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1 Further Background on SMAC1

StarCraft is a popular environment for testing RL algorithms. It typically features features a centralised2

controller issuing commands to balance micromanagement, the low-level control of individual units,3

and macromanagement, the high level plans for economy and resource management.4

SMAC [12], instead, focuses on decentralised unit micromanagement across a range of scenarios5

divided into three broad categories: symmetric, where each side has the same units, asymmetric,6

where the enemy team has more units, and micro-trick, which are scenarios designed specifically to7

feature a particular StarCraft micromanagement strategy. SMACv2 [5] demonstrates that open-loop8

policies can be effective on SMAC and adds additional randomly generated scenarios to rectify9

SMAC’s lack of stochasticity. However, both of these environments rely on running the full game of10

StarCraft II, which severely increases their CPU and memory requirements. SMAClite [10] attempts11

to alleviate this computational burden by recreating the SMAC environment primarily in NumPy, with12

some core components written in C++. While this is much more lightweight than SMAC, it cannot13

be run on a GPU and therefore cannot be parallelised effectively with typical academic hardware,14

which commonly has very few CPU cores compared to industry clusters.15

2 Further Details on Environments16

2.1 SMAX17

The StarCraft Multi-Agent Challenge (SMAC) is a popular benchmark but has a number of shortcom-18

ings. First, as noted and addressed in SMACv2, SMAC is not particularly stochastic. This means19

that non-trivial win-rates are possible on many SMAC maps by conditioning a policy only on the20

timestep and agent ID. Additionally, SMAC relies on StarCraft II as a simulator. While this allows21

SMAC to use the wide range of units, objects and terrain available in StarCraft II, running an entire22

instance of StarCraft II is slow and memory intensive. StarCraft II runs on the CPU and therefore23

SMAC’s parallelisation is severely limited with typical academic compute.24

Using the StarCraft II game engine also constrains environment design. For example, StarCraft II25

groups units into three races and does not allow units of different races on the same team, limiting the26
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At the start, AI always heads for a
fixed point

Once there, AI does nothing if not attacked

(a) SMAC heuristic AI operation

SMACv2 heuristic AI agents always know
enemy's positions, meaning they unfairly

condition on global information

sight
range

t
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SMACv2 heuristic AI attacks the globally
nearest enemy, meaning the enemy flip-flops
between moving enemies at different timesteps

(b) SMACv2 heuristic AI operation

Figure 1: As shown in Figure 1a, SMAC heuristic AI is decentralised, but does not generalise to new
start positions. SMACv2 heuristic AI solves the problem of not being able to locate enemies on the
map, but does so via conditioning on the global state, which means that some scenarios might be
unwinnable. Additionally, the SMACv2 heuristic AI targets the closest enemy, which can lead to
flip-flopping between targets. This is shown in Figure 1b

variety of scenarios that can be generated. Secondly, SMAC does not support a competitive self-play27

setting without significant engineering work. The purpose of SMAX is to address these limitations. It28

provides access to a simplified SMAC-like, hardware-accelerated, customisable environment that29

supports self-play and custom unit types. SMAX models units as discs in a continuous 2D space. As30

listed in Table 1, we include all SMAC(v1) scenarios alongside three inspired by SMAC(v2).31

Observations in SMAX are structured similarly to SMAC. Each agent observes the health, previous32

action, position, weapon cooldown and unit type of all allies and enemies in its sight range. Like33

SMACv2[5], we use the sight and attack ranges as prescribed by StarCraft II rather than the fixed34

values used in SMAC.35

SMAX and SMAC have different returns. SMAC’s reward function, like SMAX’s, is split into two36

parts: one part for depleting enemy health, and another for winning the episode. However, in SMAC,37

the part which rewards depleting enemy health scales with the number of agents. This is most clearly38

demonstrated in 27m_vs_30m, where a random policy gets a return of around 10 out of a maximum of39

20 because almost all the reward is for depleting enemy health or killing agents, rather than winning40

the episode. In SMAX, however, 50% of the total return is always for depleting enemy health, and41

50% for winning.42

SMAX also features a different, and more sophisticated, heuristic AI. The heuristic in SMAC simply43

moves to a fixed location, attacking any enemies it encounters along the way, and the heuristic in44

SMACv2 globally pursues the nearest agent. Thus the SMAC AI often does not aggressively pursue45

enemies that run away, and cannot generalise to the SMACv2 start positions, whereas the SMACv246

heuristic AI conditions on global information and is exploitable because of its tendency to flip-flop47

between two similarly close enemies. SMAC’s heuristic AI must be coded in the map editor, which48

does not provide a simple coding interface. Figure 1 demonstrates these limitations.49

In contrast, SMAX features a decentralised heuristic AI that can effectively find enemies without50

requiring the global information of the SMACv2 heuristic. This guarantees that in principle a 50%51

win rate is always achievable by copying the decentralised heuristic policy exactly. This means any52

win-rate below 50% represents a concrete failure to learn. Some of the capabilities of the SMAX53

heuristic AI are illustrated in the Figure below.54

Unlike StarCraft II, where all actions happen in a randomised order in the game loop, some actions in55

SMAX are simultaneous, meaning draws are possible. In this case both teams get 0 reward.56

Like SMAC, each environment step in SMAX consists of eight individual time ticks. SMAX uses57

a discrete action space, consisting of movement in the four cardinal directions, a stop action, and a58

shoot action per enemy.59
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SMAX enemy units will
pursue running enemies
within their sight range

SMAX enemy units will keep
firing at a unit they have

shot at before

By always passing through
the centre of the map,

SMAX AI can find enemies while
being decentralised

Figure 2: Explanation of the operation of the SMAX heuristic AI.

SMAX makes three notable simplifications of the StarCraft II dynamics to reduce complexity. First,60

zerg units do not regenerate health. This health regeneration is slow at 0.38 health per second, and so61

likely has little impact on the game. Protoss units also do not have shields. Shields only recharge after62

10 seconds out of combat, and therefore are unlikely to recharge during a single micromanagement63

task. Protoss units have additional health to compensate for their lost shields. Finally, the available64

unit types are reduced compared to SMAC. SMAX has no medivac, colossus or baneling units.65

Each of these unit types has special mechanics that were left out for the sake of simplicity. For the66

SMACv2 scenarios, the start positions are generated as in SMACv2, with the small difference that67

the ‘surrounded’ start positions now treat allies and enemies identically, rather than always spawning68

allies in the middle of the map. This symmetry guarantees that a 50% win rate is always achievable.69

Collisions are handled by moving agents to their desired location first and then pushing them out70

from one another.71

Table 1: SMAX scenarios. The first section corresponds to SMAC scenarios, while the second
corresponds to SMACv2.

Scenario Ally Units Enemy Units Start Positions

2s3z 2 stalkers and 3 zealots 2 stalkers and 3 zealots Fixed
3s5z 3 stalkers and 5 zealots 3 stalkers and 5 zealots Fixed

5m_vs_6m 5 marines 6 marines Fixed
10m_vs_11m 10 marines 11 marines Fixed
27m_vs_30m 27 marines 30 marines Fixed

3s5z_vs_3s6z 3 stalkers and 5 zealots 3 stalkers and 6 zealots Fixed
3s_vs_5z 3 stalkers 5 zealots Fixed
6h_vs_8z 6 hydralisks 8 zealots Fixed

smacv2_5_units 5 uniformly randomly chosen 5 uniformly randomly chosen SMACv2-style
smacv2_10_units 10 uniformly randomly chosen 10 uniformly randomly chosen SMACv2-style
smacv2_20_units 20 uniformly randomly chosen 20 uniformly randomly chosen SMACv2-style

2.2 Spatial-Temporal Representations of Matrix Games (STORM)72

This environment features directional agents within an 8x8 grid world with a restricted field of view.73

For a visual description, see Figure 3. Agents cannot move backwards or share the same location.74

Collisions are resolved by either giving priority to the stationary agent or randomly if both are moving.75

Agents collect two unique resources: cooperate and defect coins. Once an agent picks up any coin,76

the agent’s colour shifts, indicating its readiness to interact. The agents can then release an interact77

beam directly ahead; when this beam intersects with another ready agent, both are rewarded based78

on the specific matrix game payoff matrix. The agents’ coin collections determine their strategies.79

For instance, if an agent has 1 cooperate coin and 3 defect coins, there is a 25% likelihood of the80
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agent choosing to cooperate. After an interaction, the two agents involved are frozen for five steps,81

revealing their coin collections to surrounding agents. After five steps, they respawn in a new location,82

with their coin count set back to zero. Once an episode concludes, the coin placements are shuffled.83

This grid-based approach to matrix games can be adapted for n-player versions. While STORM is84

inspired by MeltingPot 2.0, there are noteworthy differences:85

• Meltingpot uses pixel-based observations while we allow for direct grid access.86

• Meltingpot’s grid size is typically 23x15, while ours is 8x8.87

• Meltingpot features walls within its layout, ours does not.88

• Our environment introduces stochasticity by shuffling the coin placements, which remain89

static in Meltingpot.90

• Our agents begin with an empty coin inventory, making it easier for them to adopt pure91

cooperate or defect tactics, unlike in Meltingpot where they start with one of each coin.92

• MeltingPot is implemented in Lua [8] where as ours is a vectorized implementation in JAX.93

We deem the coin shuffling especially crucial because even large environments representing POMDPs,94

such as SMAC, can be solved without the need for memory if they lack sufficient randomness [5].95

Figure 3: Annotated Image of IPDiTM renders, demonstrating the objects within the game

2.3 Coin Game96

Coin Game is a two-player grid-world environment which emulates social dilemmas such as the97

iterated prisoner’s dilemma [13]. Used as a benchmark for the general-sum setting, it expands on98

simpler social dilemmas by adding a high-dimensional state. Two players, ‘red’ and ‘blue’ move in99

a grid world and are each awarded 1 point for collecting any coin. However, ‘red’ loses 2 points if100

‘blue’ collects a red coin and vice versa. Thus, if both agents ignore colour when collecting coins101

their expected reward is 0.102

Two agents, ‘red’ and ‘blue’, move in a wrap-around grid and collect red and blue coloured coins.103

When an agent collects any coin, the agent receives a reward of 1. However, when ‘red’ collects a104

blue coin, ‘blue’ receives a reward of −2 and vice versa. Once a coin is collected, a new coin of105

the same colour appears at a random location within the grid. If a coin is collected by both agents106

simultaneously, the coin is duplicated and both agents collect it. Episodes are of a set length.107

2.4 Switch Riddle108

Originally used to illustrate the Differentiable Inter-Agent Learning algorithm [6], Switch Riddle is a109

simple cooperative communication environment that we include as a debugging tool. n prisoners held110
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by a warden can secure their release by collectively ensuring that each has passed through a room111

with a light bulb and a switch. Each day, a prisoner is chosen at random to enter this room. They112

have three choices: do nothing, signal to the next prisoner by toggling the light, or inform the warden113

they think all prisoners have been in the room. The game ends when a prisoner informs the warden or114

the maximum time steps are reached. The rewards are +1 if the prisoner informs the warden, and all115

prisoners have been in the room, -1 if the prisoner informs the warden before all prisoners have taken116

their turn, and 0 otherwise, including when the maximum time steps are reached. We benchmark117

using the implementation from [18].118

2.5 Hanabi119

Hanabi is a fully cooperative partially observable multiplayer card game, where players can observe120

other players’ cards but not their own. To win, the team must play a series of cards in a specific order121

while sharing only a limited amount of information between players. As reasoning about the beliefs122

and intentions of other agents is central to performance, it is a common benchmark for ZSC and123

ad-hoc teamplay research. Our implementation is inspired by the Hanabi Learning Environment [2]124

and includes custom configurations for varying game settings, such as the number of colours/ranks,125

number of players, and number of hint tokens. Compared to the Hanabi Learning Environment,126

which is written in C++ and split over dozens of files, our implementation is a single easy-to-read127

Python file, which simplifies interfacing with the library and running experiments.128

2.6 Overcooked129

Inspired by the popular videogame of the same name, Overcooked is commonly used for assessing130

fully cooperative and fully observable Human-AI task performance. The aim is to quickly prepare131

and deliver soup, which involves putting three onions in a pot, cooking the soup, and serving it132

into bowls. Two agents, or cooks, must coordinate to effectively divide the tasks to maximise their133

common reward signal. Our implementation mimics the original from Overcooked-AI [3], including134

all five original layouts and a simple method for creating additional ones. For a discussion on the135

limitations of the Overcooked-AI environment, see [9].136

2.7 Multi-Agent Particle Environments (MPE)137

The multi-agent particle environments feature a 2D world with simple physics where particle agents138

can move, communicate, and interact with fixed landmarks. Each specific environment varies139

the format of the world and the agents’ abilities, creating a diverse set of tasks that include both140

competitive and cooperative settings. We implement all the MPE scenarios featured in the PettingZoo141

library and the transitions of our implementation map exactly to theirs. We additionally include a142

fully cooperative predator-prey variant of simple tag, presented in [11]. The code is structured to143

allow for straightforward extensions, enabling further tasks to be added.144

2.8 Multi-Agent Brax (MABrax)145

MABrax is a derivative of Multi-Agent MuJoCo [11], an extension of the MuJoCo Gym environ-146

ment [15] that is commonly used for benchmarking continuous multi-agent robotic control. Our147

implementation utilises Brax[7] as the underlying physics engine and includes five of Multi-Agent148

MuJoCo’s multi-agent factorisation tasks, where each agent controls a subset of the joints and only ob-149

serves the local state. The included tasks, illustrated in ??, are: ant_4x2, halfcheetah_6x1,150

hopper_3x1, humanoid_9|8, and walker2d_2x3. The task descriptions mirror those from151

Gymnasium-Robotics [4].152

3 JaxMARL’s API153

The interface of JaxMARL is inspired by PettingZoo [14] and Gymnax. We designed it to be a154

simple and easy-to-use interface for a wide-range of MARL problems. An example of instantiating155
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1 import jax
2 from jaxmarl import make
3
4 key = jax.random.PRNGKey (0)
5 key , key_reset , key_act , key_step = jax.random.split(key , 4)
6
7 # Initialise and reset the environment.
8 env = make(’MPE_simple_world_comm_v3 ’)
9 obs , state = env.reset(key_reset)

10
11 # Sample random actions.
12 key_act = jax.random.split(key_act , env.num_agents)
13 actions = {agent: env.action_space(agent). sample(key_act[i]) \
14 for i, agent in enumerate(env.agents )}
15
16 # Perform the step transition.
17 obs , state , reward , done , infos = env.step(key_step , state , actions)

Figure 4: An example of JaxMARL’s API, which is flexible and easy-to-use.

an environment from JaxMARL’s registry and executing one transition is presented in Figure 4. As156

JAX’s JIT compilation requires pure functions, our step method has two additional inputs compared157

to PettingZoo’s. The state object stores the environment’s internal state and is updated with each158

call to step, before being passed to subsequent calls. Meanwhile, key_step is a pseudo-random159

key, consumed by JAX functions that require stochasticity. This key is separated from the internal160

state for clarity.161

Similar to PettingZoo, the remaining inputs and outputs are dictionaries keyed by agent names,162

allowing for differing action and observation spaces. However, as JAX’s JIT compilation requires163

arrays to have static shapes, the total number of agents in an environment cannot vary during an164

episode. Thus, we do not use PettingZoo’s agent iterator. Instead, the maximum number of agents165

is set upon environment instantiation and any agents that terminate before the end of an episode166

pass dummy actions thereafter. As asynchronous termination is possible, we signal the end of an167

episode using a special "__all__" key within done. The same dummy action approach is taken for168

environments where agents act asynchronously (e.g. turn-based games).169

To ensure clarity and reproducibility, we keep strict registration of environments with suffixed version170

numbers, for example “MPE Simple Spread V3”. Whenever JaxMARL environments correspond to171

existing CPU-based implementations, the version numbers match.172

4 Value-Based MARL Methods and Implementation details173

Key features of our framework include parameter sharing, a recurrent neural network (RNN) for174

agents, an epsilon-greedy exploration strategy with linear decay, a uniform experience replay buffer,175

and the incorporation of Double Deep Q-Learning (DDQN) [17] techniques to enhance training176

stability. We stored the replay buffer in GPU memory using Flashbax [16].177

Unlike PyMARL, we use the Adam optimizer as the default optimization algorithm. Below is an178

introduction to common value-based MARL methods.179

IQL (Independent Q-Learners) is a straightforward adaptation of Deep Q-Learning to multi-agent180

scenarios. It features multiple Q-Learner agents that operate independently, optimizing their individual181

returns. This approach follows a decentralized learning and decentralized execution pipeline.182

VDN (Value Decomposition Networks) extends Q-Learning to multi-agent scenarios with a183

centralized-learning-decentralized-execution framework. Individual agents approximate their own184

action’s Q-Value, which is then summed during training to compute a jointed Qtot for the global185

state-action pair. Back-propagation of the global DDQN loss in respect to a global team reward186

optimizes the factorization of the jointed Q-Value.187

QMIX improves upon VDN by relaxing the full factorization requirement. It ensures that a global188

argmax operation on the total Q-Value (Qtot) is equivalent to individual argmax operations on189

each agent’s Q-Value. This is achieved using a feed-forward neural network as the mixing network,190
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Figure 5: Time taken to train a varying number of seeds in parallel on the same device for JaxMARL
IPPO (in blue) compared to the time taken to train one seed with MARLLIB (shown as the red dashed
line)

which combines agent network outputs to produce Qtot values. The global DDQN loss is computed191

using a single shared reward function and is back-propagated through the mixer network to the192

agents’ parameters. Hypernetworks generate the mixing network’s weights and biases, ensuring non-193

negativity using an absolute activation function. These hypernetworks are two-layered multi-layer194

perceptrons with ReLU non-linearity.195

Issues found when using Q-Learning in an end-to-end GPU setting. As discussed in the paper’s196

results section, PPO demonstrates a clear advantage over Q-Learning for our benchmarked envi-197

ronments, both in agent performance and training runtime. The speed differential is caused by the198

optimal sampling/replay ratio for Q-Learning methods becoming rapidly unbalanced as the number199

of parallel environments increases, which requires us to use fewer parallel environments than we use200

with PPO. PPO also has a major advantage over Q-Learning in that it does not use a replay buffer,201

which can occupy a significant amount of GPU memory. Secondly, our experiments empirically202

showed PPO to be more stable during training.203

A possible workaround is to increase the replay ratio by performing multiple update steps per training204

episode, which nevertheless affects computational efficiency. A better solution is to implement a205

distributed framework, separating the learning and sampling process, which is also out-of-scope for206

this work.207

5 Speed Comparison208

The runs reported in Figures 3 and 5(c) were all run on the same system featuring two NVIDIA209

GeForce RTX 4090s (although only one was used for training), an Intel(R) Xeon(R) Silver 4316210

CPU (20 cores with 40 threads), and 132 GB of RAM. We report the average environment steps per211

second over the entire RL training process, which for JaxMARL includes any compilation time. For212

Table 3, all results were collected on a single NVIDIA A100 GPU and AMD EPYC 7763 64-core213

processor. Environments were rolled out for 1000 sequential steps.214

In Figure 5 we repeat the analysis, reported in the main paper for QMIX, of JaxMARL’s ability to215

train multiple seeds in parallel for IPPO. Training this way allows training agents many thousands of216

times faster, with a 12500x speed up in the MPE simple spread environment.217

6 Training & Correctness Results218

6.1 Overcooked219

We train IPPO, VDN and IQL agents in Overcooked and present their aggregate performance in220

Figure 6a. IPPO performs better than the Q-Learning methods in inter-quartile mean and mean,221

in line with our more general findings. During training, we use the same shaped reward as stated222
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Figure 6: Aggregate performance in Overcooked and SMAX for a range of algorithms. Performance
is aggregated across 10 seeds and error bars represent 95% bootstrapped confidence intervals as
recommended in [1].
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Figure 7: Evaluation performance throughout training of an IPPO policy trained with JaxMARL
on our Overcooked Cramped Room scenario implementation and the original [3]. The similarity in
performance demonstrates correspondence.
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Figure 8: Evaluation of all algorithms in Overcooked scenarios. These scores are obtained after our
own hypeparameter tuning, which held to better performances than the using original hyperparameters
from Overcooked paper.
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in the original Overooked paper [3], which is added to the score of the game with a factor that is223

decayed from 1 to 0 during the first half of training. We don’t train MAPPO and QMIX for this task224

because, in Overcooked, agents can observe the entire state of the map. Therefore, there is no partial225

observability that can be improved through centralized training. We demonstrate correspondence by226

training an IPPO policy with JaxMARL on our implementation and evaluating the policy over 10227

rollouts for both our Overcooked implementation and the original. Results are shown in Figure 8228

with the similarity in performance demonstrating their equivalence.229

6.2 MABrax230

The performance of IPPO on ant_4x2, humanoid_9|8, hopper_3x1 and walker2d_2x3 is re-231

ported in Figure 9, with hyperparameters reported in Table 2.232
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Figure 9: Performance of IPPO on MABrax Tasks

6.3 MPE233

Performance of Q-Learning baselines in all the MPE scenarios are reported in ??. The upper row234

represents cooperative scenarios, with results for all our Q-learning baselines reported. The bottom235

row refers to competitive scenarios, and results for IQL are divided by agent types. Hyperparameters236

are given inTable 7237
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Figure 10: Comparison of the performances of Q-Learning baselines in PyMARL and JaxMARL
in two cooperative scenarios of MPE (Spread and Speaker Listener) and one competitive scenario
(Simple Tag). For Simple Tag, we pre-trained a prey in JaxMARL and then trained agents to compete
with it in both PyMARL and JaxMARL. Despite the small differences in the obtained returns in the
two frameworks, the algorithms show similar learning dynamics, and the final ordering is preserved,
validating our environment and algorithm implementations.

6.4 SMAX238

The performance of different algorithms in SMAX versus MAPPO in SMAC is shown in Figure 13.239

Hyperparameters for IPPO and the Q-learning methods are given in Table 4 and Table 8 respectively.240
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Figure 11: Evaluation of performances of QLearning in all the MPE cooperative scenarios.
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Some maps are significantly more difficult in SMAX, such as 10m_vs_11m, whereas some are much241

easier such as 3s_vs_5z.242
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Figure 13: Comparison of IPPO, MAPPO, IQL, QMIX, VDN in SMAX with MAPPO in SMAC.
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7 Hyperparameters243

Value Ant HalfCheetah Walker
VF_COEF 4.5 0.14 1.9

ENT_COEF 2× 10−6 4.5× 10−3 1× 10−3

LR 1× 10−3 6× 10−4 7× 10−3

NUM_ENVS 64 – –
NUM_STEPS 300 – –

TOTAL_TIMESTEPS 1× 108 – –
NUM_MINIBATCHES 4 – –

GAMMA 0.99 – –
GAE_LAMBDA 1.0 – –

CLIP_EPS 0.2 – –
MAX_GRAD_NORM 0.5 – –

ACTIVATION tanh – –
ANNEAL_LR True – –

Table 2: MABrax Hyperparameters, where – indicates repeated parameters

Hyperparameter Value
LR 0.0005

NUM_ENVS 25
NUM_STEPS 128

TOTAL_TIMESTEPS 1× 106

UPDATE_EPOCHS 5
NUM_MINIBATCHES 2

GAMMA 0.99
GAE_LAMBDA 1.0

CLIP_EPS 0.3
ENT_COEF 0.01
VF_COEF 1.0

MAX_GRAD_NORM 0.5
ACTIVATION tanh
ANNEAL_LR True

Table 3: Hyperparameters for MPE IPPO

Hyperparameter Value
LR 0.004

NUM_ENVS 64
NUM_STEPS 128

TOTAL_TIMESTEPS 1× 107

UPDATE_EPOCHS 2
NUM_MINIBATCHES 2

GAMMA 0.99
GAE_LAMBDA 0.95

CLIP_EPS 0.2
SCALE_CLIP_EPS False

ENT_COEF 0.0
VF_COEF 0.5

MAX_GRAD_NORM 0.5
ACTIVATION relu

Table 4: Hyperparameters for SMAX IPPO
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Hyperparameter Value
LR 5× 10−4

NUM_ENVS 1024
NUM_STEPS 128

TOTAL_TIMESTEPS 1× 1010

UPDATE_EPOCHS 4
NUM_MINIBATCHES 4

GAMMA 0.99
GAE_LAMBDA 0.95

CLIP_EPS 0.2
ENT_COEF 0.01
VF_COEF 0.5

MAX_GRAD_NORM 0.5
ACTIVATION relu
ANNEAL_LR True

NUM_FC_LAYERS 2
LAYER_WIDTH 512

Table 5: Hyperparameters for Hanabi IPPO

Hyperparameter Value
LR 0.0005

NUM_ENVS 64
NUM_STEPS 256

TOTAL_TIMESTEPS 5× 106

UPDATE_EPOCHS 4
NUM_MINIBATCHES 16

GAMMA 0.99
GAE_LAMBDA 0.95

CLIP_EPS 0.2
ENT_COEF 0.01
VF_COEF 0.5

MAX_GRAD_NORM 0.5
ACTIVATION relu
ANNEAL_LR True

Table 6: Hyperparameters for Overcooked IPPO
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Hyperparameter Value
NUM_ENVS 8
NUM_STEPS 26

BUFFER_SIZE 5000
BUFFER_BATCH_SIZE 32

TOTAL_TIMESTEPS 2× 106

HIDDEN_SIZE 64
MIXER_EMBEDDING_DIM* 32

MIXER_HYPERNET_HIDDEN_DIM* 128
MIXER_INIT_SCALE* 0.001

EPS_START 1.0
EPS_FINISH 0.05
EPS_DECAY 0.1

MAX_GRAD_NORM 25
TARGET_UPDATE_INTERVAL 200

TAU 1.0
NUM_MINI_EPOCHS 1

LR 0.005
LEARNING_STARTS 10000
LR_LINEAR_DECAY True

GAMMA 0.9

Table 7: QLearning Hyperparameters in MPE
(* Hyperparameters specific to QMix.)

Hyperparameter Value
NUM_ENVS 16
NUM_STEPS 128

BUFFER_SIZE 5000
BUFFER_BATCH_SIZE 32

TOTAL_TIMESTEPS 1× 107

HIDDEN_SIZE 512
MIXER_EMBEDDING_DIM* 64

MIXER_HYPERNET_HIDDEN_DIM* 256
MIXER_INIT_SCALE* 0.001

EPS_START 1.0
EPS_FINISH 0.05
EPS_DECAY 0.1

MAX_GRAD_NORM 10
TARGET_UPDATE_INTERVAL 10

TAU 1.0
NUM_MINI_EPOCHS 8

LR 0.00005
LEARNING_STARTS 10000
LR_LINEAR_DECAY False

GAMMA 0.99

Table 8: QLearning Hyperparameters in Smax
(* Parameters specific to QMix.)

Hyperparameter Value
NUM_ENVS 32
NUM_STEPS 1

BUFFER_SIZE 1× 105

BUFFER_BATCH_SIZE 128
TOTAL_TIMESTEPS 5× 106

HIDDEN_SIZE 64
EPS_START 1.0
EPS_FINISH 0.05
EPS_DECAY 0.2

MAX_GRAD_NORM 1
TARGET_UPDATE_INTERVAL 10

TAU 1.0
NUM_MINI_EPOCHS 4

LR 0.000075
LEARNING_STARTS 1000
LR_LINEAR_DECAY True

GAMMA 0.99

Table 9: QLearning Hyperparameters in Over-
cooked
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