t2t

−d/2
2 exp

(
− 2

λ1,t2t1
∥x∥2

)∫
exp

(
− 2Ct2
λ1,t2t1

∥y∥2
)
dρ0(y)

∫
(1 + ∥x∥2) ∥∇ϱ(t, x)∥ dx

≤ C2,t2t
−(d+1)/2
1

∫
(1 + 2∥x∥2 + 2C2

t2

∫
∥y∥2dρ0(y)) exp

(
−λ2,t2t−1

2 ∥x∥2
)
dx ,

and ∥∇ϱ(t, x)∥ ≤ C2,t2t
−(d+1)/2
1 . Consequently, ρ satisfies Eq. (10), Eq. (11) and Eq. (12).

It remains to obtain Eq. (13). Let K ⊂ V2 be a compact set and let ρ ∈ K. We observe

DKL(ρt1 ||π) ≤ C +

∫
|F (x)| dρt1(x) +

∫
∥log ϱ(t1, x)∥ dρt1(x) . (15)
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By Assumption 2, since (πt1)#K is a compact set in P2(Rd), we obtain

sup
ρ∈K

∫
|F (x)| dρt1(x) ≤ C sup

ρ∈K

∫
∥x∥2 dρt1(x) ≤ C sup

µ∈(πt1
)#K

∫
∥x∥2 dµ(x) <∞ .

Moreover, by the lower bound and the upper bound on ϱ,

∥log ϱ(t1, x)∥ ≤ C

(
1 + ∥x∥2 +

∫
∥y∥2 dρ0(y)

)
. (16)

Hence, we obtain

sup
ρ∈K

∫
∥log ϱ(t1, x)∥ dρt1(x) <∞ .

Finally, applying the latter results in Eq. (15), we obtain Eq. (13).

G.1 SKETCH OF THE PROOF OF PROP 4 USING WASSERSTEIN CALCULUS

We give a sketch of the proof of Lyapunov using Wasserstein calculus (Ambrosio et al., 2008).
This proof is not fully rigorous because we would need to check the assumptions of the results
from Ambrosio et al. (2008) that we are using. In the next section we give a fully rigorous proof.

In this subsection, ⟨·, ·⟩ρ (resp. ∥·∥ρ) denotes the standard inner product (resp. the norm) in L2(ρ).

Consider ρ ∈ V2, i.e., the law of a weak solution (Xt)t of the McKean-Vlasov equation

dXt = −
∫

(K(Xt, y)∇F (y)−∇yK(Xt, y)) dρt(y) dt− λ∇F (Xt) dt+
√
2λ dWt.

For every t > 0, we denote by ρt the marginal of ρ. In other words, ρt is the law of Xt.

Using integration by parts, the McKean-Vlasov equation can be represented by

dXt = −Pµ∇ log
dρt
dπ

(Xt) dt− λ∇F (Xt) dt+
√
2λ dWt.

From this representation, we can derive the continuity equation satisfied by (ρt)t:

∂ρt
∂t

+∇ · (ρtṽt) = 0,

where ṽt is the velocity field

ṽt := −Pµ∇ log
dρt
dπ

− λ∇ log
dρt
dπ

.

Using the chain rule in the Wasserstein space (Ambrosio et al., 2008, Equation 10.1.16), we have for
every functional F : P2(Rd) → (−∞,+∞] regular enough that

d

dt
F(ρt) = ⟨∇WF(ρt), vt⟩ρt ,

where ∇WF(ρ) ∈ L2(ρ) is the Wasserstein gradient of F at ρ. In the case where F(ρ) = DKL(ρ||π),
we have ∇WF(ρ) = ∇ log dρ

dπ , therefore

d

dt
F(ρt) =

〈
∇ log

dρ

dπ
,−Pµ∇ log

dρt
dπ

− λ∇ log
dρt
dπ

〉
ρt

= −
〈
∇ log

dρ

dπ
, Pµ∇ log

dρt
dπ

〉
ρt

− λ

〈
∇ log

dρ

dπ
,∇ log

dρt
dπ

〉
ρt

.

Finally, we use that the kernel integral operator is the adjoint of the injection (Carmeli et al., 2010)
ιρ : H → L2(ρ). In other words, for every f ∈ L2(ρ), g ∈ H, ⟨f, g⟩ρ = ⟨Pρf, g⟩H. Here, this
property gives 〈

∇ log
dρ

dπ
, Pµ∇ log

dρt
dπ

〉
ρt

=

∥∥∥∥Pµ∇ log
dµ

dπ

∥∥∥∥2
H
.
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Therefore,

d

dt
F(ρt) = −

∥∥∥∥Pµ∇ log
dµ

dπ

∥∥∥∥2
H
− λ

∥∥∥∥∇ log
dµ

dπ

∥∥∥∥2
ρt

.

In other words,

d

dt
DKL(ρt||π) = −Istein(ρt||π)− λI(ρt||π),

and we can conclude by integrating between t1 > 0 and t2 > 0.

G.2 PROOF OF PROP. 4

In this subsection, we let Assumptions 2 and 3 hold. Moreover, we assume λ > 0.

We consider ρ ∈ V2. Moreover, we define two reels 0 < t1 < t2.

Let

vt(x) := −
∫

(K(x, y)∇F (y)−∇yK(x, y)dρt(y))− λ∇F (x)− λ∇ log ϱ(t, x) . (17)

By Prop 6, with Lem. 7, we obtain∫
ψ(t2, x)dρt2(x)−

∫
ψ(t1, x)dρt1(x)

=

∫ t2

t1

∫
∂tψ(t, x)dρt(x)dt+

∫ t2

t1

∫
⟨∇ψ(t, x), vt(x)⟩dρt(x)dt . (18)

Note that the latter quantity is well-defined, since
∫ t2
t1

∫
∥vt(x)∥ dρt(x)dt by Lem. 7. Define a smooth,

compactly supported, even function η : Rd → R+ such that
∫
η(x)dx = 1, and define ηε(x) :=

ε−dη(x/ε) for every ε > 0. For every t > 0, we introduce the density ϱε(t, ·) := ηε ∗ ρε(t, ·), and
we denote by ρεt (dx) = ϱε(t, x)dx the corresponding probability measure. Finally, we define:

vεt :=
ηε ∗ (vtϱ(t, ·))

ϱε(t, ·)
.

With these definitions at hand, it is straightforward to check that Eq. (18) holds when ρt, vt are
replaced by ρεt , v

ε
t . More specifically, we shall apply Eq. (18) using a specific smooth function

ψ = ψε,δ,R, which we will define hereafter for fixed values of δ,R > 0, yielding our main equation:

∫
ψε,δ,R(t2, x)ϱε(t2, x)dx−

∫
ψε,δ,R(t1, x)ϱε(t1, x)dx =∫ t2

t1

∫
(∂tψε,δ,R(t, x) + ⟨∇ψε,δ,R(t, x), vεt (x)⟩)ϱε(t, x)dxdt . (19)

Let θ ∈ C∞
c (R,R) be a nonnegative function supported by the interval [−t1, t1] and satisfying∫

θ(t)dt = 1. For every δ ∈ (0, 1), define θδ(t) = θ(t/δ)/δ. We define ϱε,δ(·, x) := θδ ∗ ϱε(·, x).
The map t 7→ ϱε,δ(t, )̇ is well-defined on [t1, t2], non negative, and smooth in both variables t, x. In
addition, we define Fε := ηε ∗ F . Finally, we introduce a smooth function χ on Rd equal to one on
the unit ball and to zero outside the ball of radius 2, and we define χR(x) := χ(x/R). For every
(t, x) ∈ [t1, t2]× R, we define:

ψε,δ,R(t, x) := (log ϱε,δ(t, x) + Fε(x))χR(x) . (20)
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We extend ψε,δ,R to a smooth compactly supported function on R+ × Rd. We define U(x, ρt) :=∫
(K(x, y)∇F (y)−∇yK(x, y)dρt(y). Applying Eq. (19) with ψε,δ,R,∫
ψε,δ,R(t2, x)dρt2(x)−

∫
ψε,δ,R(t1, x)dρt1(x)

=

∫ t2

t1

∫
(∂tψε,δ,R(t, x) + ⟨∇ψε,δ,R(t, x), vεt (x)⟩)dρεt (x)dt

=

∫ t2

t1

∫
∂tϱε,δ(t, x)

ϱε(t, x)

ϱε,δ(t, x)
χR(x)dxdt

− λ

∫ t2

t1

∫
⟨∇Fε(x) +∇ log ϱε,δ(t, x),

ηϵ ∗ (∇F (·)ϱ(t, ·))(x)
ϱε(t, x)

+∇ log ϱε(t, x)⟩χR(x)dρεt (x)dt

−
∫ t2

t1

∫
⟨∇Fε(x) +∇ log ϱε,δ(t, x),

ηϵ ∗ (U(·, ρt)ϱ(t, ·))(x)
ϱε(t, x)

⟩χR(x)dρεt (x)dt

+

∫ t2

t1

∫
(log ϱε,δ(t, x) + Fε(x))⟨∇χR(x), vεt (x)⟩dρεt (x)dt

We define, for every t ∈ [t1, t2],

Π1(t) :=

∫
ψε,δ,R(t, x)dρ

ε
t (x),

Π2 :=

∫ t2

t1

∫
∂tϱε,δ(t, x)

ϱε(t, x)

ϱε,δ(t, x)
χR(x)dxdt,

Π3 :=

∫ t2

t1

∫
⟨∇Fε(x) +∇ log ϱε,δ(t, x), ηϵ ∗ (∇F (·)ϱ(t, ·))(x) +∇ϱε(t, x)⟩χR(x)dxdt,

Π4 :=

∫ t2

t1

∫
⟨∇Fε(x) +∇ log ϱε,δ(t, x), ηϵ ∗ (U(·, ρt)ϱ(t, ·))(x)⟩χR(x)dxdt,

Π5 :=

∫ t2

t1

∫
(log ϱε,δ(t, x) + Fε(x))⟨∇χR(x), vεt (x)⟩ϱε(t, x)dxdt .

And, it holds:
Π1(t2)−Π1(t1) = Π2 − λΠ3 −Π4 +Π5 . (21)

We now investigate successively the limit of each term in Eq. (21) as δ, ε, R successively tend to
0, 0,∞.

We state a technical result proven at the end of the subsection.
Lemma 8. For every ε, x ∈ Rd, t 7→ ρε(x, t) and t 7→ ∇ϱε(t, x) are absolute continuous functions.
Moreover,

sup
t∈[t1,t2],x∈Rd

|∂tϱε(t, x)| ≤ Cε ,

for a constant Cε > 0.

Since, by Lem. 7, the mappings t 7→ ϱε(t, x), x 7→ F (x) and x 7→ ϱ(t, x) are continuous, and by
Eq (10), we obtain

lim
R→∞

lim
ε→0

lim
δ→0

ψε,δ,R(t, x) = log ϱ(t, x) + F (x) . (22)

By Lem. 7, we obtain
ψε,δ,Rϱε(t, x) ≤ CRχR(x) ,

for a constantCR independent of δ, ε, x. Hence, we can apply the dominated convergence theorem and
we obtain limε→0 limδ→0 Π1(t) =

∫
log(ϱ(t, x) + F (x))χR(x)dρt(x). Since ρt admits moments

of order 2, we obtain

lim
R→∞

lim
ε→0

lim
δ→0

Π1(t) = DKL(ρt||π)−
∫

exp(−F (x))dx ,

for every t > 0.
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In the following, we will obtain the convergence of Π2. We obtain

Π2 =

∫ t2

t1

∫
∂tϱε,δ(t, x)χR(x)dxdt+

∫ t2

t1

∫
∂tϱε,δ(t, x)

(
ϱε(t, x)

ϱε,δ(t, x)
− 1

)
χR(x)dxdt .

By Lem. 8, and a convergence dominated argument, we obtain

lim
δ→0

∫ t2

t1

∫
∂tϱε,δ(t, x)

(
ϱε(t, x)

ϱε,δ(t, x)
− 1

)
χR(x)dxdt = 0 .

Moreover,∫ t2

t1

∫
∂tϱε,δ(t, x)χR(x)dxdt =

∫
ϱε,δ(t2, x)χR(x)dx−

∫
ϱε,δ(t1, x)χR(x)dx .

Since supx∈Rd,t>0 ϱ(t, x) ≤ C, we obtain the by dominated convergence theorem

lim
R→∞

lim
ε→0

lim
δ→0

∫
ϱε,δ(t2, x)χR(x)dx−

∫
ϱε,δ(t1, x)χR(x)dx =

∫
dρt2 −

∫
dρt1 = 0 .

Hence,
lim
R→∞

lim
ε→0

lim
δ→0

Π2 = 0 .

Next, we will obtain the convergence of Π3. By Lem. 7 and 8, we obtain

lim
ε→0

lim
δ→0

Π3 =

∫ t2

t1

∫
∥∇F (x) +∇ log ϱ(t, x)∥2 χR(x)ρt(x)dt .

And by the monotone convergence theorem, we obtain the limit in R:

lim
R→∞

lim
ε→0

lim
δ→0

Π3 =

∫ t2

t1

∫
∥∇F (x) +∇ log ϱ(t, x)∥2 dρt(x)dt .

Now, we will obtain the convergence of Π4. We recall that the kernel K is bounded by Assumption 2.
First, remark that an integration by parts yields,

U(x, ρt) =

∫
K(x, y) (∇F (y) +∇ log ϱ(t, y)) dρt(y) ,

for every x ∈ Rd, which is possible by Lem. 7. Hence, taking the limit in δ, ε, we obtain

lim
ε→0

lim
δ→0

Π4

=

∫ t2

t1

∫∫
K(x, y)⟨∇F (x) +∇ log ϱ(t, x),∇F (y) +∇ log ϱ(t, y)⟩χR(x)dρt(x)dρt(y)dt .

Since, by Lem. 7, supt∈[t1,t2]

∫
∥∇ϱ(t, x)∥ dx <∞ , we obtain

sup
t∈[t1,t2]

∫
∥∇F (y) +∇ϱ(t, y)∥ dρt(y) <∞ .

Hence, taking the limit in R,

lim
R→∞

lim
ε→0

lim
δ→0

Π4

=

∫ t2

t1

∫∫
K(x, y)⟨∇F (x) +∇ log ϱ(t, x),∇F (y) +∇ log ϱ(t, y)⟩dρt(x)dρt(y)dt .

It remains to study a last term: Π5. And, we obtain by Lem. 7 and 8,

lim
ε→0

lim
δ→0

Π5 =

∫ t2

t1

∫
(log ϱ(t, x) + F (x))⟨∇χR(x), vt(x)⟩dρt(x) .
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By Eq. (16) and (12),

sup
t∈[t1,t2]

∫
∥(log ϱ(t, x) + F (x))∇ϱ(t, x)∥ dx <∞ .

Now, we remark that ∥∇χR(x)∥ ≤ C
∥x∥ . Then,

sup
t∈[t1,t2],x∈Rd

∥∇χR(x)∥ ∥U(x, ρt) +∇F (x)∥ <∞.

Consequently, by the two above equations, we can apply a dominated convergence theorem:

lim
R→∞

lim
ε→0

lim
δ→0

Π5 = 0.

Going back to Eq. (21), we have shown

DKL(ρt2 ||π)−DKL(ρt1 ||π) = −
∫ t2

t1

Istein(ρt||π) + λI(ρt||π)dt .

Proof of Lem. 8 Using Eq. (19) and integration by parts,

ϱε(t2, x)− ϱε(t1, x)

= −
∫ t2

t1

∫
⟨∇ηε(x− y), b(y, ρs)⟩dρs(y)ds+ λ

∫ t2

t1

∫
∆ηε(x− y)dρs(y)ds .

Since ρ ∈ P2(C), supt∈[t1,t2] ∥b(y, ρt)∥ ≤ C(1 + ∥y∥) + C
∫
supt∈[t1,t2] ∥xt∥ dρ(x). As a con-

sequence, supt∈[1,T ] ∥b(y, ρt)∥ ≤ C(1 + ∥y∥) . Along with the observation that, for any fixed ε,
∇ηε and ∆ηε are bounded, it follows that t 7→ ϱε(t, x) is Lipschitz continuous on [t1, t2], and that
its derivative almost everywhere is given by: ∂tϱε(t, x) =

∫
(⟨∇ηε(x − y), b(y, ρt)⟩ + λ∆ηε(x −

y))dρt(y). Thus, there exists a constant Cε > 0, such that:

sup
t∈[t1,t2],x∈Rd

∂tϱ
ε(t, x) ≤ Cε .

t 7→ ∇ϱε(t, x) is also absolutely continuous by the same reasoning.

G.3 PROOF OF PROP. 5

First, we introduce the Talagrand inequality T2.
Definition 6. The distribution π satisfies the Talagrand inequality T2, if there exists α > 0 such that
for every µ ∈ P2(Rd)

W2(µ, π) ≤
√

2

α
DKL(µ||π) .

According to Otto & Villani (2000, Th. 1), LSI implies T2 with the same constant α.

In this subsection, we let Assumptions 2, 3 and Assumption 4 hold. Moreover, we assume λ > 0.

Let ρ ∈ V2. By Prop. 4 and Assumption 4, we obtain

DKL(ρt2 ||π)−DKL(ρt1 ||π) ≤ −2αλ

∫ t2

t1

DKL(ρt||π)dt ,

for every t2 > t1 > 0. By Grönwall’s lemma, we obtain DKL(ρt2 ||π) ≤ e−2αλ(t2−t1)DKL(ρt1 ||π).
Using the Talagrand inequality T2, we obtain

W2(ρt2 , π) ≤
√

2

α
DKL(ρt1 ||π)e−αλ(t2−t1)W2(ρt1 , π) ,

for every t2 > t1 > 0. Using Eq. (13), the proof is finished.
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H PROOF OF CONVERGENCE RESULTS

In this section, we let Assumptions 1, 2, and 3 hold. Moreover, we assume λ > 0.

First, we show the stronger ergodic convegergence result:
Proposition 7. For every sequence (φn, ψn) → (∞,∞), we obtain

lim
n→∞

P

(∑
i∈[ψn]

γiW2(µ
φn

i , π)∑
i∈[ψn]

γi
≥ ε

)
= 0 ,

for every ε > 0. The latter still holds when we replace W2(·, ·) by W2(·, ·)2.

Proof. By Prop. 1, it is straightforward to check that Bianchi et al. (2024, Cor. 1) holds under
Assumptions 1 and 2. The proof consists in identifying the Birkhoff center BC2, defined hereafter.

We define the translation Θt : x ∈ C → x(t + ·). We say that a point ρ ∈ V2 is recurrent if there
exists a sequence (tn) such that limn→∞(Θtn)#ρ = ρ. The Birkhoff center BC2 is the closure of all
recurrent points.

Let Λ ⊂ V2. Let F : V2 → R be a l.s.c. function such that t 7→ F((Θt)#ρ) is strictly decreasing
when ρ /∈ Λ and constant when ρ ∈ V2. We say that a function F defined as above is a Lyapunov
function for a set Λ.

Lemma 9. Let F be a Lyapunov function for a set Λ. Every recurrent points belongs to Λ.

Proof. The limit ℓ := limt→∞ F((Θt)#ρ) is well-defined because F((Θt)#ρ) is non increasing.
Consider a recurrent point ρ ∈ V2, say ρ = limn(Θtn)#ρ. Clearly F(ρ) ≥ F((Θtn)#ρ) ≥ ℓ.
Moreover, by lower semi-continuity of F , ℓ = limn F((Θtn)#ρ) ≥ F(ρ). Therefore, ℓ is finite, and
F(ρ) = ℓ. This implies that t 7→ F((Θt)#ρ) is constant. By definition, this in turn implies ρ ∈ Λ,
which concludes the proof.

We define the l.s.c. function Fε : ρ ∈ V2 → DKL(ρε||π). By Prop. 4, this is a Lyapunov function for
the set

Λε := {ρ ∈ V2 : Istein(ρt||π) = I(ρ||π) = 0, ∀t ≥ ε a.e.} .
For µ ∈ P2(C), I(µ||π) = 0 implies µ = π, and therefore DKL(µ||π) = 0. Moreover, t 7→
DKL(ρt||π) is constant for t ≥ ε. Consequently,

Λε = {ρ ∈ V2 : ρt = π, ∀t ≥ ε}.
Let ρ ∈ V2 a recurrent point, say limn→∞(Θtn)#ρ = ρ. By continuity of the projection (π0)#, we
obtain limn→∞ ρtn = ρ0 = π.

Let ρ ∈ BC2. It is a limit of recurrent points ρ satisfying ρ0 = π. Hence, still by continuity of the
mapping (π0)#, ρ0 = π. This finishes the proof of the fist claim of Prop 7.

The second claim holds by the same corollary (Bianchi et al., 2024, Cor. 1).

Next, we state a stronger convergence result.
Proposition 8. For every sequence (φn, ψn) → (∞,∞), we obtain

lim
n→∞

P
(
W2(µ

φn

ψn
, π) ≥ ε

)
= 0 ,

for every ε ≥ 0.

Proof. By Prop. 5, we obtain
lim
t→∞

sup
ρ∈K

W2(ρt, π) = 0 , (23)

for every compact K of P2(C). Recall that the collection of random variables {mn
t } is tight in

P2(C) by Lem. 5. Let (tn, φn) be a sequence such that (tn, φn) →n (∞,∞) and such that (mφn

tn )n
converges in distribution to M . To prove Cor. 8, it will be enough to show that

∀δ, ε > 0,∃T > 0, lim sup
n

P
(
W2

(
(π0)#m

φn

tn+T
, π
)
≥ δ
)
≤ ε.
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This shows indeed that
W2 ((π0)#m

n
t , π)

P−−−−−−−−−→
(t,n)→(∞,∞)

0,

and by taking t = τk and by recalling that (π0)#mn
τk

= µnk , we obtain our theorem.

Fix δ and ε. By the tightness of the family of random variables {mn
t }, there exists a compact

set D ⊂ P2(C) such that P(mn
t ∈ D) ≥ 1 − ε/2 for each couple (t, n). This implies that

M(D) ≥ 1− ε/2 by the Portmanteau theorem. Since V2 is closed by Lem. 6, the set K = D ∩ V2

is compact in P2(C), and by consequence, it is compact in V2 for the trace topology. By the same
proposition, M(V2) = 1, therefore, M(K) ≥ 1− ε/2.

Since P2(C) is Polish, we can apply Skorokhod’s representation theorem (Billingsley, 1999, Th. 6.7)
to the sequence (mφn

tn ), yielding the existence of a probability space (Ω̃, F̃ , P̃), a sequence of
P2(C)–valued random variables (ρn) on Ω̃ and a P2(C)–valued random variable ρ∞ on Ω̃ such that
(ρn)#P̃ = (mφn

tn )#P, (ρ∞)#P̃ =M , and ρn → ρ∞ pointwise on Ω̃. Noting that (π0)#m
φn

tn+T
and

ρnT have the same probability distribution as P2(Rd)–valued random variables, we show that

∃T > 0, lim sup
n

P̃ (W2 (ρ
n
T , π) ≥ δ) ≤ ε, (24)

to establish our theorem. Applying Eq. (23) to the compact K, we set T > 0 in such a way that

sup
ρ∈K

W2(ρT , π) ≤ δ/2.

By the triangular inequality, we have

W2 (ρ
n
T , π) ≤W2 (ρ

n
T , ρ

∞
T ) +W2 (ρ

∞
T , π) .

The first term at the right hand side converges to zero for each ω̃ ∈ Ω̃ by the continuity of the function
ρ 7→ ρT , thus, this convergence takes place in probability. We also know that for P̃–almost all ω̃ ∈ Ω̃,
it holds that ρ∞ ∈ V2. Thus, regarding the second term, we can write

P̃ (W2 (ρ
∞
T , π) ≥ δ) ≤ P̃ (ρ∞ ̸∈ K) + P̃ ((W2 (ρ

∞
T , π) ≥ δ) ∩ (ρ∞ ∈ K)) .

When ρ∞ ∈ K, it holds thatW2 (ρ
∞
T , π) ≤ δ/2, thus, the second term at the right hand side of the last

inequality is zero. The first term satisfies P̃ (ρ∞ ̸∈ K) = 1−M(K) ≤ ε/2, and the statement (24)
follows. Cor. 8 is proven.

H.1 PROOF OF TH. 2

Instead of seeing L
n

as set of random variable on P2(Rd), we see it as a set of measures in
P(P2(Rd)). We denote such a set as Ln

.

Let ε > 0. By contradiction, there exists δ > 0, a subsequence φn → ∞ and a sequence of measures
νn ∈ Lφn satisfying ∫

1W2(µ,π)>εdν
n(µ) ≥ δ .

As shown in the proof of Th. 1, the sequence of random variable (µ̄nk : k, n ∈ N∗) is tight. Hence,
there exists a measure ν∞ ∈ P2(Rd) such that (νn) converges to ν∞ along a subsequence. To keep
the notations simple, we say that νn → ν∞. Since, µ ∈ P2(Rd) 7→ 1W2(µ,π) is continuous bounded,
we obtain ∫

1W2(µ,π)>εdν
∞(µ) ≥ δ .

Let (ψnk )k be a sequence diverging to ∞ such that µ̄nψn
k
→k ν

n, for every n ∈ N∗.

Let ε′ > 0, there exists n0 such that,∣∣∣∣∫ 1W2(µ,π)>εdν
∞(µ)−

∫
1W2(µ,π)>εdν

n0(µ)

∣∣∣∣ ≤ ε′

2
.
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Moreover, there exists k0 such that∣∣∣∣P(W2(µ̄
n0

ψ
n0
k0

, π) > ε)−
∫

1W2(µ,π)>εdν
n0(µ)

∣∣∣∣ ≤ ε′

2
.

Consequently, there exists a subsequence (φ̃n, ψ̃n) → (∞,∞) such that

lim
n→∞

P(W2(µ̄
φ̃n

ψ̃n
, π) ≥ ε) =

∫
1W2(µ,π)>εdν

∞(µ) ≥ δ .

By Jensen’s inequality, we obtain

W2(µ̄
φ̃n

ψ̃n
, π)2 ≤

∑
k∈[ψ̃n]

γkW2(µ
φ̃n

k , π)2∑
k∈[ψ̃n]

γk
.

Consequently,

lim
n→∞

P

(∑
k∈[ψ̃n]

γkW2(µ
φ̃n

k , π)2∑
k∈[ψ̃n]

γk
≥ ε2

)
≥ δ .

The latter contradicts the second claim of Prop. 7. Thus, the proof is finished.

H.2 PROOF OF TH. 3

This is the same proof as Th. 2. But this time, we use Prop. 8 instead of Prop. 7.

H.3 PROOF OF COR. 1

By contradiction, assume that there exists δ > 0 and a subsequence φn, such that for every n,
lim supk→∞ P(W2(µ̄

φn

k , π) ≥ ε) > δ. Assume φn = n to simplify the notations. For any n, this
implies that one can extract a subsequence, say (ψnk : k ∈ N), such that for every k, P(W2(µ̄

n
ψn

k
, π) ≥

ε) > δ/2. By Th. 1, the sequence (µ̄nψn
k
: k ∈ N) is tight, so that there exists νn ∈ L

n
, such that

µ̄nψn
k

converges in distribution to νn as k → ∞, along some subsequence which we still denote by
ψnk to keep the notations simple. By the Portmanteau theorem,

lim sup
k→∞

P(W2(µ̄
n
ψn

k
, π) ≥ ε) ≤ P(W2(ν

n, π) ≥ ε) . (25)

By Th. 2, νn converges in probability to π in P2(Rd) as n→ ∞. Therefore, P(W2(ν
n, π) ≥ ε) <

δ/3 for all n large enough. Using Eq. (25), it follows that P(W2(µ̄
n
ψn

k
, π) ≥ ε) < δ/2 along some

subsequence, hence a contradiction. This proves the first point. The second point follows the same
arguments.
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