Supplementary Material

1 Proofs

Proof of Equivalence in|Definition 2. 1|in the main paper. While the proof of the equivalence is well-
known, we reproduce here for completeness. As a reminder, the KL divergence is defined as:

KL(P7 Q) EP[log PEZ;] EP[_ log Q(Z)] - EP[_ IOg P(Z)] = Hc(Pa Q) - H(P) ’ (1)

where H.(+, ) denotes the cross entropy and H(-) denotes entropy. Given this, we can now easily
derive the equivalence:

GJSD(Pz,,- -+ , Pz, ) = ij.i KL(PZ],,PZM) 2)
= 2w (He(Pz,, Pz,,) — H(Pz,)) 3)

= Z w; He(Pz,; Pz, ) — ijj H(Pz;) “4)

=2 wiEp,, [* log Pz, ] = >_;w; H(Pz,) (5)

= Z w; [5 —Pz,(2)log Py, (2)dz — ijj H(Pyz,) (6)

=/ —ijjPZj( z)log Py, (2)dz — ijj H(Pyz,) (7)

= [z =Pz, (2)1log Pz, (2)dz — 3~ w; H(Pyz,) (8)

= H(Pz,,) — >;w; H(Pz,). )

O

Proof of[Lemma 2.3]in the main paper. First, we note the following fact from the standard change
of variables formula:

Py (T ())|J7 ()|

Px(m)
|7t = Pz(T(x)).

We can now derive our result using the change of variables for expectations (i.e., LOTUS) and the
probability change of variables from above:

H(Pz) = Ep,[—log Pz(z)] = Ep, [~ log Pz(T'(x))]

= Epy [~ log Px ()| Jr(z)| "]

= Ep, [~ log Px(x)] + Ep, [~ log |Jr(x)| ]
= H(Px) + Ep, [log | Jr(x)]] .

Proof o in the main paper. Given any fixed ), minimizing £ yp decouples into mini-
mizing separate normalizing flow losses where (Q is the base distribution. For each normalizing flow,
there exists an invertible T; such that T} (X j) ~ (Q, and this achieves the minimum value of LAyp.
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More formally,

TIH}'}HT,C Lavs(Th, -+, Tk) (11)
= min 35,uw;Ep, [~ log|Jr, (2)| Q(T;(2))] (12)
=2 wyminEp, [~ log|Jr; (2)| Q(T;())] + H(Px;) — H(Px;) (13)

= 2w minEpy, [—log |Jz, (®)| Q(T;(®))] + H(Px;) — Epy [—log Px,()]) (14)

. Px, (2)|Jr; (=)
= >_;w; H(Px;) + > w; ming, Epy, [log %] (15)
= >_;w; H(Px;) + > w; ming, Epy, [log %] (16)
. Pr.(x.(2)
= $jw; H(Px,) + 3w ming, Ep, . [log 5] a7

= ijj H(Px,) + ijj ming, KL(Pr, (x,), Q) - (18)

Given that KL(P, Q) > 0 and equal to 0 if and only if P = @, the global minimum is achieved
only if Pr;(x,) = @,V and there exist such invertible functions (e.g., the optimal Monge map
between Py, and Q for squared Euclidean transportation cost [1]). Additionally, the optimal value is
> JWj H(Px,), which is constant with respect to the 7); transformations. O

2 Additional Experiment Details

2.1 Toy Dataset Experiment
LRMEF vs. Ours Experiment

o T for LRMF setup: T;: 8 channel-wise mask for Real-NVP model with s and ¢ derived
from 64 hidden channels of fully connected networks. 75: Identity function.

e T for RAUB setup: 77 and 73: 8 channel-wise mask for Real-N'VP model with s and ¢
derived from 64 hidden channels of fully connected networks.

* ( for both: A single Gaussian distribution with trainable mean and trainable variances.

Alignflow vs. Ours Experiment

e T for both: 2 channel-wise mask for ReaNVP model with s and ¢ derived from 8 hidden
channels of fully connected networks.

* @ for Alignflow setup: A single fixed normal distribution.

* () for RAUB setup: A learnable mixture of Gaussian with 3 components.

2.2 Tabular Dataset Experiment

Our invertible transformation function 7" adapts general purpose RealNVP (5) and RealNVP (10)
layers with detailed parameters provided in[Table 1] Successive coupling layers are concatenated
by alternating the format between keeping odd-parity index of the data samples and transforms the
even-parity index of the data and vice versa. Note that our density model () for AUB experiments
shares the same architecture of ReaINVP (5) throughout the two-domain tabular dataset experiment
and RealNVP (10) for multi-domain experiment. For AlignFlow hybrid and adversarial only models,
in order to adapt their model for a tabular dataset, we change the invertible model T'_src and T'_tgt to
RealNVP(5) and change the discriminator to a fully connected network which has a hidden dimension
of 256.

3 Multi-domain translation

To illustrate that our method can be easily scaled to more domain distributions even for high
dimensional data, we present qualitative examples of translating between every digit and every other



Table 1: RealNVP layers used in tabular experiment section contains <n_layers> coupling layers.
Each coupling layer has two fully connected networks modeling the scaling and shifting function
with <hidden_dim> hidden dimensions and <n_hidden> hidden layers.
n_layers hidden_dim n_hidden Total number of parameters
RealNVP(5) 5 100 1 1,462,400
RealNVP(10) 10 100 2 4,540,800

Table 2: FID and AUB score for domain alignment task in 10 domains. FID score is calculated by
average across all paired translations and AUB score is shown in nats.

FID AUB
AlignFlow (MLE) 49.82 -4661.05
Ours 43.25 -4715.02
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Figure 1: Qualitative comparison on translation results across 10 classes with AlignFlow and ours.

digit for MNIST in [Fig. T| with quantitative performances in[Table 2] Note that we omit LRMF in this
experiment because the multi-domain situation is hard to deal with for LRMF setup due to LRMF’s
two distribution setup and assymetric model structure.

As shown in Table 2] our approach shows better performance in terms of FID and AUB than AlignFlow
since our learnable density estimator can model more complex distribution than fixed simple density
model in AlignFlow. In other words, the shared space of AlignFlow is limited because of the fixed
simple density model.

The superiority of our method compared to AlignFlow in multiple-domain translation can also be
verified through qualitative comparisons in The leftmost column is an input image and the
second and third macro columns are the results from AlignFlow and ours. By forwarding a given k-th
latent Ty () into 10 inverse transformation functions, respectively. It is easy to observe that ours
has more clear results in most cases than baseline. Moreover, our model shows better performance
in maintaining the original identity (e.g., width and type of a stroke) than the baseline, as seen in
fifth, eighth and ninth rows. This is because we jointly train our transformation functions with a
learnable density model, while AlignFlow independently train their transformation functions. This
benefit of our approach may be crucial for other datasets such as human faces [2] where maintaining
the original identity is important.

4 Implementation on Latent Space

Our model is also capable of generating samples in each domain. One needs to sample from the
density model @) to have a latent image z first, and then forward to the inverse function Tj_1 to get



the image sampled in j** domain. Examples of generated images for each domain in MNIST data are
shown in The quality of the generative result also reflects the tightness of the bound between
the latent space and the latent density model as illustrated in Eqn. 4.

000 00OCO0O
I\ 7711711

—

o 6~ KN
"'\J GU\-«C (.Uu
“N S WY
SN CPL W

SVECRN I NI W VALY
Doj~l WP
SNt WwL
s> ord N F WP
N AN &N W\
Do~ g0t why

S
0
-0
0

Figure 2: This figure shows the generated images of our model for all domains.

In order to visualize the benefit of our shared latent space, we further perform interpolation in the
latent space. We first randomly select two distinct real images in one domain (in this case two
‘0’s), and do a linear interpolation of the selected two images in the latent space. Then we translate
all the interpolated images (including the two selected images) to all of the remaining domains
to generate ‘translated-interpolated’ images, i.e., the corresponding interpolations in each of the
remaining domains. As shown in[Fig. 3] all ‘translated-interpolated’ results can preserve the trend of
the stroke width of the digits from the original interpolated domain. These results suggest that our
shared space aligns the domains so that some latent space directions have similar semantic meaning
for all domains.
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Figure 3: This figure shows the translation results of interpolated images. In the first row, the two
images selected by red rectangles are real images from the dataset; and all eight images in between
are generated by linear interpolation in the latent space. Starting from the second row, each row
contains translated images which are transformed from the same latent vector in the same column
and the first row.



ts on USPS-MNIST

10n experimmen

5 Qualitative results of Domain Adaptat
dataset

Here are the translated results that we used in[Table 4] The results consistently show that ours show

the best performance. Please note that these samples are randomly chosen.
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Figure 4: Digit 0 results. From left, USPS data, LRMF, AF (Adv. only), AF (MLE), AF (1e0), AUB

(ours)
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Figure 5: Digit 1 results. From left, USPS data, LRMF, AF (Adv. only)

(ours)
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Figure 6: Digit 2 results. From left, USPS data, LRMF, AF (Adv. only)

(ours)
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Figure 7: Digit 3 results. From left, USPS data, LRMF, AF (Adv. only), AF (MLE), AF (1e0), AUB

(ours)
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Figure 8: Digit 4 results. From left, USPS data, LRMF, AF (Adv. only)

(ours)
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Figure 9: Digit 5 results. From left, USPS data, LRMF, AF (Adv. only), AF (MLE), AF (1e0), AUB

(ours)
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Figure 10: Digit 6 results.
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Figure 11: Digit 7 results. From left, USPS data, LRMF, AF (Adv. only)

(ours)
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Figure 13: Digit 9 results. From left, USPS data, LRMF, AF (Adv. only)

(ours)
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