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A MULTIVARIATE TIME SERIES (MTS) DATASETS FOUND IN LITERATURE

Table 1 lists the multivariate time series (MTS) datasets used in the following time series fore-
casting (TSF) papers: [1] LogTrans (Li et al., 2019), [2] Informer (Zhou et al., 2021), [3] Auto-
former (Wu et al., 2021), [4] Pyraformer (Liu et al., 2022), [5] FEDformer (Zhou et al., 2022), [6]
Triformer (Cirstea et al., 2022), [7] RevIn (Kim et al., 2022), [8] Preformer (Du et al., 2023), [9]
ETSformer (Woo et al., 2023), [10] Crossformer (Zhang & Yan, 2023), [11] D·NLinear (Zeng et al.,
2023), [12] TimesNet (Wu et al., 2023), [13] PatchTST (Nie et al., 2023) [14] RLinear (Li et al.,
2024) and [15] iTransformer (Liu et al., 2024).
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[1] ✓ ✓ ✓ ✓ ✓ ✓ ✓
[2] ✓ ✓ ✓ ✓
[3] ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
[6] ✓ ✓ ✓
[4] ✓ ✓ ✓ ✓
[5] ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
[7] ✓ ✓ ✓
[8] ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
[9] ✓ ✓ ✓ ✓ ✓ ✓ ✓
[10] ✓ ✓ ✓ ✓ ✓
[11] ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
[12] ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
[13] ✓ ✓ ✓ ✓ ✓ ✓ ✓
[14] ✓ ✓ ✓ ✓ ✓
[15] ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

Table 1: Table listing all the datasets used in the selected papers.

B SELECTED DATASET DESCRIPTIONS

In the previous table, it is evident that some datasets share the same name, such as Electricity and
Weather. However, these datasets are actually different either when looking at the number of features
or looking at the splitting. Furthermore, all “electricity” datasets– electricity-f, electricity-c, ECL
and both Electricity– are actually variants of the same dataset: UCI electricity load diagrams (ELD).

In this study, we examined three real-world datasets for inconsistencies: (1) Weather from In-
former (Zhou et al., 2021), which includes 12 meteorological indicators collected hourly at a Surface
Weather Station in the U.S. from 2010 to 2013; (2) Weather from Autoformer (Wu et al., 2021) that
comprises 21 meteorological variables collected every 10 minutes in 2020 from one of the Weather
Station at the Max-Planck-Institute of Biogeochemistry; (3) ELD from UCI first introduced in (Li
et al., 2019), which records the hourly electricity consumption of 370 clients from 2011 to 2014.
These datasets were selected to clarify potential confusion in the multivariate time series forecast-
ing (MTSF) literature.
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To align with existing discussions (Han et al., 2024; Zhao & Shen, 2024), dataset variables or fea-
tures (i.e., weather indicators or electricity clients) is referred as channels throughout this document.

B.1 WEATHER FROM INFORMER

This dataset is derived from the local climatological data (LCD) dataset, which originally includes
weather observations of 20 indicators from multiple worldwide stations. The Informer subset repre-
sents data from a single U.S. station collected between 2010 and 2013 (a more detailed description
is provided in Appendix J).

We propose three revised versions of this dataset: (a) LCDWf 1H 4Y USUNK, where identified
inconsistencies have been corrected; (b) LCDWi 1H 4Y USUNK, where inconsistencies have been
corrected and the usual target channel has been rounded to “integer” values, consistent with other
temperature channels in the dataset; and (c) LCDWr 1H 4Y USUNK, where inconsistencies have
been corrected and the usual target channel is the actual Fahrenheit value converted from the Celsius
value using the known relation.

The latter two versions aim to evaluate whether rounding to integer or direct conversion impacts
predictive performance.

From Informer Corrected
(Zhou et al., 2021) Proposal

Dataset Weather LCDWf 1H 4Y USUNK LCDWi 1H 4Y USUNK LCDWr 1H 4Y USUNK
Granularity 1H 1H
Number of time steps 35 064 35 064
Dataset Start Date 2010-1-1 00:00 2010-1-1 00:00
Dataset End Date 2013-12-31 23:00 2013-12-31 23:00
Number of channels 12 12 + 6 inconsistency identifier
Target WetBulbCelsius WetBulbCelsius WetBulbCelsiusInt RealWetBulbCelsius

Table 2: Details of the Weather Dataset from Informer against the proposed corrected version.

B.2 WEATHER FROM AUTOFORMER

This dataset is derived from the Max-Planck-Institute (MPI) dataset, initially comprising weather
observations from three stations at the Max-Planck-Institute of Biogeochemistry in Germany. The
Autoformer subset uses data collected from the station located on the roof of the building during
2020 (a more detailed description is provided in Appendix K).

We propose three revised versions of this dataset: (a) MPIW 10T 1Y R where identified in-
consistencies have been corrected; (b) MPIW 10T 4Y R which extends the dataset to four
years with a 10-minute resolutions and where identified inconsistencies have been corrected; and
(c) MPIW 1H 4Y R which is the hourly resolution version of our extended revision.

From Autoformer Corrected
(Wu et al., 2021) Proposal

Dataset Weather MPIW 10T 1Y R MPIW 10T 4Y R MPIW 1H 4Y R
Granularity 10T 10T 10T 1H
Number of time steps 52 696 52 705 210 284 35 064
Dataset Start Date 2020-1-1 00:10 2020-1-1 00:10 2020-1-1 00:10 2020-1-1 00:00
Dataset End Date 2021-1-1 00:00 2021-1-1 00:00 2024-1-1 00:00 2023-12-31 23:00
Number of channels 21 21 + 5 inconsistency identifier
Target OT CO2 (ppm)

Table 3: Details of the Weather Dataset from Autoformer against the proposed corrected version.

B.3 ECL

This dataset is derived from the ELD dataset, originally providing 15-minute electricity consumption
data for 370 clients collected between 2011 and 2014. The version used in many paper aggregates
this to an hourly resolution and focuses on 321 clients from 2012 to 2014 – excluding clients with
excessive zero data in the first year (a more detailed description is provided in Appendix L).
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From Zhou et al. (2021) Corrected Proposal
Dataset ECL PELD 1H 3Y 308
Granularity 1H 1H
Number of time steps 35 064 35 064
Dataset Start Date 2011-1-1 00:00 2011-1-1 00:00
Dataset End Date 2013-12-31 23:00 2013-12-31 23:00
Number of channels 321 308
Target MT 320 MT 320

Table 4: Details of the ECL from Informer against the proposed corrected version.

We propose a revised version of this dataset: PELD 1H 3Y 308, which further reduces the dataset
to 308 clients by removing those with unusual profiles and the remaining clients with excessive
missing data.

C EXPERIMENT DETAILS

C.1 SETUP

We utilized the ADAM optimizer with an initial learning rate of 0.0001 and L2 loss for model
optimization. Each experiment is run three times, with a total of 25 epochs and an early stopping
patience set to 5.

C.2 IMPLEMENTATION

We used the original PyTorch implementations of Informer 1, Autoformer 2, NLinear and Dlinear 3

as well as iTransformer 4. All experiments were conducted using the default parameter values out-
lined in Table 5. Each iteration used a unique seed selected from the following set: {24, 1024, 2024}.

Parameters Informer Autoformer iTransformer xLinear
d model 512
n heads 8 -
e layers 2 -
d layers 1 -
s layers “3,2,1” -

d ff 2048 -
moving avg - 25 -

factor 5 3 -
padding 0 -

distil True -
dropout 0.05 0.1 -

attn “prob” -
embed “timeF”

activation gelu
output attention False

mix “store false” -
num workers 0 10

batch size 32
learning rate 0.0001

des “Exp” -
loss mse
lradj “type1”

channel independence - False -
class strategy - Projection -

Table 5: List of the default parameters used in our experiments

C.3 PLATFORM

All experiments were executed on one NVIDIA DGX-1 system equipped with Tesla P100 GPUs.

1https://github.com/zhouhaoyi/Informer2020
2https://github.com/thuml/Autoformer/tree/main
3https://github.com/honeywell21/DLinear
4https://github.com/thuml/iTransformer/tree/main
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D RESULTS (COMPLETE)

Zhou et al. (2021) Wu et al. (2021) Zeng et al. (2023) Liu et al. (2024)
Dataset Horizon InF AutoF NL DL DL InF iTransF

LCD (Informer weather)

96 - - - - - - -
192 - - - - - - -
336 0.297 - - - - - -
720 0.359 - - - - - -

MPI (Autoformer weather)

96 - 0.266 0.182 0.176 0.196 0.300 0.174
192 - 0.307 0.225 0.220 0.237 0.598 0.221
336 - 0.359 0.271 0.265 0.283 0.578 0.278
720 - 0.419 0.338 0.323 0.345 1.059 0.358

ECL

96 - 0.201 0.141 0.140 0.197 0.274 0.148
192 - 0.222 0.154 0.153 0.196 0.296 0.162
336 0.489 0.231 0.171 0.169 0.209 0.300 0.178
720 0.540 0.254 0.210 0.203 0.245 0.373 0.225

Table 6: MSE performances for multivariate-to-multivariate (M2M) predictions reported in the dif-
ferent literature papers.

Zhou et al. (2021) Wu et al. (2021) Zeng et al. (2023) Liu et al. (2024)
Dataset Horizon InF AutoF NL DL DL InF iTransF

LCD (Informer weather)

96 - - - - - - -
192 - - - - - - -
336 0.416 - - - - - -
720 0.466 - - - - - -

MPI (Autoformer weather)

96 - 0.336 0.232 0.237 0.255 0.384 0.214
192 - 0.367 0.269 0.282 0.296 0.544 0.254
336 - 0.395 0.301 0.319 0.335 0.523 0.296
720 - 0.428 0.348 0.362 0.381 0.741 0.349

ECL

96 - 0.317 0.237 0.237 0.282 0.368 0.240
192 - 0.334 0.248 0.249 0.285 0.386 0.253
336 0.528 0.338 0.265 0.267 0.301 0.394 0.269
720 0.571 0.361 0.297 0.301 0.333 0.439 0.317

Table 7: MAE performances for M2M predictions reported in the different literature papers.

Table 6 and 7 list the M2M prediction performance reported in associated papers. Notably, the
reproduced results for Informer and DLinear by the iTransformer authors deviate from the originally
published results, which could potentially be attributed to differences in the random seed used.
However, despite running each experiment three times, our reproduced results, presented in Tables 8
through 16, closely align with those reported by the iTransformer authors. This consistency suggests
that our findings are in line with recent literature and that variations in performance might stem from
differences in datasets or data-splitting strategies.

In these tables, bold and underline values represent the best performance (lowest value per row)
for each model across different prediction horizons and datasets. Values highlighted in blue [resp.
purple] denote the best [resp. second-best] performances (lowest value per column and prediction
horizon) obtained for a given dataset among all considered models.

D.1 PORTUGUESE ELECTRICITY LOAD DIAGRAMS

Table 8 presents predictions results for the ECL dataset using both the Informer version (ECL 321)
and our revised version (PELD 1H 3Y 308), evaluated with a 7:1:2 ratio split. At first glance, our
revised version appears to perform better than the Informer version –as depicted by the underlined
values. However, this apparent improvement should be viewed with caution. The reduced number of
channels in our revised dataset may contribute for the lower error rates. Specifically, for DLinear and
iTransformer, the mean average error (MAE) for some prediction horizons shows similar average
errors and standard deviations for both datasets, with iTransformer occasionally performing worse
. These observations could be interpreted in two ways: (i) fewer channels lead to worse predictions
overall, or (ii) the removed channels helped lower the error (i.e., removing some complexity and
making prediction easier). Despite this uncertainty, we argue that our revised version offers a fairer
comparison of model performance. Ultimately, with our revised dataset, the ranking trend remains
consistent with the literature: iTransformer outperforms DLinear, which in turn surpasses Informer.

Table 9 reports model performance with cycle-inclusive splitting, where each training, validation,
and evaluation set covers one year of data chronologically. With this splitting strategy, our revised
dataset continues to yield the best performances. However, errors for Informer with this strategy
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7:1:2 (767.2/109.6/219.2 days) Splitting
Published Produced Results

Reduced (ECL 321) Revised (PELD 1H 3Y 308) Dataset
F MSE MAE MSE MAE MSE MAE Metric

D
L

in
ea

r 96 0.140 0.237 0.195±0.0001 0.278±0.0001 0.192±0.0001 0.277±0.0001
192 0.153 0.249 0.194±0.0000 0.280±0.0000 0.191±0.0000 0.280±0.0000
336 0.169 0.267 0.207±0.0001 0.296±0.0004 0.202±0.0000 0.295±0.0000
720 0.203 0.301 0.242±0.0001 0.329±0.0003 0.235±0.0002 0.326±0.0003

In
fo

rm
er 96 - - 0.286±0.0037 0.381±0.0023 0.249±0.0022 0.355±0.0019

192 - - 0.293±0.0012 0.385±0.0026 0.250±0.0049 0.356±0.0044
336 0.489 0.528 0.305±0.0091 0.396±0.0071 0.274±0.0084 0.376±0.0046
720 0.540 0.571 0.332±0.0151 0.410±0.0102 0.279±0.0087 0.381±0.0078

iT
ra

ns
. 96 0.148 0.240 0.163±0.0002 0.253±0.0001 0.161±0.0003 0.254±0.0002

192 0.162 0.253 0.175±0.0002 0.263±0.0001 0.172±0.0001 0.264±0.0001
336 0.178 0.269 0.192±0.0001 0.280±0.0001 0.188±0.0003 0.280±0.0002
720 0.225 0.317 / / / /

Table 8: Results with PELD (electricity dataset) for multivariate-to-multivariate predictions and a
ratio splitting (7:1:2). Our experiments are run three times, both the average error and standard
deviation are reported in this table.

increased significantly compared to the ratio splitting. This result may be due to the lack of sam-
ples in the training set or the larger number of samples in the evaluation set. A similar trend is
observed with DLinear and iTransformer, though the impact is less severe, suggesting that these
models are less sensitive to the training and evaluation set size. Conversely, it may indicate that
Informer, which focuses on temporal tokens, struggles to capture channel relationships effectively,
while iTransformer, which uses variate tokens and processes each channel independently, delivers
more robust performance. To further validate this assumption, it would be beneficial to create a four-
year version of the dataset. This version would increase the training sample size while significantly
reducing the number of clients, allowing for a more comprehensive comparison between ratio-based
and cycle-inclusive splitting strategies.

Overall, these experiments suggest that iTransformer and DLinear outperform Informer for spa-
tiotemporal MTS datasets, with iTransformer achieving the best performance. These preliminary
findings should be extended to other spatiotemporal MTS datasets, such as Traffic or Weather
(datasets using multiple monitoring locations but focusing on only one observation).

1/1/1 year (366/365/365 days) Splitting
Reduced (ECL 321) Revised (PELD 1H 3Y 308) Dataset

F MSE MAE MSE MAE Metric

D
L

in
ea

r 96 0.208±0.0004 0.288±0.0006 0.197±0.0000 0.283±0.0001
192 0.207±0.0004 0.290±0.0007 0.194±0.0002 0.284±0.0005
336 0.226±0.0002 0.310±0.0002 0.207±0.0001 0.301±0.0001
720 0.277±0.0023 0.350±0.0019 0.246±0.0009 0.337±0.0010

In
fo

rm
er 96 0.624±0.0151 0.542±0.0087 0.480±0.0257 0.510±0.0192

192 0.639±0.0166 0.563±0.0108 0.555±0.0450 0.558±0.0299
336 0.680±0.0544 0.583±0.0284 0.520±0.0204 0.535±0.0144
720 0.879±0.1037 0.662±0.0500 0.589±0.0121 0.571±0.0068

iT
ra

ns
. 96 0.179±0.0003 0.260±0.0001 0.171±0.0002 0.259±0.0001

192 0.189±0.0002 0.269±0.0001 0.180±0.0001 0.268±0.0001
336 0.208±0.0001 0.287±0.0001 0.197±0.0001 0.285±0.0001
720 / / / /

Table 9: Results with PELD (electricity dataset) for multivariate-to-multivariate predictions and a
cycle splitting (1/1/1 year). Our experiments are run three times, both the average error and standard
deviation are reported in this table.

D.2 LOCAL CLIMATOLOGICAL DATA

D.2.1 M2M

Table 10 presents the results for LCD and M2M predictions using the Informer version of the dataset,
our corrected version (LCDWf 1H 4Y USUNK), and our corrected version with the target in “inte-
ger” form (LCDWi 1H 4Y USUNK) using a ratio splitting (7:1:2). Our corrected versions exhibit
better performance across all the models used (as depicted by underlined results). The float version
(LCDWf 1H 4Y USUNK version), which keeps WetBulbCelsius as a float, generally performs bet-
ter than the integer version than the integer version (LCDWi 1H 4Y USUNK), suggesting that our
corrections enhance model performance and dataset understanding. Therefore, such corrected ver-
sions should be preferred for fairer TSF model comparisons. iTransformer consistently outperforms
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Published Produced Results
7:1:2 (i.e., 24544.8 / 3506.4 / 7012.8 days) Splitting

Original LCDWf 1H 4Y USUNK LCDWi 1H 4Y USUNK Dataset
F MSE MAE MSE MAE MSE MAE MSE MAE Metric

N
L

in
ea

r 96 - - 0.520±0.0012 0.498±0.0006 0.504±0.0015 0.491±0.0009 0.504±0.0015 0.492±0.0009
192 - - 0.589±0.0002 0.542±0.0001 0.572±0.0013 0.535±0.0006 0.572±0.0013 0.536±0.0006
336 - - 0.624±0.0006 0.565±0.0001 0.606±0.0006 0.558±0.0001 0.606±0.0006 0.558±0.0001
720 - - 0.688±0.0002 0.601±0.0001 0.669±0.0002 0.595±0.0000 0.669±0.0002 0.595±0.0000

In
fo

rm
er 96 - - 0.482±0.0030 0.490±0.0022 0.472±0.0031 0.483±0.0048 0.466±0.0021 0.483±0.0043

192 - - 0.586±0.0104 0.548±0.0116 0.567±0.0025 0.540±0.0044 0.562±0.0076 0.533±0.0044
336 0.702 0.620 0.627±0.0067 0.586±0.0086 0.610±0.0102 0.579±0.0102 0.610±0.0103 0.580±0.0106
720 0.831 0.731 0.623±0.0137 0.586±0.0091 0.598±0.0103 0.575±0.0067 0.599±0.0094 0.576±0.0059

iT
ra

ns
. 96 - - 0.509±0.0041 0.487±0.0022 0.492±0.0044 0.480±0.0022 0.492±0.0043 0.481±0.0021

192 - - 0.577±0.0026 0.533±0.0008 0.559±0.0024 0.526±0.0005 0.559±0.0024 0.526±0.0005
336 - - 0.609±0.0029 0.555±0.0034 0.591±0.0026 0.548±0.0032 0.591±0.0025 0.548±0.0031
720 - - 0.655±0.0033 0.583±0.0026 0.636±0.0041 0.576±0.0029 0.636±0.0042 0.576±0.0029

Table 10: Results with LCD (informer weather dataset) for multivariate-to-multivariate predictions
and a ratio splitting (7:1:2). Our experiments are run three times, both the average error and standard
deviation are reported in this table.

other models, with Informer often achieving the second-best results and occasionally surpassing
iTransformer for specific prediction horizons.

24/12/12 months (i.e., 17520 / 8784 / 8760 days) Splitting
Original LCDWf 1H 4Y USUNK LCDWi 1H 4Y USUNK Dataset

F MSE MAE MSE MAE MSE MAE Metric

N
L

in
ea

r 96 0.582±0.0000 0.535±0.0000 0.566±0.0001 0.528±0.0000 0.566±0.0001 0.528±0.0000
192 0.660±0.0001 0.581±0.0001 0.644±0.0001 0.575±0.0001 0.644±0.0001 0.575±0.0001
336 0.680±0.0001 0.597±0.0001 0.663±0.0001 0.591±0.0001 0.663±0.0001 0.591±0.0001
720 0.741±0.0000 0.634±0.0000 0.725±0.0000 0.628±0.0000 0.725±0.0000 0.628±0.0000

In
fo

rm
er 96 0.545±0.0064 0.532±0.0050 0.535±0.0099 0.529±0.0063 0.544±0.0170 0.529±0.0058

192 0.624±0.0013 0.570±0.0027 0.622±0.0047 0.571±0.0021 0.620±0.0004 0.571±0.0016
336 0.661±0.0030 0.611±0.0056 0.639±0.0004 0.600±0.0046 0.639±0.0011 0.601±0.0042
720 0.673±0.0128 0.619±0.0105 0.650±0.0084 0.609±0.0085 0.648±0.0100 0.608±0.0092

iT
ra

ns
. 96 0.562±0.0004 0.520±0.0015 0.546±0.0002 0.513±0.0012 0.546±0.0002 0.513±0.0012

192 0.644±0.0014 0.572±0.0028 0.627±0.0016 0.565±0.0025 0.627±0.0015 0.565±0.0025
336 0.669±0.0010 0.590±0.0010 0.652±0.0012 0.584±0.0010 0.652±0.0014 0.584±0.0010
720 0.723±0.0030 0.623±0.0029 0.702±0.0031 0.612±0.0025 0.703±0.0029 0.612±0.0025

Table 11: Results with LCD (informer weather dataset) for multivariate-to-multivariate predictions
and a cycle splitting (24/12/12 months). Our experiments are run three times, both the average error
and standard deviation are reported in this table.

Table 11 lists the models’ performance on M2M predictions with cycle-inclusive splitting. Here,
the training set spans approximately two years, while validation and evaluation sets each cover
one year chronologically. Although the metrics are worse compared to ratio splitting –likely due
to reduced training samples and increased evaluation samples– the corrected dataset versions still
perform better. With the cycle-inclusive splitting, Informer consistently offers lower mean squared
error (MSE), while iTransformer provides the second-best results. For MAE, both models show
competitive performance, but iTransformer generally performs better.

These findings suggest that Informer might be more suitable for MTS datasets with direct relations
among channels, such as the electricity transformer temperature (ETT) dataset. Moreover, using a
cycle-inclusive split challenges iTransformer previous superiority.

D.2.2 UNIVARIATE-TO-UNIVARIATE (U2U)

Table 12 demonstrates that for LCD with ratio splitting and for U2U predictions, iTransformer
clearly takes the lead over the other models. However, for the longest prediction horizon (i.e., 720),
Informer achieves the best performance.

Table 13 indicates that cycle-inclusive splitting for U2U predictions also challenges iTransformer’s
superiority. On average, Informer performs better, although iTransformer shows the best perfor-
mance on our corrected dataset (LCDWf 1H 4Y USUN) in terms ofMAE.

As a conclusion, these experiments suggest that with ratio splits, iTransformer is the leading model
for both M2M and U2U predictions. Contrary to previous studies, Informer outperforms NLinear
and even surpasses iTransformer for the 720 prediction horizon, suggesting that Probsparse atten-
tion may be particularly beneficial for long prediction horizons. Further experiments comparing
iTransformer, Informer, and inverse Informer for very large prediction horizons (≥ 720) are re-

6



324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

Published Produced Results
7:1:2 (i.e., 24544.8 / 3506.4 / 7012.8 days) Splitting

Original LCDWf 1H 4Y USUNK LCDWi 1H 4Y USUNK Dataset
F MSE MAE MSE MAE MSE MAE MSE MAE Metric

N
L

in
ea

r 96 - - 0.196±0.0003 0.316±0.0004 0.180±0.0003 0.304±0.0004 0.183±0.0004 0.309±0.0005
192 - - 0.252±0.0001 0.363±0.0000 0.235±0.0002 0.350±0.0002 0.238±0.0002 0.354±0.0002
336 - - 0.297±0.0003 0.398±0.0002 0.279±0.0002 0.386±0.0002 0.283±0.0002 0.390±0.0002
720 - - 0.393±0.0001 0.465±0.0001 0.377±0.0002 0.455±0.0001 0.380±0.0002 0.458±0.0001

In
fo

rm
er 96 - - 0.206±0.0087 0.340±0.0182 0.184±0.0123 0.321±0.0200 0.193±0.0071 0.328±0.0147

192 - - 0.246±0.0095 0.370±0.0059 0.221±0.0136 0.349±0.0164 0.223±0.0157 0.351±0.0169
336 0.297 0.416 0.268±0.0206 0.398±0.0172 0.258±0.0195 0.390±0.0170 0.259±0.0154 0.391±0.0128
720 0.359 0.466 0.247±0.0081 0.385±0.0110 0.237±0.0073 0.378±0.0108 0.238±0.0078 0.379±0.0109

iT
ra

ns
. 96 - - 0.191±0.0012 0.310±0.0016 0.176±0.0018 0.295±0.0015 0.178±0.0014 0.299±0.0013

192 - - 0.235±0.0017 0.351±0.0025 0.217±0.0012 0.337±0.0018 0.221±0.0013 0.341±0.0019
336 - - 0.265±0.0032 0.373±0.0005 0.245±0.0042 0.358±0.0014 0.248±0.0039 0.362±0.0017
720 - - 0.292±0.0043 0.394±0.0021 0.263±0.0030 0.378±0.0025 0.266±0.0034 0.382±0.0012

Table 12: Results with LCD (informer weather dataset) for univariate-to-univariate predictions and
a ratio splitting (7:1:2). Our experiments are run three times, both the average error and standard
deviation are reported in this table.

24/12/12 months (i.e., 17520 / 8784 / 8760 days) Splitting
Original LCDWf 1H 4Y USUNK LCDWi 1H 4Y USUNK Dataset

F MSE MAE MSE MAE MSE MAE Metric

N
L

in
ea

r 96 0.251±0.0000 0.358±0.0000 0.233±0.0004 0.345±0.0004 0.237±0.0004 0.350±0.0004
192 0.310±0.0001 0.407±0.0001 0.292±0.0001 0.396±0.0001 0.296±0.0001 0.400±0.0001
336 0.352±0.0000 0.438±0.0000 0.334±0.0000 0.427±0.0000 0.339±0.0000 0.431±0.0000
720 0.442±0.0000 0.505±0.0000 0.426±0.0000 0.495±0.0000 0.430±0.0000 0.498±0.0000

In
fo

rm
er 96 0.258±0.0041 0.367±0.0018 0.231±0.0028 0.345±0.0012 0.236±0.0030 0.351±0.0025

192 0.299±0.0005 0.408±0.0035 0.283±0.0041 0.397±0.0052 0.287±0.0027 0.401±0.0024
336 0.317±0.0067 0.425±0.0040 0.305±0.0047 0.416±0.0024 0.308±0.0040 0.418±0.0035
720 0.305±0.0182 0.419±0.0128 0.283±0.0064 0.408±0.0078 0.289±0.0083 0.411±0.0085

iT
ra

ns
. 96 0.257±0.0037 0.361±0.0033 0.237±0.0016 0.344±0.0016 0.241±0.0016 0.349±0.0016

192 0.304±0.0030 0.401±0.0023 0.286±0.0019 0.387±0.0021 0.290±0.0018 0.391±0.0020
336 0.346±0.0041 0.430±0.0023 0.324±0.0023 0.414±0.0009 0.336±0.0117 0.422±0.0052
720 0.362±0.0059 0.445±0.0041 0.337±0.0037 0.431±0.0032 0.340±0.0054 0.434±0.0041

Table 13: Results with LCD (informer weather dataset) for univariate-to-univariate predictions and
a cycle splitting (24/12/12 months). Our experiments are run three times, both the average error and
standard deviation are reported in this table.

quired to investigate this finding. In addition, the results indicate that cycle-inclusive splits can
re-define model rankings, with iTransformer being second-best to Informer for both M2M and U2U
predictions. To confirm these observations, extending the study to other MTS datasets with direct
relations among channels, such as ETT, is recommended.

D.3 MAX-PLANCK-INSTITUTE

D.3.1 M2M

7:1:2 (8.4 / 1.2 / 2.4 months) Splitting
Original Simple Corrected Dataset

Published Produced Results
F MSE MAE MSE MAE MSE MAE MSE MAE Metric

D
L

in
ea

r 96 0.176 0.237 0.195±0.0002 0.255±0.0020 0.242±0.0005 0.299±0.0012 0.252±0.0006 0.303±0.0009
192 0.220 0.282 0.237±0.0008 0.296±0.0013 0.293±0.0048 0.350±0.0082 0.306±0.0048 0.357±0.0092
336 0.265 0.319 0.285±0.0015 0.336±0.0024 0.341±0.0013 0.387±0.0026 0.356±0.0032 0.396±0.0032
720 0.323 0.362 0.349±0.0027 0.387±0.0045 0.412±0.0011 0.446±0.0010 0.424±0.0021 0.445±0.0023

A
ut

o.

96 0.266±0.007 0.336±0.006 0.262±0.0094 0.340±0.0094 NA NA 0.328±0.0107 0.389±0.0116
192 0.307±0.024 0.367±0.022 0.341±0.0154 0.396±0.0109 NA NA 0.392±0.0110 0.428±0.0099
336 0.359±0.035 0.395±0.031 0.375±0.0275 0.413±0.0259 NA NA 0.461±0.0220 0.476±0.0254
720 0.419±0.017 0.428±0.014 0.501±0.0350 0.492±0.0245 NA NA 0.568±0.0312 0.542±0.0222

iT
ra

ns
. 96 0.174 0.214 0.174±0.0005 0.215±0.0015 0.218±0.0021 0.258±0.0015 0.227±0.0028 0.263±0.0022

192 0.221 0.254 0.225±0.0014 0.257±0.0008 0.278±0.0002 0.306±0.0003 0.291±0.0012 0.313±0.0008
336 0.278 0.296 0.281±0.0014 0.299±0.0006 0.340±0.0010 0.351±0.0014 0.351±0.0012 0.357±0.0012
720 0.358 0.349 0.360±0.0003 0.351±0.0004 0.426±0.0004 0.407±0.0006 0.441±0.0024 0.414±0.0013

Table 14: Results with mpiw! (autoformer weather dataset) for multivariate-to-multivariate predic-
tions and a ratio splitting (7:1:2). Our experiments are run three times, both the average error and
standard deviation are reported in this table.

Table 14 presents the M2M prediction results for MPI using ratio splitting (7:1:2). We compare
three versions of the dataset: the original version from Autoformer, a simple version where failure
values (−9999) are replaced by 0 (Simple), and our corrected version using linear interpolation
or context-aware imputation (MPIW 10T 1Y R). Our corrected version performs the worst among
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these datasets, and even the Simple version underperforms compared to the original dataset, which
retains the failure values. iTransformer outperforms other models for both the original and corrected
datasets, with DLinear providing the second-best results.

24/12/12 months Splitting
MPIW 10T 4Y R MPIW 1H 4Y R Granularity

F MSE MAE MSE MAE Metric

D
L

in
ea

r 96 0.417±0.0001 0.392±0.0002 0.504±0.0000 0.472±0.0000
192 0.478±0.0000 0.436±0.0001 0.562±0.0000 0.507±0.0000
336 0.542±0.0000 0.479±0.0002 0.601±0.0000 0.534±0.0001
720 0.615±0.0001 0.525±0.0001 0.664±0.0000 0.570±0.0000

A
ut

o.
96 0.416±0.0056 0.409±0.0030 0.598±0.0097 0.537±0.0072

192 0.551±0.0069 0.500±0.0047 0.642±0.0190 0.561±0.0091
336 0.613±0.0288 0.534±0.0150 0.669±0.0241 0.578±0.0105
720 0.668±0.0055 0.568±0.0028 0.713±0.0234 0.599±0.0099

iT
ra

ns
. 96 0.363±0.0005 0.336±0.0004 0.521±0.0015 0.470±0.0014

192 0.443±0.0002 0.394±0.0004 0.591±0.0002 0.510±0.0005
336 0.531±0.0020 0.449±0.0016 0.638±0.0012 0.540±0.0011
720 0.637±0.0021 0.512±0.0014 0.716±0.0004 0.578±0.0003

Table 15: Results with MPI (autoformer weather dataset) for multivariate-to-multivariate predictions
and a cycle splitting (24/12/12 months). Our experiments are run three times, both the average error
and standard deviation are reported in this table.

Table 15 shows the performance with cycle-inclusive splitting and extended dataset versions:
MPIW 10T 4Y R (with a 10-minute resolution) and MPIW 1H 4Y R (with an hourly resolution).
Here, the training set spans approximately two years, while validation and evaluation sets each
cover one year chronologically. Results with cycle-inclusive splitting are significantly worse than
with ratio splitting, likely due to the significant increased sample size in the evaluation set and its
comprehensive coverage of all seasons. This suggests potential overfitting in models trained on only
8.5 months and evaluated on 2.5 months. We note that DLinear performs better with the hourly
dataset, whereas iTransformer excels with the 10-minute resolution, indicating DLinear’s difficulty
with lower resolution cycles. Future work should verify if model performance varies across different
seasons within the evaluation set. Notably, the hourly dataset performs worse than the 10-minute
version, implying that our process for creating the hourly dataset may need revision.

Overall, these experiments suggest that iTransformer is the best model for MTS datasets. Extending
these preliminary results to similar MTS datasets like Exchange would be valuable.

D.3.2 U2U

7:1:2 (8.4 / 1.2 / 2.4 months) Splitting
Original Simple Corrected Dataset

Published Produced Results
F MSE MAE MSE MAE MSE MAE MSE MAE Metric

D
L

in
ea

r 96 - - 0.005±0.0003 0.056±0.0027 0.387±0.0145 0.429±0.0071 0.555±0.0089 0.514±0.0029
192 - - 0.006±0.0001 0.064±0.0006 0.476±0.0033 0.484±0.0021 0.651±0.0027 0.567±0.0012
336 - - 0.006±0.0002 0.064±0.0019 0.527±0.0039 0.510±0.0025 0.743±0.0007 0.604±0.0002
720 - - 0.006±0.0002 0.066±0.0021 0.595±0.0024 0.548±0.0012 0.947±0.0223 0.690±0.0093

A
ut

o.

96 - - 0.003±0.0002 0.041±0.0017 NA NA 0.767±0.0347 0.674±0.0182
192 - - 0.004±0.0009 0.047±0.0063 NA NA 0.767±0.0347 0.674±0.0182
336 - - 0.004±0.0002 0.050±0.0016 NA NA 0.940±0.0796 0.756±0.0353
720 - - 0.004±0.0005 0.052±0.0030 NA NA 1.205±0.0670 0.861±0.0259

iT
ra

ns
. 96 - - 0.001±0.0000 0.027±0.0002 0.266±0.0020 0.360±0.0016 0.440±0.0103 0.456±0.0029

192 - - 0.002±0.0000 0.029±0.0002 0.339±0.0007 0.414±0.0005 0.571±0.0043 0.532±0.0025
336 - - 0.002±0.0000 0.031±0.0002 0.377±0.0028 0.444±0.0024 0.641±0.0157 0.573±0.0054
720 - - 0.002±0.0000 0.035±0.0001 0.499±0.0046 0.516±0.0005 0.857±0.0124 0.671±0.0050

Table 16: Results with MPI (autoformer weather dataset) for univariate-to-univariate predictions and
a ratio splitting (7:1:2). Our experiments are run three times, both the average error and standard
deviation are reported in this table.

For U2U predictions using ratio splitting, performance trends mirror those of M2M predictions:
the corrected dataset yields worse results. The performance gap between the original and corrected
datasets is significant, with the original dataset showing surprisingly low error values. This dis-
crepancy likely arises from the impact of the failure value (−9999) on data normalization. Such
an extreme value may distort z-normalization, affecting metrics calculated before reversing the nor-
malization. Despite these issues, the corrected dataset maintains the same model ranking, with
iTransformer performing best and DLinear second.
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We believe our corrected dataset provides more accurate metric values, enabling fairer model com-
parisons.

24/12/12 months Splitting
MPIW 10T 4Y R MPIW 1H 4Y R Granularity

F MSE MAE MSE MAE Metric

D
L

in
ea

r 96 0.393±0.0001 0.411±0.0002 0.425±0.0001 0.443±0.0001
192 0.436±0.0001 0.441±0.0001 0.476±0.0001 0.471±0.0000
336 0.473±0.0000 0.465±0.0001 0.514±0.0005 0.490±0.0002
720 0.523±0.0001 0.493±0.0001 0.568±0.0005 0.518±0.0003

A
ut

o.

96 0.498±0.0181 0.493±0.0116 0.501±0.0130 0.509±0.0118
192 0.695±0.0636 0.594±0.0324 0.563±0.0100 0.540±0.0042
336 0.715±0.0021 0.607±0.0032 0.657±0.0373 0.578±0.0047
720 0.717±0.0079 0.607±0.0031 0.653±0.0268 0.590±0.0127

iT
ra

ns
. 96 0.330±0.0030 0.363±0.0015 0.443±0.0032 0.455±0.0012

192 0.402±0.0007 0.414±0.0008 0.527±0.0020 0.502±0.0025
336 0.461±0.0031 0.451±0.0015 0.582±0.0031 0.528±0.0008
720 0.530±0.0036 0.490±0.0009 0.618±0.0040 0.551±0.0031

Table 17: Results with MPI (autoformer weather dataset) for univariate-to-univariate predictions
and a cycle splitting (24/12/12 months). Our experiments are run three times, both the average error
and standard deviation are reported in this table.

Contrary to M2M predictions, U2U models trained with cycle-inclusive splitting outperform those
using ratio splitting, as shown in Table 17. However, similarly to M2M predictions, DLinear excels
with the hourly version, while iTransformer performs best with the 10-minute resolution dataset.

These findings suggest the need to revisit the generation of the hourly dataset and the temporal
embedding implementation, which may influence model performance.

E ADDITIONAL DISCUSSIONS

Our findings highlight the critical importance of clean datasets for improving model learning and
ensuring fair model comparisons across TSF models. Notably, our proposed cycle-inclusive splitting
strategy suggests that evaluating models over the longest temporal cycle offers a more complete
assessment of TSF model efficiency. However, this outcome warrants further validation through
experiments involving diverse datasets and alternative splitting strategies to fully assess the impact
of varying sizes in training, validation, and evaluation sets.

Furthermore, our results suggest that no single model consistently excels in MTS forecasting. In-
stead, the optimal model or architecture may depend on the dataset’s characteristics. Models focus-
ing on variate tokens tend to perform better on datasets lacking explicit inter-channel relationships
(e.g., datasets monitoring different physical quantities that are not directly intertwined or spatiotem-
poral datasets where delays between channels may occur). In contrast, architectures based on tem-
poral tokens appear more efficient when clear and direct relationships exist between channels. For
example, despite both being weather datasets, the key difference between LCD and MPI is the
explicitness of the relationships between weather indicators. The LCD dataset includes both Cel-
sius and Fahrenheit temperature readings, providing explicit interdependencies between channels.
Conversely, The MPI dataset may exhibit less explicit relationships, where changes in one channel
may influence others only after a delay. Consequently, models that effectively capture these rela-
tionships excel on datasets like LCD. Therefore, Informer, which prioritizes temporal tokenization,
might captures “direct” inter-channel relationships more effectively, explaining its effectiveness with
LCD. On the other hand, iTransformer, which focuses on variate tokens, and linear-based models
that treat each channel independently, deliver superior performance on datasets like MPI and ELD,
where inter-channel relationships are more complex.

These insights highlight the need for further experiments involving a broader range of transformer-
based models and their variants. Such studies could refine our understanding of model suitability
for different dataset types, potentially guiding the development of tailored architectures for specific
MTS forecasting tasks.

F ADDITIONAL LIMITATIONS AND PERSPECTIVES

Beyond the limitations discussed in the main paper, additional issues must be addressed in the future.

9



486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

Firstly, the current approach for identifying errors on a per-time-step basis is inadequate, particularly
when only a subset of channels is affected by errors. To improve this point, we plan to create separate
error masks that pinpoint error positions per time step and channel. Additionally, a dedicated file
containing only the proposed corrections should be created. This approach would simplify the use
of multiple correction versions, eliminating the need to manage multiple files and reducing storage
complexity and space requirements.

Secondly, we believe that the temporal embedding implementation, inherited from the Informer
model, also requires revision. Our experiments, particularly with the hourly and 10-minute reso-
lution versions of the MPI dataset, reveal inconsistencies in its performance. We suggest revising
the encoding scheme to better capture cyclical patterns, which are prevalent in TSF datasets. A
more robust implementation could enhance the ability of models to represent and leverage temporal
dynamics effectively.

G SOCIETAL IMPACTS

Time series forecasting (TSF) plays a pivotal role in optimizing resource management and facilitat-
ing strategic economic planning across various sectors. Accurate TSF contributes to (i) Enhanced
resource utilization, (ii) Reduced service disruptions and operational costs, and (iii) Better-informed
decision-making in domains such as energy, healthcare, finance, and logistics.

Our research underscores the necessity for clean datasets and rigorous model evaluation methodolo-
gies. By advancing these aspects, we aim to improve TSF accuracy, foster a deeper understanding
of model strengths and limitations, and contribute to the development of more resilient, efficient
systems that benefit society as a whole.

H HOSTING AND LICENSING

The following GitHub repository 5 is made available during the reviewing period and contains the
following resources:

• Code used for dataset analysis

• Code used for dataset correction

• Implementation of cycle-inclusive splitting dataloader

• CSV files of the revised versions of these datasets

• Experiment results in markdown format

The original dataset used in this study are licensed as follows:

• Electricity load diagrams (ELD) is available from UCI and distributed under a Creative
Commons Attribution 4.0 International (CC-BY-4.0) license;

• Local climatological data (LCD) is publicly available and according to the National
Oceanic and Atmospheric Administration (NOAA), it is “open and free to use. There are
no restrictions.”;

• Max-Planck-Institute (MPI) is publicly available and distributed under a Creative Com-
mons CC-BY-4.0 license.

The revised version of ELD and corrected versions of MPI adhere to the licensing terms of their
original datasets. The corrected version of LCD will be distributed under a Creative Commons
Attribution 4.0 International (CC-BY-4.0) license to ensure consistency with open-access principles.

This repository aims to provide transparency, foster reproducibility, and encourage further research
in the field. Upon acceptation of this paper, it would be important to include these dataset versions
on platforms such as HuggingFace 6 (as updated version of the existing datasets) or libraries such

5https://anonymous.4open.science/r/2392-NDBT-2AED/
6https://huggingface.co/datasets?sort=trending
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as GluonTS 7. This will increase their accessibility for future research and support comprehensive
benchmarking of existing TSF models.

I DATASETS PRESENTATION AND ANALYSIS METHOD

For AI models trained on data, presence of errors can severely hinder the learning of correlations
and physical relationships, particularly if these errors are pervasive throughout the dataset. Further-
more, including time steps with inconsistencies in the evaluation set can significantly impair model
assessment. A model performing well on an evaluation set that includes errors may either (i) excel
on correct time steps while performing poorly on erroneous ones, demonstrating its ability to under-
stand the data and its patterns, or (ii) it may perform moderately on both correct and erroneous time
steps. However, the latter scenario does not necessarily indicate a robust model.

Benchmark datasets should ideally be free from such errors unless the objective explicitly targets
predictions with erroneous data, tests model robustness to errors, or aims at anomaly detection.
When evaluating TSF and comparing model performances, it is crucial to use datasets that are free
from such errors, especially in the evaluation set. Therefore, it is essential to identify and annotate
these problematic time steps, and to correct these errors or at least select appropriate metrics that
account for them.

Our approach aims to address these concerns by proposing inconsistency-free dataset versions, ac-
companied by detailed annotations which will be beneficial for future research. The following sec-
tions present the inconsistencies found in each dataset, the method used to identify them and our
proposed corrections.

I.1 FREQUENCY

To investigate the dominant frequencies in each dataset channel, we applied fast Fourier transform
(FFT) using the following method: (1) compute the trend of the considered channel, (2) apply the
scipy FFT to the detrended channel, and (3) select the top K frequencies with the highest magnitude.
Based on our experimentation, we adopted k = 3 in this paper. By combining domain knowledge
with frequency analysis, we can determine the overall (considering all channels) longest cycle for
each dataset.

I.2 DISTRIBUTION

For each dataset (original and revised versions), distribution analyses were conducted for: (i) the
entire dataset, (ii) per longest cycle (mostly year), and (iii) per data splitting strategy. To better
understand the impact of the data splitting in regard of seasonal variations, these distributions were
plotted per solar season: Spring, Summer, Autumn and Winter. When visually tractable, these dis-
tribution plots were performed for each channel. These plots can help researcher understand the
impact of splitting strategies that can introduce significant distribution differences between sets.

I.3 CORRELATION

For each dataset, we performed four correlation analyses using Pearson, Kendall, Spearman and
Cosine similarity methods. To simplify the interpretation of the resulting heatmaps, we focused
on highly correlated channels by ignoring values between −0.75 and 0.75, which are represented
as gray areas in the plots. Similarly to distribution plots, correlation analyses were conducted for:
(i) the entire dataset, (ii) per longest cycle (considering all seasons), and (iii) per longest cycle and
per solar season. Due to the large number of channels in ELD dataset and its variants, correlation
plots for these datasets were excluded from the analysis.

7https://ts.gluon.ai/stable/index.html
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Figure 1: Overview of the weather indicators from the 4-year dataset used in Informer and collected
from LCD. The gray background area represents the training period, and the yellow area represents
the validation period as defined in the ratio splitting. Colored vertical lines indicate time steps where
inconsistencies were found.

J LOCAL CLIMATOLOGICAL DATA DATASET

J.1 DESCRIPTION

The local climatological data (LCD) 8 dataset archives climatological data from approximately
20, 000 stations worldwide, of which around 14, 000 are active. For each station, surface obser-
vations are collected from various sources, including both manual and automated methods, and are
managed by the National Centers for Environmental Information’s Integrated Surface Data (ISD).
The dataset includes records of 20 weather indicators, such as dry bulb temperature in both Celsius
and Fahrenheit, relative humidity, and more. Data in the archive spans from January 1st, 1901, to the
present day, although the availability of data may vary significantly by station.

J.2 ANALYSIS

The LCD dataset is a multi-variable spatiotemporal dataset consisting of observations from vari-
ous weather stations. Researchers can utilize this dataset to explore the spatiotemporal relationships
among the monitored physical quantities, investigating how different weather indicators interact over
time. Additionally, it offers opportunities to analyze how artificial intelligence (AI) models learn and
interpret fundamental unit conversions, such as the relationship between Celsius and Fahrenheit tem-
peratures. Ultimately, the dataset facilitates studies aimed at predicting future values of individual
or multiple weather indicators based on historical observations.

8https://www.ncei.noaa.gov/data/local-climatological-data/
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J.3 ORIGINAL VERSION

The version of the dataset selected by Zhou et al. (2021) introduce in the Informer paper provides
hourly weather observations from a U.S. station over a 4-year period. It includes the following 12
weather indicators:

• Visibility (float)

• Dry bulb Temperature: Fahrenheit (integer), Celsius (integer)

• Wet bulb Temperature Fahrenheit (integer)

• Dew point Temperature: Fahrenheit (integer), Celsius (integer)

• Relative humidity (integer)

• Wind speed (integer)

• Wind direction (integer)

• Pressure (float)

• Altimeter (float)

• Wet bulb Temperature Celsius (float)

The dataset’s timestamp is unspecified regarding the time zone and spans from “2010-01-01
00:00:00” to “2013-12-31 23:00:00” (included).

J.3.1 OVERALL ANALYSIS

Figure 1 displays grouped plots of the 12 weather indicators over the 4-year period. The gray
and yellow areas represent the training and validation periods, respectively, as defined by the ratio
splitting. At first glance, the dataset appears consistent; however, the vertical lines mark time steps
where inconsistencies were identified.

J.3.2 FREQUENCY ANALYSIS

Fundamental 2nd 3rd

Visibility 8766.0 (365.25) 389.6 (16.23) 313.1 (13.04)
DryBulbFahrenheit 8766.0 (365.25) 24.0 (1.00) 17532.0 (730.50)
DryBulbCelsius 8766.0 (365.25) 24.0 (1.00) 17532.0 (730.50)
WetBulbFahrenheit 8766.0 (365.25) 24.0 (1.00) 4383.0 (182.62)
DewPointFahrenheit 8766.0 (365.25) 4383.0 (182.62) 2922.0 (121.75)
DewPointCelsius 8766.0 (365.25) 4383.0 (182.62) 2922.0 (121.75)
RelativeHumidity 24.0 (1.00) 8766.0 (365.25) 4383.0 (182.62)
WindSpeed 24.0 (1.00) 12.0 (0.50) 4383.0 (182.62)
WindDirection 24.0 (1.00) 12.0 (0.50) 4383.0 (182.62)
StationPressure 8766.0 (365.25) 4383.0 (182.62) 407.7 (16.99)
Altimeter 8766.0 (365.25) 4383.0 (182.62) 407.7 (16.99)
WetBulbCelsius 8766.0 (365.25) 24.0 (1.00) 4383.0 (182.62)

Table 18: Frequency analysis of the original Weather dataset from Informer. The first value is the
period in number of time steps the value in parentheses is the correspondence in days.

This study reveals that most channels exhibit a primary cycle of one year (8766 time steps, eq.
365.25 days). However, exceptions include Relative Humidity, Wind Speed and Wind Direction,
which demonstrate a one-day cycle–an expected outcome for wind due to its inherently chaotic
nature. The most prominent cycles identified in this dataset include one year, half a year, two years,
one day, half a day, and approximately half a month. As a results, the longest dominant cycle across
all channels is one year. Consequently, a cycle-inclusive splitting strategy should ensure that each
set (training, validation, and evaluation) covers at least one full year to represent these temporal
patterns effectively.
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J.3.3 CORRELATION ANALYSIS

Figures 2 represents the channels correlation of the Weather dataset from Informer using the different
methods mentioned in Appendix I.3. For all metrics, we can observe similar patterns:

1. By row: For each year, the correlations remain consistent or show only slight variations;
2. By column: Within a given period, when divided by solar seasons, the correlations between

channels can vary significantly. For instance, Winter and Spring exhibit notable differences
compared to Summer and Autumn. Additionally, while differences between Winter and
Spring, as well as Summer and Autumn, are less pronounced, they are still evident.

(a) Cosine similarity (b) Pearson

(c) Spearman (d) Kendall

Figure 2: Weather Dataset from Informer - Channels correlation for the full dataset, per year and per
season.

An efficient model for MTSF should be able to efficiently capture these seasonal variations and
dynamically adapt the dependencies based on the input season.

J.3.4 DATA DISTRIBUTION ANALYSIS

Figure 3 provides various distribution plots for the original dataset. As expected, most weather
indicators exhibit distinct seasonal distributions, with the exception of Visibility, Wind Speed and
Wind Direction. These seasonal fluctuations are especially significant for most of the channels.
In addition, some variations can be observed across years,such as changes in the distribution of
Visibility in 2012 and 2013 compared to 2010 and 2011. Any efficient MTSF model should be able
to account for such differences and patterns in order to ensure robust performance.

Although the dataset provides enough data to consider a splitting strategy based on the longest cy-
cle, Zhou et al. (2021) opted for a ratio splitting (7:1:2 ∼ 28/10/10-month). This approach is not
optimal for time series and chronological data because neither the validation nor the evaluation pe-
riods encompass a complete longest cycle, which, according to our frequency analysis, is one year.
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Figure 3: Weather Dataset from Informer - Distribution plots per channel. The last two columns
illustrate data distribution per splitting strategy: ratio and our proposal cycle-inclusive. The other
columns illustrate the data distribution for the whole datasets and per year, with a differentiation per
season.

Consequently, the training process is skewed to optimize performance for the selected validation
period (i.e., Winter), while the evaluation period (i.e., Spring) does not fully test the model’s ability
to generalize across the full cycle. Our distribution and correlation analyses further highlight no-
table differences between these periods, reinforcing the limitations of the ratio-based approach. In
addition, Figure 3 demonstrates that ratio splitting introduces significant distribution discrepancies
between the training, validation, and evaluation sets. In contrast, our cycle-inclusive splitting strat-
egy mitigates these discrepancies, ensuring that the model is trained using a score that reflects the
longest cycle and evaluated over a period covering an entire cycle.

J.3.5 INCONSISTENCIES PRESENTATION

We identified several inconsistencies in the LCD dataset:

1. Missing Values Set to Zero: Figure 4 highlights instances where missing values were in-
appropriately set to zero. For example, it is not plausible for both Fahrenheit and Celsius
values of the same indicator (e.g., Dew Point Temperature in the figure) to be zero simul-
taneously at a given time step. Moreover, having the relative humidity also set to zero at
this time step is inconsistent with surrounding values, which are close to 100%. Such an
example advocates for missing data filled with zero.

2. Incorrect Fahrenheit to Celsius Conversion: For the Wet Bulb Temperature feature,
while the expected conversion from Fahrenheit to Celsius is affine, we observed signifi-
cant errors. Figure 5a shows that for a Fahrenheit value of 32◦F, the corresponding Celsius
values range between −9.5◦C and 9.9◦C, which is unacceptably wide and indicates a prob-
lem with the data.
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3. Inconsistent Altimeter and Surface Pressure Relationship: Figure 5b illustrates a some-
what staircase relationship between Altimeter and Surface Pressure. However, inconsisten-
cies are evident when certain pressure values (e.g., 21.478686), where the altimeter values
deviate significantly from the expected pattern. Such inconsistencies hinder the model’s
ability to learn this relationship accurately.
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(a) Relative humidity
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(b) Dew Point Temperature

Figure 4: Visualization of LCD’s Relative Humidity and Dew Point Temperature for January 28-29,
2010. This figure highlights instances of missing values improperly set to zero, with both Relative
Humidity and Dew Point Temperature showing simultaneous zero values, which are inconsistent
with expected meteorological behavior.
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(b) Pressure to Altimeter

Figure 5: Visualization of Errors for 32◦F Conversion and Altimeter-to-Pressure Relationship. In
the left panel, the black line represents the affine function used for converting Fahrenheit to Celsius
using the formula C = (F −32)∗5/9. The red and blue points illustrate discovered inconsistencies
in the dataset. In the right panel, the relationship between Altimeter and Surface Pressure is shown,
highlighting deviations from the expected “staircase” pattern in Altimeter values for the pressure
value 21.478686

J.3.6 INCONSISTENCIES APPEARANCE

As shown by the colored vertical lines in Figure 1, inconsistencies are widespread throughout this
dataset, but particularly present in the evaluation period.

The red vertical lines indicate time steps where errors in the 32◦F values were identified, while
the purple lines highlight time steps where missing data were inaccurately filled with zeros for
multiple variables. Pink lines mark time steps where errors in Wet Bulb temperature conversions
were found, and brown lines depict time steps where inconsistencies between pressure and altimeter
values occurred.

J.4 PROPOSED CORRECTION

To address the issues of missing data filled with zero and altimeter-to-pressure errors, we propose
the following process outlined in the main paper: (i) replace erroneous values with NaN, (ii) apply
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linear interpolation for isolated errors, and (iii) use either context-aware when possible or linear
interpolation for consecutive errors.

Regarding the 32◦F errors, we recommend replacing inconsistent values with values computed from
the observed data and the well-known affine conversion. Specifically, 32◦F converted values are
identified as errors, if they deviate beyond the standard deviation of the correct converted data.

J.4.1 IDENTIFY INCONSISTENCIES

Six additional columns have been appended to the CSV file in order to identify the time step where
inconsistencies were corrected:

• 32F errors: identify time steps with 32◦F errors

• common conversion errors: flags time steps where missing value were filled with zeros
for a subset of variables.

• wet conversion errors: marks time steps with other conversion errors on Wet Bulb Tem-
perature features.

• pressure relation errors: highlights time steps where altimeter-to-pressure errors were
corrected.

• is ts missing: indicates time steps that were missing in the original dataset.

• is ts modified: logs all time steps where corrections were applied.

J.4.2 OVERALL ANALYSIS

Figure ?? displays grouped plots of the corrected 12 weather indicators over the 4-year period from
the LCDWf 1H 4Y USUNK version. The gray and yellow areas represent the training and valida-
tion periods, respectively, as defined by the cycle-inclusive splitting. No data stand out which would
imply that there are no errors in this version.

J.4.3 FREQUENCY ANALYSIS

Fundamental 2nd 3rd

Visibility 8766.0 (365.25) 389.6 (16.23) 313.1 (13.04)
DryBulbFahrenheit 8766.0 (365.25) 24.0 (1.00) 17532.0 (730.50)
DryBulbCelsius 8766.0 (365.25) 24.0 (1.00) 17532.0 (730.50)
WetBulbFahrenheit 8766.0 (365.25) 24.0 (1.00) 4383.0 (182.62)
DewPointFahrenheit 8766.0 (365.25) 4383.0 (182.62) 2922.0 (121.75)
DewPointCelsius 8766.0 (365.25) 4383.0 (182.62) 2922.0 (121.75)
RelativeHumidity 24.0 (1.00) 8766.0 (365.25) 4383.0 (182.62)
WindSpeed 24.0 (1.00) 12.0 (0.50) 4383.0 (182.62)
WindDirection 24.0 (1.00) 12.0 (0.50) 4383.0 (182.62)
StationPressure 8766.0 (365.25) 4383.0 (182.62) 407.7 (16.99)
Altimeter 8766.0 (365.25) 4383.0 (182.62) 407.7 (16.99)
WetBulbCelsius 8766.0 (365.25) 24.0 (1.00) 4383.0 (182.62)

Table 19: LCDWf 1H 4Y USUNK - Frequency analysis. The first value is the period in number of
time steps the value in parentheses is the equivalent in days.

The revised version does not differ from the original dataset in terms of dominant frequencies.
Therefore, the longest cycle remains one year.

J.4.4 CORRELATION ANALYSIS

The correlation patterns observed in the revised dataset are consistent with those in the original
dataset. This observation suggests that models still need to be capable of adapting dependencies
based on seasonal variations.
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(a) Cosine similarity (b) Pearson

(c) Spearman (d) Kendall

Figure 6: LCDWf 1H 4Y USUNK - Channels correlation for the full dataset, per year and per
season.

J.4.5 DATA DISTRIBUTION ANALYSIS

Figure 7 presents the distribution plots for the revised dataset: LCDWf 1H 4Y USUNK. The cor-
rections applied to address inconsistencies and errors have not altered the dataset’s inherent proper-
ties. While data distributions continue to vary significantly by season, our cycle-inclusive splitting
strategy ensures better distributional similarity between the training, validation, and test sets. This
strategy makes the dataset more suitable for benchmarking and facilitates more reliable model eval-
uations.
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Figure 7: LCDWf 1H 4Y USUNK - Distribution plots per channel. The last two columns illustrate
data distribution per splitting strategy: ratio and our proposal cycle-inclusive. The other columns
illustrate the data distribution for the whole datasets and per year, with a differentiation per season.
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Figure 8: Overview of the weather indicators from the 1-year dataset used in Autoformer and col-
lected from MPI. The gray background area represents the training period, while the yellow area
denotes the validation period as defined in the ratio splitting. Colored vertical lines indicate time
steps where inconsistencies were identified.

K MAX-PLANCK-INSTITUTE DATASET

K.1 DESCRIPTION

The Max-Planck-Institute (MPI) 9 dataset provides weather measurements collected from three dis-
tinct weather stations. One of these stations, WS Beutenberg, is located atop the building’s roof
of the Max-Planck-Institute for Biogeochemistry. It comprises 21 weather indicators, including air
temperature and humidity, recorded at 10-minute intervals. This dataset spans from “2003-11-24
16:00:00” to the present days.

K.2 ANALYSIS

Similarly to LCD, the MPI dataset is a multi-variable spatiotemporal dataset. When focusing on data
from a single station, the resulting dataset is a MTS dataset capturing observations from a specific
location in Germany via various sensors. These observations exhibit variations intricately linked to
Earth’s revolution (year, seasons) and rotation (day, hours). Other factors, such as human behavior
and global warming, likely contribute to fluctuations in the recorded parameters. This dataset of-
fers the opportunity for models to discern relationships between these indicators and leverage such
insights to predict one or multiple variables.

9https://www.bgc-jena.mpg.de/wetter/
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K.3 ORIGINAL VERSION

Wu et al. (2021) selected a 1-year period–the year 2020–of the data available from WS Beutenberg,
located on the roof of the Max-Planck-Institute for Biogeochemistry. It has a 10-minute resolution.
This datasets includes weather observations of the following 21 indicators:

• Atmospheric Pressure (p (mbar))

• Air Temperature (T (degC))

• Potential Temperature (Tpot (K))

• Dew Point Temperature (Tdew (degC))

• Relative Humidity (rh (%))

• Saturation Water Vapor Pressure (VPmax (mbar))

• Actual Water Vapor Pressure (VPact (mbar))

• Water Vapor Pressure Deficit (VPdef (mbar))

• Specific Humidity (sh (g/kg))

• Water Vapor Concentration (H2OC (µmol/mol))

• Air Density (rho (g/m3))

• Wind Velocity (wv (m/s))

• Maximum Wind Velocity (max. wv (m/s))

• Wind Direction (wd (deg))

• Precipitation Amount (rain (mm))

• Precipitation Duration (raining (s))

• Surface Shortwave Downward Radiation (SWDR (W/m2))

• Photosynthetic Active Radiation (PAR (µmol/m2/s))

• Maximum Photosynthetic Active Radiation (max. PAR (µmol/m2/s))

• Internal Logger Temperature (Tlog (degC))

• CO2 concentration (CO2 (ppm))

The timestamp are provided without any specific time zone. The dataset spans from “2020-01-01
00:10:00” to “2021-01-01 00:10:00” (included).

K.3.1 OVERALL ANALYSIS

Figure 8 presents the plots of the different weather indicators. The gray area represents the training
period, while the yellow area indicates the validation period, as defined by the ratio splitting strat-
egy. The presence of errors is particularly noticeable in plots where the y-axis extends to values as
extreme as −10000, which are clearly unrealistic for any of the weather indicators monitored.

In addition, as this dataset spans only one year, the ratio splitting approach trains on one part of the
year and evaluates on another, leading to a highly specific evaluation. This splitting method does
not adequately represent the model’s ability to produce accurate predictions across the entire year,
which poses problem for potential real-world applications.

K.3.2 FREQUENCY ANALYSIS

The frequency analysis indicates that 10 channels exhibit a dominant yearly cycle (52696 time steps,
approximately 365.94 days). The remaining channels show dominant cycles of one day (7 channels),
half a month (1 channel), two months (1 channel), two and a half months (1channel), and four
months (1 channel). The most prominent cycles in this dataset are one year, six months, four months,
and one day.
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Fundamental 2nd 3rd

p (mbar) 10539.2 (73.19) 8782.7 (60.99) 4391.3 (30.50)
T (degC) 52696.0 (365.94) 144.0 (1.00) 26348.0 (182.97)
Tpot (K) 52696.0 (365.94) 144.0 (1.00) 26348.0 (182.97)
Tdew (degC) 52696.0 (365.94) 26348.0 (182.97) 17565.3 (121.98)
rh (%) 144.0 (1.00) 52696.0 (365.94) 17565.3 (121.98)
VPmax (mbar) 52696.0 (365.94) 144.0 (1.00) 26348.0 (182.97)
VPact (mbar) 52696.0 (365.94) 26348.0 (182.97) 10539.2 (73.19)
VPdef (mbar) 52696.0 (365.94) 144.0 (1.00) 143.6 (1.00)
sh (g/kg) 52696.0 (365.94) 26348.0 (182.97) 10539.2 (73.19)
H2OC (µmol/mol) 52696.0 (365.94) 26348.0 (182.97) 10539.2 (73.19)
rho (g/m3) 52696.0 (365.94) 144.0 (1.00) 26348.0 (182.97)
wv (m/s) 144.0 (1.00) 143.6 (1.00) 72.0 (0.50)
max. wv (m/s) 144.0 (1.00) 8782.7 (60.99) 143.6 (1.00)
wd (deg) 8782.7 (60.99) 52696.0 (365.94) 3293.5 (22.87)
rain (mm) 2107.8 (14.64) 17565.3 (121.98) 258.3 (1.79)
raining (s) 17565.3 (121.98) 893.2 (6.20) 958.1 (6.65)
SWDR (W/m2) 144.0 (1.00) 52696.0 (365.94) 143.6 (1.00)
PAR (µmol/m2/s) 144.0 (1.00) 52696.0 (365.94) 143.6 (1.00)
max. PAR (µmol/m2/s) 144.0 (1.00) 52696.0 (365.94) 143.6 (1.00)
Tlog (degC) 52696.0 (365.94) 144.0 (1.00) 26348.0 (182.97)
CO2 (ppm) 144.0 (1.00) 4053.5 (28.15) 521.7 (3.62)

Table 20: Weather from Autoformer - Frequency analysis. The first value is the period in number of
time steps the value in parentheses is the equivalent in days.

K.3.3 CORRELATION ANALYSIS

Figures 9 represents the channels correlation of the Weather dataset from Autoformer using the
different methods mentioned in Appendix I.3. Across all metrics, significant seasonal differences
are observed:

• Winter and Spring exhibit correlations that differ substantially from those of Summer and
Autumn

• Some smaller differences are also observed between Winter and Spring, as well as between
Summer and Autumn.

An efficient MTSF model must effectively capture these seasonal variations and adapt the depen-
dencies based on the input season.

K.3.4 DATA DISTRIBUTION ANALYSIS

Similar to LCD, most weather indicators demonstrate distinct seasonal distributions, with significant
fluctuations for several channels.

Figure 10 provides two data distribution plots for the original dataset: one per season and one per
data splitting set. As expected, channels with inconsistencies or where failure values have been iden-
tified appear anomalous. Similarly to LCD, most weather indicators demonstrate distinct seasonal
distributions, with significant fluctuations for several channels.

The lack of data spanning multiple years prevent from using a cycle-inclusive splitting strategy with
a one year dominant cycle. Instead, Wu et al. (2021) adopted a ratio splitting (7:1:2 ∼ (8.4/1.2/2.4
months). This approach implies that neither the validation nor the evaluation periods encompass a
complete longest cycle. Consequently, the training process is skewed to optimize performance for
the selected validation period (i.e., Autumn), while the evaluation (i.e., Winter) fails to adequately
test the model’s ability to generalize across the full cycle. As demonstrated by the distribution and
correlation analyses, notable differences exist between these periods. In addition, we observed in
Figure 10 that the ratio splitting strategy implies significant distribution difference between training,
validation and evaluation sets.
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(a) Cosine similarity (b) Pearson (c) Spearman (d) Kendall

Figure 9: Weather Dataset from Autoformer - Channels correlation for the full dataset and per
season.

K.3.5 INCONSISTENCIES PRESENTATION

We identified three types of inconsistencies in the MPI dataset:

1. Failure Values (−9999): Figure 8 shows instances where the value −9999 appears
throughout the dataset, likely indicating measurement failures or missing observations due
to instrument errors.

2. Duplicated entries: We found duplicated entries with identical timestamp and values
across all variables.

3. Missing Time Step: Certain time steps are missing from the original data.

These inconsistencies can present in the file provided by Autoformer as well as the data archives on
the original website, as detailed in Table 21.

Duplicated Missing
Autoformer 1 9
2020a 1 9
2020b 0 0
2021a 0 0
2021b 0 0
2022a 6 0
2022b 1 82
2023a 0 3
2023b 143 0

Table 21: Count of duplicated entries and missing time steps found in the Autoformer CSV file and
data archives from the Max-Planck-Institute original website.

K.3.6 INCONSISTENCIES APPEARANCE

In Figure 8, colored vertical lines indicate time steps with inconsistencies. These errors occur only
in the training period for the dataset introduced in the Autoformer paper.
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Figure 10: Weather Dataset from Autoformer - Distribution plots per channel. The last column
illustrates data distribution with the ratio splitting strategy. The first column illustrates the data
distribution for the whole datasets with a differentiation per season.

The pink vertical lines mark time steps where failure value appeared, while the purple lines denote
missing time steps.

K.4 PROPOSED CORRECTION

To address these errors (failure values and missing time steps), we propose the following correction
process as described in the main paper: (i) replace erroneous values with NaN, (ii) apply linear
interpolation for isolated errors, and (iii) for consecutive errors, use context-aware when possible or
linear interpolation.

The corrected dataset is visualized in Figure 11.

K.4.1 IDENTIFY INCONSISTENCIES

Five additional columns have been added to the CSV file in order to identify the time steps where
inconsistencies were corrected:

• is wv value error: flags time steps where a failure value arose in Wind Velocity.

• is maxPAR value error: marks time steps where a failure value occurred in the Maxi-
mum Photosynthetic Active Radiation variable.
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Figure 11: Overview of the weather indicators from the 1-year dataset used in Autoformer after our
correction process. The gray [resp. yellow] background area denotes the training [resp. validation]
period as defined in the ratio splitting. Colored vertical lines indicate time steps where inconsisten-
cies were identified.

• is OT value error: identifies time steps where a failure value appeared in the CO2 con-
centration variable.

• is ts missing: indicates time steps that were missing in the original dataset.

• is ts modified: logs all time steps where corrections were applied.

K.4.2 OVERALL ANALYSIS

Figure 11 shows the plots of the different weather indicators from the corrected version. The gray
area represents the training period, while the yellow area indicates the validation period as defined
by the ratio splitting strategy. The corrections appear to have effectively addressed the errors and
inconsistencies.

K.4.3 FREQUENCY ANALYSIS

The frequency analysis of the revised dataset reveals slight differences from the original. While 10
channels still exhibit a dominant yearly frequency, the cycle now spans 52704 time steps (equivalent
to 366 days), confirming that time steps were missing in the original dataset. The primary cycles in
this dataset are now one year, six months, four months, and one day.

K.4.4 CORRELATION ANALYSIS

The correlation analysis for the corrected version closely resembles that of the original Autoformer
dataset, with no significant deviations.
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Fundamental 2nd 3rd

p (mbar) 10540.8 (73.20) 8784.0 (61.00) 4392.0 (30.50)
T (degC) 52704.0 (366.00) 144.0 (1.00) 26352.0 (183.00)
Tpot (K) 52704.0 (366.00) 144.0 (1.00) 26352.0 (183.00)
Tdew (degC) 52704.0 (366.00) 26352.0 (183.00) 17568.0 (122.00)
rh (%) 144.0 (1.00) 52704.0 (366.00) 17568.0 (122.00)
VPmax (mbar) 52704.0 (366.00) 144.0 (1.00) 26352.0 (183.00)
VPact (mbar) 52704.0 (366.00) 26352.0 (183.00) 10540.8 (73.20)
VPdef (mbar) 52704.0 (366.00) 144.0 (1.00) 143.6 (1.00)
sh (g/kg) 52704.0 (366.00) 26352.0 (183.00) 10540.8 (73.20)
H2OC (µmol/mol) 52704.0 (366.00) 26352.0 (183.00) 10540.8 (73.20)
rho (g/m3) 52704.0 (366.00) 144.0 (1.00) 26352.0 (183.00)
wv (m/s) 144.0 (1.00) 52704.0 (366.00) 8784.0 (61.00)
max. wv (m/s) 144.0 (1.00) 8784.0 (61.00) 2773.9 (19.26)
wd (deg) 8784.0 (61.00) 52704.0 (366.00) 3294.0 (22.88)
rain (mm) 2108.2 (14.64) 17568.0 (122.00) 258.4 (1.79)
raining (s) 17568.0 (122.00) 893.3 (6.20) 958.3 (6.65)
SWDR (W/m2) 144.0 (1.00) 52704.0 (366.00) 72.0 (0.50)
PAR (µmol/m2/s) 144.0 (1.00) 52704.0 (366.00) 72.0 (0.50)
max. PAR (µmol/m2/s) 144.0 (1.00) 52704.0 (366.00) 72.0 (0.50)
Tlog (degC) 52704.0 (366.00) 144.0 (1.00) 26352.0 (183.00)
CO2 (ppm) 144.0 (1.00) 144.4 (1.00) 52704.0 (366.00)

Table 22: MPIW 10T 1Y R - Frequency analysis. The first value is the period in number of time
steps the value in parentheses is the equivalent in days.

(a) Cosine similarity (b) Pearson (c) Spearman (d) Kendall

Figure 12: MPIW 10T 1Y R - Channels correlation for the full dataset and per season.

K.4.5 DATA DISTRIBUTION ANALYSIS

Figure 13 provides two distribution plots for our corrected version MPIW 10T 1Y R: one per sea-
son and one per splitting strategy set. As expected, the channel for which inconsistencies and espe-
cially failure values were uncovered now appears more consistent with the other channels. However,
the distribution shift induced by the ratio splitting strategy persists.
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Figure 13: MPIW 10T 1Y R - Distribution plots per channel. The last column illustrates data
distribution with the ratio splitting strategy. The first column illustrates the data distribution for the
whole datasets with a differentiation per season.

K.5 EXTENDED VERSIONS

To investigate cycle-inclusive splits, we extended the dataset to cover a 4-year period spanning from
“2020-01-01 00:10:00” to “2024-01-01 00:10:00” (included). We collected additional data from
the corresponding website and applied our correction process. The corrected dataset is shown in
Figure 14. As illustrated, errors primarily appeared in the training and validation periods. However,
due to our correction process, their impact should be minimal.

K.5.1 OVERALL ANALYSIS

Figure 14 depicts the plots of the different weather indicators for the extended and corrected dataset.
The gray area represents the training period, while the yellow area indicates the validation period as
defined by the ratio splitting strategy. Errors and inconsistencies are no longer visible, suggesting
that the corrections were applied successfully. This four-year dataset further confirms the presence
of clear yearly cycles, as indicated by earlier analyses.

K.5.2 FREQUENCY ANALYSIS

The frequency analysis of the extended dataset reveals differences from the one-year datasets. Now,
12 channels have a dominant yearly frequency and 7 channels have a dominant daily frequency. The
most common cycles are one year, six months, and one day. As a result, the longest dominant cycle
across all channels remains one year. However, it is now possible to use a cycle-inclusive splitting
strategy that covers at least one full year.
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Figure 14: Overview of the weather indicators from our proposed 4-year dataset collected from
MPI after our correction process. The gray background area represents the training period, while
the yellow area denotes the validation period as defined in our proposed cycle-inclusive splitting.
Colored vertical lines indicate time steps where inconsistencies were identified.

Fundamental 2nd 3rd

p (mbar) 15027.4 (104.36) 16183.4 (112.38) 8091.7 (56.19)
T (degC) 52596.0 (365.25) 144.0 (1.00) 26298.0 (182.63)
Tpot (K) 52596.0 (365.25) 144.0 (1.00) 26298.0 (182.63)
Tdew (degC) 52596.0 (365.25) 8766.0 (60.88) 26298.0 (182.63)
rh (%) 144.0 (1.00) 52596.0 (365.25) 143.6 (1.00)
VPmax (mbar) 52596.0 (365.25) 144.0 (1.00) 26298.0 (182.63)
VPact (mbar) 52596.0 (365.25) 26298.0 (182.63) 8766.0 (60.88)
VPdef (mbar) 52596.0 (365.25) 144.0 (1.00) 143.6 (1.00)
sh (g/kg) 52596.0 (365.25) 26298.0 (182.63) 8766.0 (60.88)
H2OC (µmol/mol) 52596.0 (365.25) 26298.0 (182.63) 8766.0 (60.88)
rho (g/m3) 52596.0 (365.25) 144.0 (1.00) 5686.1 (39.49)
wv (m/s) 144.0 (1.00) 52596.0 (365.25) 9562.9 (66.41)
max. wv (m/s) 144.0 (1.00) 52596.0 (365.25) 143.6 (1.00)
wd (deg) 52596.0 (365.25) 21038.4 (146.10) 144.0 (1.00)
rain (mm) 2805.1 (19.48) 52596.0 (365.25) 1290.7 (8.96)
raining (s) 52596.0 (365.25) 16183.4 (112.38) 2390.7 (16.60)
SWDR (W/m2) 144.0 (1.00) 52596.0 (365.25) 143.6 (1.00)
PAR (µmol/m2/s) 144.0 (1.00) 52596.0 (365.25) 143.6 (1.00)
max. PAR (µmol/m2 /s) 144.0 (1.00) 52704.0 (366.00) 72.0 (0.50)
Tlog (degC) 52596.0 (365.25) 144.0 (1.00) 144.4 (1.00)
CO2 (ppm) 144.0 (1.00) 144.4 (1.00) 143.6 (1.00)

Table 23: MPIW 10T 4Y R - Frequency analysis. The first value is the period in number of time
steps the value in parentheses is the equivalent in days.

K.5.3 CORRELATION ANALYSIS

Figure 15 displays the channel correlations for the extended dataset MPIW 10T 4Y R using the
different methods mentioned in Appendix I.3. Similarly to LCD, for all metrics, the following
patterns emerge:
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1. By row: Year-to-year correlations remain consistent (with minimal variation);

2. By column: Within a given period, when divided by solar seasons, the correlations can
vary significantly. For instance, Winter and Spring exhibit notable differences compared to
Summer and Autumn. In addition, while differences between Winter and Spring, as well as
Summer and Autumn, are less pronounced, they are still evident.

(a) Cosine similarity (b) Pearson

(c) Spearman (d) Kendall

Figure 15: MPIW 10T 4Y R - Channels correlation for the full dataset, per year and per season.

K.5.4 DATA DISTRIBUTION ANALYSIS

Figure 16 provides various distribution plots for the corrected four-year dataset: MPIW 10T 4Y R.
Some inter-annual variations are observed, such as differences in Relative Humidity (rh) densities
between 2021 and 2022 compared to 2020 and 2024. Any efficient MTSF models should account
for such variations in order to be considered robust.

In addition, we observed in Figure 16 that our cycle-inclusive splitting strategy significantly reduces
distribution shift across sets, ensuring that model performances are evaluated over the longest cycle
period.

K.5.5 IDENTIFY INCONSISTENCIES:

Six additional columns have been appended to the produced CSV files in order to identify the time
steps where inconsistencies were corrected:

• is wv value error: marks time steps where a failure value appeared in the Wind Velocity
variable.

• is SWDR value error: highlights time steps where a failure value occurred in the Sur-
face Shortwave Downward Radiation variable.
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Figure 16: MPIW 10T 4Y R - Distribution plots per channel. The last column illustrates data
distribution with the ratio splitting strategy. The first column illustrates the data distribution for the
whole datasets with a differentiation per season.

• is maxPAR value error: flags time steps where a failure value appeared in the Maxi-
mum Photosynthetic Active Radiation variable.

• is CO2 value error: identifies time steps where a failure value occurred in the CO2 con-
centration variable.

• is ts missing: indicates time steps that were missing in the original dataset.
• is ts modified: logs all time steps where corrections were applied.

K.5.6 HOURLY VERSION:

We propose an hourly version of this 4-year dataset by aggregating data over six consecutive time
steps (i.e., from HH:10 to HH+1:00). The following aggregation functions are applied to the corre-
sponding variables:

• Sum: Precipitation Amount, Precipitation Duration, Surface Shortwave Downward Radi-
ation, Photosynthetic Active Radiation and columns identifying the errors.

• Maximum: Maximum Photosynthetic Active Radiation and Maximum Wind Velocity.
• Mean: All other variables.

Frequency Analysis: As shown in Table 24, the frequency analysis of the hourly dataset is similar
to that of the 10-minute interval dataset.

Correlation Analysis: As shown in Figure 17, the correlation analysis of the hourly dataset is
similar to that of the 10-minute interval dataset.

The data distribution of the hourly dataset being very similar to the 10-minute interval dataset, the
corresponding plots have been omitted.
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Fundamental 2nd 3rd

p (mbar) 2504.6 (104.36) 2697.2 (112.38) 1348.6 (56.19)
T (degC) 8766.0 (365.25) 24.0 (1.00) 4383.0 (182.62)
Tpot (K) 8766.0 (365.25) 24.0 (1.00) 4383.0 (182.62)
Tdew (degC) 8766.0 (365.25) 1461.0 (60.88) 4383.0 (182.62)
rh (%) 24.0 (1.00) 8766.0 (365.25) 23.9 (1.00)
VPmax (mbar) 8766.0 (365.25) 24.0 (1.00) 4383.0 (182.62)
VPact (mbar) 8766.0 (365.25) 4383.0 (182.62) 1461.0 (60.88)
VPdef (mbar) 8766.0 (365.25) 24.0 (1.00) 23.9 (1.00)
sh (g/kg) 8766.0 (365.25) 4383.0 (182.62) 1461.0 (60.88)
H2OC (µmol/mol) 8766.0 (365.25) 4383.0 (182.62) 1461.0 (60.88)
rho (g/m3) 8766.0 (365.25) 24.0 (1.00) 947.7 (39.49)
wv (m/s) 24.0 (1.00) 8766.0 (365.25) 1593.8 (66.41)
max. wv (m/s) 24.0 (1.00) 8766.0 (365.25) 23.9 (1.00)
wd (deg) 8766.0 (365.25) 3506.4 (146.10) 24.0 (1.00)
rain (mm) 467.5 (19.48) 8766.0 (365.25) 215.1 (8.96)
raining (s) 8766.0 (365.25) 2697.2 (112.38) 398.5 (16.60)
SWDR (W/m2) 24.0 (1.00) 8766.0 (365.25) 23.9 (1.00)
PAR (µmol/m2/s) 24.0 (1.00) 8766.0 (365.25) 23.9 (1.00)
max. PAR (µmol/m2/s) 24.0 (1.00) 8766.0 (365.25) 23.9 (1.00)
Tlog (degC) 8766.0 (365.25) 24.0 (1.00) 24.1 (1.00)
CO2 (ppm) 24.0 (1.00) 24.1 (1.00) 23.9 (1.00)

Table 24: MPIW 1H 4Y R - Frequency analysis. The first value is the period in number of time
steps the value in parentheses is the equivalent in days.

(a) Cosine similarity (b) Pearson

(c) Spearman (d) Kendall

Figure 17: MPIW 1H 4Y R - Channels correlation for the full dataset, per year and per season.
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Figure 18: Overview of the normalized electricity consumption patterns of clients from the ECL
dataset (derived from the UCI ELD dataset). The heatmap visualization simplifies the identification
of inconsistent consumption patterns among clients.

L ELECTRICITY LOAD DIAGRAMS DATASET

L.1 DESCRIPTION

The ELD 10 dataset consists of the electricity consumption data of 370 clients from what it appears
to be a Portuguese electricity provider as timestamps report to Portuguese hours. Measurements
were originally recorded every 15 minutes. The raw dataset covers the period from “2011-01-01
00:15:00” to “2015-01-01 00:00:00” (included). By aggregating four consecutive measurements
(i.e., HH:15, HH:30, HH:45 and HH+1:00, an hourly version of the dataset can be obtained. Al-
though the dataset description in UCI indicates having no missing data, some profiles depicted long
and constant consumption equal to zero, as shown in the following sections, probably suggesting
late arrival or early departure when occurring at the beginning or the end of the covered period,
respectively.

L.2 ANALYSIS

We consider the ELD dataset as spatiotemporal, where each channel represents the electricity con-
sumption of clients across different locations in Portugal. These clients may belong to various
categories such as Residential, Commercial, or Industrial, resulting in diverse consumption patterns

10https://archive.ics.uci.edu/dataset/321/electricityloaddiagrams20112014
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and variation in volume, as evidenced in this document. While the dataset lacks specific information
on the location and type of clients, it presents a rich tapestry of cycles closely tied to date, time, and
human behavior. In addition, the variability in consumption patterns among clients poses a signifi-
cant challenge for models, especially without external information, requiring them to decipher these
underlying characteristics and correlations to accurately predict electricity consumption. Overall,
predicting electricity consumption with this dataset presents a challenging task.

L.3 ORIGINAL DATASET

ECL is an hourly dataset first introduced by (Li et al., 2019), derived from the ELD dataset avail-
able on UCI. This dataset provides electricity consumption data from 321 clients in Portugal, each
identified as “MT XXX”, with ’XXX’ representing a unique identifier.

All timestamps report to Portuguese hours. The dataset covers the period from “2012-01-01
00:00:00” to “2014-12-31 23:00:00” (included).

L.3.1 OVERALL ANALYSIS

Figure 18 plots the normalized consumption of the considered clients as a heatmap, aiding in the
identification of distinctive patterns. These include clients with constant consumption values over
time or those with unusual consumption patterns not typically observed in electricity usage. This
figure reveals that most clients exhibit similar patterns, with noticeable summer peaks recurring
annually in the bottom section of the figure. Conversely, clients in the upper section depict less
pronounced peaks.

Notably, certain clients exhibit anomalies, such as the client displaying a continuous period of zero
consumption (indicated by a black region).

(a) MT 182

(b) MT 245

Figure 19: Overview of the electricity consumption profiles of two clients showing “early depar-
ture”. The gray background area represents the training period, while the yellow area represents the
validation period as defined in the ratio splitting. MT 245 also exhibits sudden changes in con-
sumption patterns.

L.3.2 INCONSISTENCIES PRESENTATION

In the following figures, the gray [resp. yellow] area represents the training [resp. validation] period
as defined in the ratio splitting. In the raw UCI dataset, clients who began participating after the
dataset’s starting date showed constant consumption equal to zero before their participation started.
These clients, that we refer to as “late arrival” clients, were removed in the ECL dataset version.
However, as shown in Figure 19, two clients in the ECL dataset (particularly MT 182) exhibit
prolonged zero consumption after a certain date, suggesting an “early departure”. We believe that
these clients should have likely been removed as well to avoid impacting model evaluation in MTS
forecasting.
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(a) MT 002

(b) MT 032

(c) MT 057

(d) MT 127

(e) MT 146

Figure 20: Overview of the electricity consumption profiles of five clients displaying sudden changes
in their overall patterns. The gray background area represents the training period, while the yellow
area represents the validation period as defined in the ratio splitting. MT 127 and MT 146 also
exhibit unusual consumption patterns at the beginning of the monitored period.

In addition, our analysis unveiled some clients with unusual and significant changes in their con-
sumption patterns, such as the one shown in Figure 20. Without external information explaining
such sudden changes, it becomes challenging for models to accurately learn consumption patterns
and potential inter-variable relations.

Finally, similar to other datasets, we believe that the ratio splitting may not be optimal for conduct-
ing a fair comparison between models. This approach may favor models that perform well in the
evaluation period but could potentially perform poorly elsewhere.

34



1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889

Under review as a conference paper at ICLR 2025

L.3.3 FREQUENCY ANALYSIS

Fundamental 2nd 3rd

MT 001 12.0 (0.50) 24.0 (1.00) 8768.0 (365.33)
MT 002 26304.0 (1096.00) 8768.0 (365.33) 13152.0 (548.00)
MT 003 24.0 (1.00) 12.0 (0.50) 8768.0 (365.33)
MT 004 8768.0 (365.33) 24.0 (1.00) 4384.0 (182.67)
MT 005 24.0 (1.00) 12.0 (0.50) 8768.0 (365.33)
MT 006 4384.0 (182.67) 8768.0 (365.33) 2922.7 (121.78)
MT 007 24.0 (1.00) 12.0 (0.50) 8.0 (0.33)
MT 008 12.0 (0.50) 8768.0 (365.33) 24.0 (1.00)
MT 009 24.0 (1.00) 8768.0 (365.33) 84.0 (3.50)
MT 010 24.0 (1.00) 8768.0 (365.33) 12.0 (0.50)
MT 011 24.0 (1.00) 167.5 (6.98) 84.0 (3.50)
MT 012 24.0 (1.00) 8768.0 (365.33) 167.5 (6.98)
MT 013 24.0 (1.00) 12.0 (0.50) 4384.0 (182.67)
MT 014 24.0 (1.00) 12.0 (0.50) 8768.0 (365.33)
MT 015 24.0 (1.00) 12.0 (0.50) 4384.0 (182.67)
MT 016 24.0 (1.00) 12.0 (0.50) 4384.0 (182.67)
MT 017 24.0 (1.00) 12.0 (0.50) 8768.0 (365.33)
MT 018 24.0 (1.00) 12.0 (0.50) 8768.0 (365.33)
MT 019 24.0 (1.00) 12.0 (0.50) 8.0 (0.33)
MT 020 12.0 (0.50) 24.0 (1.00) 6.0 (0.25)
MT 021 12.0 (0.50) 24.0 (1.00) 8768.0 (365.33)
MT 022 24.0 (1.00) 12.0 (0.50) 8768.0 (365.33)
MT 023 24.0 (1.00) 8768.0 (365.33) 12.0 (0.50)
MT 024 24.0 (1.00) 8768.0 (365.33) 12.0 (0.50)
MT 025 167.5 (6.98) 84.0 (3.50) 168.6 (7.03)
MT 026 24.0 (1.00) 12.0 (0.50) 8768.0 (365.33)
MT 027 24.0 (1.00) 12.0 (0.50) 8.0 (0.33)
MT 028 12.0 (0.50) 24.0 (1.00) 4384.0 (182.67)

Table 25: ECL Dataset - Frequency analysis of the first channels. The first value is the period in
number of time steps the value in parentheses is the equivalent in days.

From Table 25 we can observed that some channels have their dominant periods significantly over
one year. But the majority exhibit a longest cycle of one year.
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L.3.4 DATA DISTRIBUTION ANALYSIS

Figure 21 provides the distribution plots for the ECL dataset, revealing that channels are sensitive to
seasonal variations.

Figure 21: ECL Dataset - Distribution plots per channel. The last two columns illustrate data distri-
bution per splitting strategy: ratio and our proposal cycle-inclusive. The other columns illustrate the
data distribution for the whole datasets and per year, with a differentiation per season.

L.4 PROPOSED CORRECTION

Based on our observations, we propose removing the following 13 clients from the ECL dataset:

• Early departure: MT 182 and MT 245

• Significant changes in consumption patterns: MT 032, MT 057, MT 127, MT 146
and MT 307

• No clear cyclical patterns: MT 002, MT 106, MT 114, MT 122, MT 298 and
MT 310

The overall visualization of our proposed dataset is depicted in Figure 22.
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Figure 22: Overview of the normalized electricity consumption patterns of clients from our revised
version of ECL dataset. The heatmap visualization simplifies the identification of inconsistent con-
sumption patterns among clients.

L.4.1 FREQUENCY ANALYSIS

From Table 26 we can observed that some channels have their dominant periods significantly over
one year, but also significantly less than with the ECL dataset. But the majority exhibit a longest
cycle of one year.
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Fundamental 2nd 3rd

MT 000 13152.0 (548.00) 6576.0 (274.00) 3757.7 (156.57)
MT 001 12.0 (0.50) 24.0 (1.00) 8768.0 (365.33)
MT 003 24.0 (1.00) 12.0 (0.50) 8768.0 (365.33)
MT 004 8768.0 (365.33) 24.0 (1.00) 4384.0 (182.67)
MT 005 24.0 (1.00) 12.0 (0.50) 8768.0 (365.33)
MT 006 4384.0 (182.67) 8768.0 (365.33) 2922.7 (121.78)
MT 007 24.0 (1.00) 12.0 (0.50) 8.0 (0.33)
MT 008 12.0 (0.50) 8768.0 (365.33) 24.0 (1.00)
MT 009 24.0 (1.00) 8768.0 (365.33) 84.0 (3.50)
MT 010 24.0 (1.00) 8768.0 (365.33) 12.0 (0.50)
MT 011 24.0 (1.00) 167.5 (6.98) 84.0 (3.50)
MT 012 24.0 (1.00) 8768.0 (365.33) 167.5 (6.98)
MT 013 24.0 (1.00) 12.0 (0.50) 4384.0 (182.67)
MT 014 24.0 (1.00) 12.0 (0.50) 8768.0 (365.33)
MT 015 24.0 (1.00) 12.0 (0.50) 4384.0 (182.67)
MT 016 24.0 (1.00) 12.0 (0.50) 4384.0 (182.67)
MT 017 24.0 (1.00) 12.0 (0.50) 8768.0 (365.33)
MT 018 24.0 (1.00) 12.0 (0.50) 8768.0 (365.33)
MT 019 24.0 (1.00) 12.0 (0.50) 8.0 (0.33)
MT 020 12.0 (0.50) 24.0 (1.00) 6.0 (0.25)
MT 021 12.0 (0.50) 24.0 (1.00) 8768.0 (365.33)
MT 022 24.0 (1.00) 12.0 (0.50) 8768.0 (365.33)
MT 023 24.0 (1.00) 8768.0 (365.33) 12.0 (0.50)
MT 024 24.0 (1.00) 8768.0 (365.33) 12.0 (0.50)
MT 025 167.5 (6.98) 84.0 (3.50) 168.6 (7.03)
MT 026 24.0 (1.00) 12.0 (0.50) 8768.0 (365.33)
MT 027 24.0 (1.00) 12.0 (0.50) 8.0 (0.33)
MT 028 12.0 (0.50) 24.0 (1.00) 4384.0 (182.67)

Table 26: PELD 1H 3Y 308 - Frequency analysis of the first channels. The first value is the period
in number of time steps the value in parentheses is the equivalent in days.

L.4.2 DATA DISTRIBUTION ANALYSIS

Figure 23 provides the same distribution plots for the revised dataset: PELD 1H 3Y 308. The
modified inconsistencies and errors did not altered the properties of the datasets. Data distribution
vary significantly per season, but our cycle-inclusive strategy ensure better distribution similarity
between sets, making such dataset more suitable for benchmarking.
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Figure 23: PELD 1H 3Y 308 - Distribution plots per channel. The last two columns illustrate
data distribution per splitting strategy: ratio and our proposal cycle-inclusive. The other columns
illustrate the data distribution for the whole datasets and per year, with a differentiation per season.

L.5 FUTURE VERSION

In the future, it may be necessary to remove or better identify clients exhibiting “short” periods of
unusual consumption patterns or specific trends (either upward or downward consumption trends
over years). This approach would allow for the segmentation of typical metrics (MAE, MSE, etc.)
into three categories: an overall metric, metrics for clients with “usual” cyclical patterns, and metrics
specifically for clients with these specific characteristics. Such a categorization would provide a
clearer understanding of model performance and enable researchers to refine architectures more
effectively.
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