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Abstract

The tradeoffs in the excess risk incurred from data-driven learning of a single model has been
studied by decomposing the excess risk into approximation, estimation and optimization
errors. In this paper, we focus on the excess risk incurred in data-driven hyperparameter
optimization (HPO) and its interaction with approximate empirical risk minimization (ERM)
necessitated by large data. We present novel bounds for the excess risk in various common
scenarios in HPO. Based on these results, we propose practical heuristics that allow us to
improve performance or reduce computational overhead of data-driven HPO, demonstrating
over 2× speedup with no loss in predictive performance in our preliminary results.

1. Excess Risk in Learning

The learning process has various sources of errors. Given data, we choose a model or
function class F which corresponds to not just a method (such as Support Vector Machines,
Generalized Linear Models, Neural Networks, Decision trees) but its specific hyperparameters
(HPs) – these HPs refer to anything that would influence the predictive performance of the
model learned from data. Given choice of F , learning searches for the function via (possibly
approximate) empirical risk minimization (ERM). We currently have an understanding of
the factors affecting the excess risk of this chosen function – (i) the choice of the function
class and its capacity to model the process generating the data, (ii) the use of empirical
error instead of the generalization error, and (iii) the approximation in the minimization of
the empirical error (Vapnik, 2006; Devroye et al., 2013; Bottou and Bousquet, 2008).

However, in practice, a significant part of the whole exercise is the choice of the function
class F (method and its HPs). Usually, we consider a (possibly large) set of function classes
and select one of them based on the data-driven hyperparameter optimization (HPO) or
model selection. This search can be done via grid search. AutoML (automated machine
learning) has spurred a lot of research in efficient HPO (Hutter et al., 2011; Shahriari et al.,
2016). The automation allows us to efficiently explore larger numbers of HP configurations
for improved performance. HPO has been extended from model configurations to the
configuration of complete ML pipelines with efficient Combined Algorithm Selection and
HPO (or CASH) algorithms (Thornton et al., 2012; Feurer et al., 2015; Kotthoff et al., 2017;
Rakotoarison et al., 2019; Liu et al., 2020; Sarigiannis et al., 2019).

Penalty-based model selection has been thoroughly studied theoretically, resulting in
strong guarantees in the form of “oracle inequalities” – the expected excess risk of the
selected model (or HP) is within a multiplicative and additive factor of the best possible
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excess risk if an oracle provided us with the best HP. This has been widely studied in (binary)
classification (Boucheron et al., 2005), (bounded) regression and density estimation (Massart,
2007; Arlot et al., 2010). However, in practice, penalty-based model selection is not used for
data-driven HPO, and we resort to cross-validation (CV) because they are more universally
applicable. CV schemes have been shown to be theoretically competitive to penalty-based
selection at the cost of having less data for learning. We focus on CV widely used in the
aforementioned HPO. While CV based model selection has been studied theoretically, there
are various scenarios in practical HPO, which have not been explored in literature. Here, we
focus on such a scenario – the practice of learning a final model with the HP selected via CV
on the full data, and the role of approximate ERM in HPO and the final model training:

I We study the HPO process under the different scenarios and identify new sources of
excess risk introduced by this process, and provide upper bounds to the excess risk.

I We propose data-driven practical heuristics based on these bounds to improve the
predictive performance of selected model and reduce the computational overhead when
performing HPO with approximate ERM.

Outline. In §2, we discuss existing excess risk decompositions and describe our HPO
setting. We study the excess risk resulting from HPO in §3, providing novel bounds, and
deriving practical heuristics from these bounds. We conclude with future work in §4.

2. Existing Decompositions & Model Selection

For a particular model, let Fλ denote the function class for some HP λ ∈ Λ in the space of
all possible valid HPs Λ. For any function f : X → Y with (X, Y), X ⊂ X , Y ⊂ Y generated
from a distribution P, and a B-bounded loss function ` : Y × Y, the expected risk E(f) and
the empirical risk En(f) with n samples {(xi, yi)}

n
i=1 ∼ P

n of the model f is given by

E(f) =

∫
`(y, f(x))dP(x, y), En(f) =

1

n

n∑
i=1

`(yi, f(xi)). (1)

We denote the Bayes optimal prediction function as f? such that, for any (x, y) ∼ P,
f?(x) = arg minŷ E [`(y, ŷ)|x]. Let fλ = arg minf∈Fλ E(f) be the true risk minimizer in Fλ,
while f̂n,λ = arg minf∈Fλ En(f) be the ERM solution. With ERM over Fλ, the excess risk
incurred E = E(f̂n,λ) − E(f

?) decomposes into two terms – (i) the approximation error
Eapp(λ) = E(fλ) − E(f?), and (ii) the estimation error Eest(λ) = E(f̂n,λ) − E(f). For limited
number of samples n, there is a tradeoff between Eapp and Eest, where a larger function
class Fλ usually reduces Eapp but increases Eest (Vapnik, 2006; Devroye et al., 2013). See §A
(and Table 1) for notations, precise definitions and exact existing decomposition. Bottou
and Bousquet (2008) study the tradeoffs in a “large-scale” setting where the learning has
a computational budget and they categorize the learning setting into two following scales:
(i) “small-scale”: the number of samples n is small enough to allow for exact ERM within
the compute budget, (ii) “large-scale”: the ERM needs to be approximated given the
compute budget. They study the excess risk of an approximate ERM solution f̃n,λ ∈ Fλ,
introducing the optimization error Eopt(λ) = E(f̃n,λ) − E(f̂n,λ) – the excess risk incurred due
to approximate ERM – and argue that, in large-scale learning, approximate ERM on all n
samples has better excess risk than exact ERM on a subsample of size n ′ ≤ n.
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We wish to understand the excess risk in HPO over Λ. Limited to n samples from the
data distribution P, the HPO problem with CV is given by this bilevel optimization:

Outer: λ̂ = arg min
λ∈Λ

Evnv(ĝnt,λ), Inner: ĝnt,λ = arg min
f∈Fλ

Ent(f). (2)

This results in the selection of the HP λ̂. The inner level problem for a fixed HP λ is solved
via ERM with Ent(·) on nt ≤ n samples, while the outer level problem considers an objective
Evnv(·) which is evaluated using nv ≤ n samples not used for the inner ERM – while Ent(·)
and Evnv(·) might have the same form, the ·v superscript highlights their difference.

This formulation incorporates the common practice of splitting the samples into a training
set and a held-out validation set (of sizes nt, nv ≤ n with usually nt + nv = n) and the best
HP is selected based on empirical risk of the solution of ERM (with nt samples) on the
heldout set (of size nv). When performing k-fold cross-validation, the inner optimization is
solved k times for each HP λ (on k different sets of nt samples), and the outer optimization
averages the objective on k held-out sets (of size nv) across the k learned models. In this
paper, we limit our scope to a single training/validation split.

3. Excess Risk In HP Selection

We first analyze HPO with hold-out validation in the “small scale” setting and develop novel
results for a common practice in model selection. Using these results, we propose a practical
heuristic to obtain improved performance in data-driven small-scale HPO and empirically
highlight its utility. We then build upon these results to provide excess risk bounds in the
“large scale” setting necessitating approximate ERM. Based on these, we propose another
heuristic that allows us to enjoy the predictive performance of HPO with exact ERM at
reduced computational cost. We also demonstrate the practical utility of this heuristic.

In our ensuing presentation, the maximum error discrepancy supf∈Fλ |En(f) − E(f)| of
any function class Fλ will be appearing multiple times. For ease of exposition, we consider as
its generic upper-bound ∆(Fλ, n, δ) with probability at least 1− δ, δ > 0. Precise definitions
of ∆(Fλ, n, δ) can be achieved using covering numbers (Corollary 6 in §B) or Radamacher
complexities (Theorem 7 in §B). This ∆(Fλ, n, δ) is monotonically non-increasing with n
and is indicative of the “size” or complexity of the class Fλ – a more complex class will have
higher maximum error discrepancy.

3.1 Small-scale Learning

In the small-scale learning setup, after the selection of λ̂ by solving problem (2), either
(Case A) the ERM solution ĝnt,λ̂ on the training split in the inner problem (2) is utilized
as is, or (Case B) ERM is performed with all the n samples available on Fλ̂ to obtain the
ERM solution f̂n,λ̂ = arg minf∈Fλ̂ En(f). We study the different factors affecting the excess
risk introduced in both these cases. See §B.4 for technical details and proofs.

Case A (No model discrepancy). This case is commonly used with deep neural networks
where the models trained during HP (and architecture) selection are the ones finally utilized
for deployment. In the following theorem, we provide a bound on the excess risk:
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Theorem 1 Let L = 2|Λ|+ 2. Then, with probability at least 1− δ for any δ > 0, the excess
risk E = E(ĝnt,λ̂) − E(f

?) is bounded from above as:

E ≤ min
λ∈Λ

{
2∆ (Fλ, nt, δ/L1) + Eapp(λ)

}
+ B

√
2 log(L1/δ)/nv. (3)

We present this simple result for completeness to highlight how we will extend this result to
provide bounds for the model selection scenarios we consider in the following.

Case B (Model discrepancy). This case is common in ML where we wish to make the
most of the available data and hence train the model for the selected HP λ̂ with the full
training set of n samples. However, this introduces a discrepancy – the learned model ĝnt,λ̂
that guides the HP selection is different from the model f̂n,λ̂ whose excess risk we wish to
understand. We provide a novel bound for the excess risk incurred in this process:

Theorem 2 Let L2 = 2|Λ|+ 3. Let In,nt,λ̂ = En(ĝnt,λ̂) − En(f̂n,λ̂) denote the “empirical risk
improvement” obtained by refitting the model on the full training set. Then, with probability
at least 1− δ for any δ > 0, the excess risk E = E(f̂n,λ̂) − E(f

?) is bounded from above by:

E ≤ min
λ∈Λ

{
2∆ (Fλ, nt, δ/L2) + Eapp(λ)

}
− In,nt,λ̂ + B

√
2 log(L2/δ)

(
1/
√
n+ 1/

√
nv
)
. (4)

Note that In,nt,λ̂ ≥ 0 by definition of f̂n,λ̂ being the ERM solution in Fλ̂. Comparing to Case

A in Theorem 1 to Theorem 2, we see the Case B involves more computation (training f̂n,λ̂)
but is only preferable over Case A if the (computable) empirical risk improvement In,nt,λ̂ is
relatively significant, reducing the excess risk bound by that quantity. An interesting aspect
of this result is that the statistical cost of the additional ERM for f̂n,λ̂ is O(1/

√
n) but does

not depend on the size of Fλ̂. Based on the results, we propose a practical heuristic to select
between f̂n,λ̂ and ĝnt,λ̂ as the final model to be deployed for improved excess risk:

Heuristic 1 Let us define the following data-dependent scalars α,β based on the quantities
in Theorems 1 & 2, and we select f̂n,λ̂ as the final model if α ≥ β, or select ĝn,λ̂ otherwise:

α = B
√
2 log(L1/δ)/nv), β = −In,nt,λ̂ + B

√
2 log(L2/δ)

(
1/
√
n+ 1/

√
nv
)
. (5)

3.1.1 Empirical validation

For the purposes of empirical validation of our results and proposed heuristic, we consider a
HPO problem with 36 neural network configurations (|Λ| = 36) on a synthetic classification
data set with Bayes optimal risk E(f∗) = 0. We use synthetic data to have control over the
experiment and generate large fresh samples to accurately estimate true risks E(f) of any
model f. The estimation of Eapp(λ) and ∆(Fλ, n, δ) is detailed in §B.6. We consider sample
sizes n ∈ [29, 214] and different values for nv

n ∈ [0.1, 0.5] with nt = n − nv. We present a
subset of the results in Figure 1 (all results in Figure 3 in §B.6). The results are averaged
over 10 trials. We set the failure probability δ = 0.05.

Result (i). We compare the excess risk of ĝnt,λ̂ and f̂n,λ̂ (solid green & blue respectively)
and their bounds from Theorems 1 and 2 (dashed green & blue respectively) in Figure 1a
for varying values of n for 2 values of nvn . In one case (Figure 1a left), the excess risk of ĝnt,λ̂
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(a) Theorems 1 vs 2 bounds (b) Choice of f̂n,λ̂ vs ĝnt,λ̂
with Heuristic 1

Figure 1: Empirical validation for Theorem 1 and Theorem 2 and proposed Heuristic 1.

and f̂n,λ̂ are close, and so are their respective bounds. In another case (Figure 1a right), f̂n,λ̂
has better excess risk than ĝnt,λ̂, and that behavior is reflected in their respective bounds,
with the Theorem 2 bound being slightly lower. This result indicates that the common
practice of generating f̂n,λ̂ can sometimes lead to tighter excess risk bounds.

Result (ii). We explore the practical utility of Heuristic 1. Figure 1b compares this
heuristic “Choice” (dashed red) to f̂n,λ̂ & ĝnt,λ̂ (dotted blue & green) – in most cases

(different values of n, nvn ), Heuristic 1 makes the best choice between f̂n,λ̂ and ĝnt,λ̂.

3.2 Large-scale Learning

We now extend our analysis to the “large-scale” setting. In HPO, all the ERMs are
solved approximately – the ERM for the inner problems in (2) during the selection of
λ̂ is performed to ρin tolerance to get approximate ERM solutions g̃nt,λ, λ ∈ Λ, where
Ent(g̃nt,λ) − Ent(ĝnt,λ) ≤ ρin; once λ̂ is selected, the final ERM over Fλ̂ with all n samples

is performed to ρout tolerance to get f̃n,λ̂ with En(f̃n,λ̂) − En(f̂n,λ̂) ≤ ρout. Then, in the large
scale setting, the HPO becomes the following problem:

λ̂ = arg min
λ∈Λ

Evnv(g̃nt,λ), g̃nt,λ ∈
{
g ∈ Fλ : Ent(g) ≤ min

f∈Fλ
Ent(f) + ρin

}
(6)

Similar to the “small-scale learning” setting, we can bound the excess risk with and
without model discrepancy. Here we present the no-model-discrepancy case, with the
model-discrepancy case in Theorem 10 (and proofs) in §B.5 for lack of space:

Theorem 3 The excess risk E = E(g̃nt,λ̂)−E(f
∗) can be bounded from above with probability

at least 1− δ for any δ > 0 and L3 = (2+ 3|Λ|):

E ≤ min
λ∈Λ

{
2∆ (Fλ, nt, δ/L3) + Eapp(λ)

}
+ B

√
2 log(L3/δ)/nv + ρin. (7)

With no model discrepancy (Theorem 3), the approximate ERM in the inner problem
(6) introduces an additional ρin term to the excess risk compared to Theorem 1. In the
presence of model discrepancy (Theorem 10), the approximation in the ERM shows up in
two different ways – ρin from the approximation in the inner problem (6) similar to the
no-model-discrepancy case, and ρout from the approximation in the final ERM.
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(a) Excess-risk from Heuristic 2. (b) Speedup from Heuristic 2.

Figure 2: Empirical validation of the utility of Heuristic 2 for data-dependent choice of ρin

For any problem, ρin and ρout are set by the user (possibly based on available compute
budget). However, in HPO with approximate ERM, we can leverage the excess risk bounds
to make a more informed choice. Based on Theorem 3, we can see that ρin needs to be of
the same order of magnitude as the other terms in (7) – any smaller ρin will not improve
the excess risk significantly; any larger magnitude of ρin will make this optimization error
the dominant term in the excess risk. In practice, we cannot compare ρin and ρout to the
terms Eapp(λ) and ∆(Fλ, nt, δ). However, we can compare them to B

√
2 log(L3/δ)/nv – if

ρin � B
√
2 log(L3/δ)/nv, ρin might dominate the excess risk, and it might be beneficial to

allocate more resources (if possible) to reduce ρin to O(1/
√
nv); however, reducing ρin any

further will not significantly improve the excess risk. Based on this observation, we propose
another heuristic for HPO with approximate ERM with regards to the choice of ρin:

Heuristic 2 Based on the terms defined in Theorem 3, select a scaling parameter γ > 0
and set ρin as ρin = γB

√
2 log(L3/δ)/nv such that ρin ∼ o(B

√
2 log(L3/δ)/nv). A value of

γ = 0.1 suffices in our experience.

3.2.1 Empirical validation

To demonstrate the practical utility of the proposed Heuristic 2, we continue with the afore-
mentioned HPO problem over 36 neural network configurations on a synthetic classification
data. We consider three choices for ρin = γ

√
2 log(L3/δ)/nv with γ ∈ {0.1, 1, 10}. We set

δ = 0.05 and consider different values of n and nv
n (see Figure 4 in §B.6 for all results).

Figure 2 compares the performance of the exact ERM HPO using ĝnt,λ, λ ∈ Λ to
approximation ERM HPO for different ρin, using g̃nt,λ instead. In Figure 2a, we compare
the excess risk incurred from approximate ERM with the data dependent choice of ρin
compared to exact ERM. We see that γ = 0.1 leads to a sufficiently small ρin that matches
the predictive performance of exact ERM. Any smaller approximation ρin would not improve
the excess risk. The results also indicate that γ = 10 leads to a ρin where the optimization
error dominates the excess risk, implying that ρin should be reduced if possible. Figure 2b
presents the computational speedups obtained for the corresponding data-dependent choices
of ρin – we see that we can get a 2× speedup over exact ERM without any degradation in
excess risk with γ = 0.1 while obtaining around 4− 6× speedup with slight degradation in
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performance with γ = 1. These results provide empirical evidence for the practical utility of
the proposed Heuristic 2 obtained from Theorem 3 – the proposed heuristic provides a data
driven way of setting the ERM approximation level in HPO.

4. Conclusion

We study excess risk in different HP selection scenarios. The results allow us to make more
informed decisions regarding choices in HPO. As future work, we wish to study similar
tradeoffs in Bayesian optimization based HPO (Shahriari et al., 2016). We also plan to
study multi-fidelity HPO schemes such as Successive Halving (Jamieson and Talwalkar, 2016)
where the ERM approximation in HPO is adaptively modified.
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Appendix A. Detailed notation and current decompositions

Consider samples (x, y) of covariates x and dependent variable y from a joint distribution
P(x, y) over X × Y and loss function ` : Y × Y → R. The conditional distribution P(y|x)
encodes the relationship between the covariates x and the dependent variable y. In this
setup, the Bayes optimal predictor is given by

f? : X → Y such that f?(x) = arg min
ŷ∈Y

E [`(y, ŷ)|x] . (8)

For any model/function f : X → Y, the expected risk of the model is given by

E(f) =

∫
`(y, f(x))dP(x, y) = E [`(y, f(x))] . (9)

Given a model class F , the true risk minimizer is f = arg minf∈F E(f). However, this
requires access to the distribution P(x, y). In general, we consider n samples {(xi, yi)}

n
i=1 ∼

P(x, y). The empirical risk is given by

En(f) =
1

n

n∑
i=1

`(yi, f(xi)) = En [`(y, f(x))] , (10)

and the empirical risk minimizer is f̂n = arg minf∈F En(f).

The excess risk E incurred by the empirical risk minimizer f̂F is given by

E = E(f̂n) − E(f
?) (11)

= E(f̂n) − E(f)︸ ︷︷ ︸
Eest

+E(f) − E(f∗)︸ ︷︷ ︸
Eapp

. (12)

The approximation error Eapp is unknown in general but is assumed to reduce as the “size”
of the class F grows. The estimation error Eest is bounded from above by 2∆(F , n, δ) with
probability at least 1− 2δ (see Theorem 9).

In practice, we solve the empirical risk minimization to some approximation, and we
care about the excess risk incurred by an approximate empirical risk minimizer f̃n. The
excess risk of f̃n is given by

E = E(f̃n) − E(f
?) (13)

= E(f̃n) − E(f̂n)︸ ︷︷ ︸
Eopt

+E(f̂n) − E(f)︸ ︷︷ ︸
Eest

+E(f) − E(f∗)︸ ︷︷ ︸
Eapp

. (14)

This decomposition of the excess risk includes a new optimization error Eopt (Bottou
and Bousquet, 2008). If the approximate empirical risk minimizer satisfies the following for
some ρ > 0 with probability at least 1− δ,

f̃n ∈
{
f ∈ F : En(f) ≤ En(f̂) + ρ

}
. (15)
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Table 1: Table of symbols

Symbol Description

E(f) True risk of any model f
En(f) Empirical risk of any model f with n samples
Λ Set of L HPs λ, L = |Λ|

Fλ Model class for HP λ

f? Bayes optimal predictor

fλ True risk minimizer in Fλ: arg minf∈Fλ E(f)

f̂n,λ Empirical risk minimizer in Fλ with n samples: arg minf∈Fλ En(f)

f̃n,λ Approx. empirical risk minimizer in Fλ with n

λ̂ Solution to empirical HPO
ĝnt,λ Empirical risk minimizer in Fλ with nt samples: arg minf∈Fλ Ent(f)
g̃nt,λ Approx. empirical risk minimizer in Fλ with nt samples

Appendix B. Details for Section 3

B.1 Standard results and definitions

Definition 4 Let F be a class of functions X to Y. For any ε > 0, the associated `∞
covering number N (F , ε) of F is the minimal possible integer k such that F can be covered
by k balls of `∞ radius ε.

We have the following standard result in statistical learning theory

Theorem 5 Let F be a class of functions from X to Y and let E : Y ′ × Y → [0, B] be an
L-Lipschitz, B-bounded risk function. Then, for any distribution P over X× Y,

Pr
{(xi,yi)}

n
i=1∼P

n

(
sup
f∈F

|En(f) − E(f)| ≥ 3ε
)
≤ 2N (F , ε) exp

(
−
nε2

2B2

)
. (16)

Corollary 6 Under conditions of Definition 4 and Theorem 5, with probability at least 1−δ,

sup
f∈F

|En(f) − E(f)| ≤ ∆(F , n, δ) = inf
ε>0

{
3ε+ B

√
2

n
(logN (F , ε) + log(1/δ))

}
. (17)

Theorem 7 (Bartlett and Mendelson (2002)) Let P be a distribution over X × Y and let
` : Y ′ × Y (where Y ⊆ Y ′ ⊂ R) be a B-bounded loss function that is L-Lispschitz in its first
argument. Let F be a class of functions from X→ Y. Then for any δ > 0, with probability
at least 1− δ (over the random sample draw from P), the following is true:

sup
f∈F

|En(f) − E(f)| ≤ ∆(F , n, δ) = 4 · L · Rn(F) + 2 · B ·
√

log(1/δ)

2n
, (18)

where Rn(F) is the Radamacher complexity of the function class F .

10
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B.2 Notation

To concisely and conveniently prove results with somewhat similar arguments, we define the
following notation for providing upper bounds:

Definition 8 For any quantity A and B such that A− B ./ ε with probability at least 1− δ
for some numerical relational operator ./ and δ > 0, let us define the following notation:

A
./ε−−→
δ
B (19)

For example, based on Corollary 6, for any function f in some class F and m samples,
we can write:

E(f)
≤∆(F ,m,δ)−−−−−−−→

δ
Em(f) (20)

where ≤ serves at the numerical relational operator ./, A = E(f), B = Em(f), ε = ∆(F ,m, δ).

B.3 Bounds for existing decompositions

Theorem 9 For any function class F , the estimation error Eest = E(f̂n) − E(f) from the
ERM solution with n samples is bounded from above by 2∆(F , n, δ) with probability at least
1− 2δ.

Proof We have the following relationship:

E(f̂n)
≤∆(F ,n,δ)−−−−−−→

δ
En(f̂n)

≤0−−→ En(f)
≤∆(F ,n,δ)−−−−−−→

δ
E(f) (21)

B.4 Proofs for small-scale learning setup

B.4.1 Proof for Theorem 1

Proof First, consider the Ehpo
.
= E(ĝnt,λ̂) − E(ĝnt ,̄λ) term in E = E(ĝnt,λ̂) − E(f

?). By
definition of Fλ̂ and ĝnt,λ̂, we have the following relationship for any Fλ, λ ∈ Λ with some
δ ′ > 0:

E(ĝnt,λ̂)
≤B
√

log(1/δ ′)/2nv−−−−−−−−−−−−→
δ ′

Evnv(ĝnt,λ̂)
≤0−−→ Evnv(ĝnt,λ)

≤B
√

log(1/δ ′)/2nv−−−−−−−−−−−−→
δ ′

E(ĝnt,λ). (22)

Now for any Fλ with corresponding λ, for some failure probability δ ′ > 0, we have the
following relationship:

E(ĝnt,λ)
≤∆(Fλ,nt,δ ′)−−−−−−−−→

δ ′
Ent(ĝnt,λ)

≤0−−→ Ent(fλ)
≤∆(Fλ,nt,δ ′)−−−−−−−−→

δ ′
E(fλ)

=Eapp(λ)−−−−−→ E(f∗) (23)

Thus, we have E ≤ Ehpo + 2∆(Fλ, nt, δ) + Eapp(λ) for all λ ∈ Λ with a failure probabil-
ity at most (2 + 2L)δ ′ using the union bound. Minimizing the bound over λ and setting
δ ′ = δ

2(1+L) =
δ
L1

gives us the result in (3).
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B.4.2 Proof for Theorem 2

Proof For the selected function class Fλ̂, we have the following relationship given definition
of E(·), En(·) and In,nt,λ̂ using Hoeffding’s inequality for some δ ′ > 0:

Let µ : (X× Y)n → R be the following function:

µ((x1, y1), . . . , (xn, yn)) = En(f̂n,λ̂) − En(ĝnt,λ̂), (24)

then we can show that the function µ satisfies the bounded differences condition, that is,
there existing constants ci, i ∈ [n] such that:

sup
{(xj,yj)}j∈[n],(x

′
i ,y

′
i)

∣∣µ((x1, y1), . . . , (xi, yi), . . . , (xn, yn)) − µ((x1, y1), . . . , (x ′i, y ′i), . . . , (xn, yn))∣∣ ≤ ci.
(25)

The bounded difference inequality tells us

Eµ((x1, y1), . . . , (xn, yn))

√
C log(1/δ)

2−−−−−−−→
δ ′

µ((x1, y1), . . . , (xn, yn)), (26)

where C =
∑n
i=1 c

2
i . Given the definition of µ(·), En(·), we can show that ci ≤ 2B/n and

hence C = 4B2/n, giving us

Emd = E(f̂n,λ̂) − E(ĝnt,λ̂)
≤2B
√

log(1/δ ′)/2n
−−−−−−−−−−−→

δ ′
En(f̂n,λ̂) − En(ĝnt,λ̂) = −In,nt,λ̂ (27)

The above combined with equations (22) & (23) gives us the following for all λ ∈ Λ with
a failure probability of at most (3+ 2L)δ ′ for some δ ′ > 0:

E ≤ 2B

√
log(1/δ ′)

2nv
+ 2B

√
log(1/δ ′)

2n
− In,nt,λ̂ + 2∆(Fλ, nt, δ

′) + Eapp(λ). (28)

Setting δ ′ = δ/(3+ 2L) = δ/L2 and minimizing over λ ∈ Λ gives us the result in (4).

B.5 Proofs for large scale learning setup

B.5.1 Proof for Theorem 3

Proof By definition of Fλ̂, for any λ ∈ Λ and δ ′ > 0, we have the following relationships:

E(g̃nt,λ̂)
≤B
√

log(1/δ ′)/2nv−−−−−−−−−−−−→
δ ′

Evnv(g̃nt,λ̂)
≤0−−→ Evnv(g̃nt,λ)

≤B
√

log(1/δ ′)/2nv−−−−−−−−−−−−→
δ ′

E(g̃nt,λ) (29)

For any Fλ, λ ∈ Λ, we have the following relationships by definition of ∆(·, ·, ·) and (6):

E(g̃nt,λ)
≤∆(Fλ,nt,δ ′)−−−−−−−−→

δ ′
Ent(g̃nt,λ)

≤ρin−−−→
δ ′

Ent(ĝnt,λ)
≤0−−→ Ent(fλ)

≤∆(Fλ,nt,δ ′)−−−−−−−−→
δ ′

E(fλ)
=Eapp(λ)−−−−−→ E(f∗)

(30)

12
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Since the above holds for any λ ∈ Λ, putting (29) and (30) together using the union
bound with δ ′ = δ/(2+ 3|Λ|) = δ/L3 and minimizing over λ ∈ Λ gives us the desired result
in (7) with a failure probability of at most δ.

B.5.2 Excess risk for model discrepancy case with approximate ERM

Theorem 10 Let In,nt,λ̂ = En(ĝnt,λ̂) − En(f̂n,λ̂) be the “empirical risk improvement” as in

Theorem 2, and let Ĩn,nt,λ̂ = En(g̃nt,λ̂)−En(f̃n,λ̂) be corresponding the “approximate empirical

risk improvement”. The excess risk E = E(f̃n,λ̂) − E(f
∗) can be bounded as with probability at

least 1− δ for any δ > 0 and L4 = (7+ 3|Λ|):

E ≤min
λ∈Λ

{
2∆

(
Fλ, nt,

δ

L4

)
+ Eapp(λ)

}
+ ρin + B

′
(

1√
2n

+
1√
2nv

)
− max

{
Ĩn,nt,λ̂,

(
In,nt,λ̂ − ρout − B

′
(

1√
2n

+
1√
2nt

))} (31)

where B ′ = 2B
√

log L4
δ .

Proof We will begin by bounding the term E(f̃n,λ̂) − E(g̃nt,λ̂) using Hoeffding’s inequality
with failure probability δ ′ > 0:

E(f̃n,λ̂) − E(g̃nt,λ̂)
≤2B
√

log(1/δ ′)/2n
−−−−−−−−−−−→

δ ′
En(f̃n,λ̂) − En(g̃nt,λ̂) = −Ĩn,nt,λ̂ (32)

Also

E(f̃n,λ̂) − E(g̃nt,λ̂) = E(f̃n,λ̂) − E(f̂n,λ̂)︸ ︷︷ ︸
(A)

+E(f̂n,λ̂) − E(ĝnt,λ̂)︸ ︷︷ ︸
(B)

+E(gnt,λ̂) − E(g̃nt,λ̂)︸ ︷︷ ︸
(C)

(33)

(A) = E(f̃n,λ̂) − E(f̂n,λ̂)
≤2B
√

log(1/δ ′)/2n
−−−−−−−−−−−→

δ ′
En(f̃n,λ̂) − En(f̂n,λ̂)

≤0−−→
δ ′
ρout (34)

(B) = E(f̂n,λ̂) − E(ĝnt,λ̂)
≤2B
√

log(1/δ ′)/2n
−−−−−−−−−−−→

δ ′
En(f̂n,λ̂) − En(ĝnt,λ̂) = −In,nt,λ̂ (35)

(C) = E(ĝnt,λ̂) − E(g̃nt,λ̂)
≤2B
√

log(1/δ ′)/2nt−−−−−−−−−−−−→
δ ′

Ent(ĝnt,λ̂) − Ent(g̃nt,λ̂) ≤ 0 (36)

This gives us the following with failure probability 5δ ′:

E(f̃n,λ̂) − E(g̃nt,λ̂) ≤ min {D,E} (37)

D = −Ĩn,nt,λ̂ + 2B
√

log(1/δ ′)

2n
(38)

E = ρout − In,nt,λ̂ + 4B
√

log(1/δ ′)

2n
+ 2B

√
log(1/δ ′)

2nt
(39)

13
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With B ′ = 2B
√

log(1/δ ′), we can rewrite above as

E(f̃n,λ̂) − E(g̃nt,λ̂) ≤ min

{
−Ĩn,nt,λ̂ +

B ′√
2n
, ρout − In,nt,λ̂ +

2B ′√
2n

+
B ′√
2nt

}
(40)

≤ B ′√
2n

− max

{
Ĩn,nt,λ̂, In,nt,λ̂ − ρout −

B ′√
2n

−
B ′√
2nt

}
(41)

with failure probability of 5δ ′.
This combined with equations (29) & (30) using the union bound with δ ′ = δ/(7+3|Λ|) =

δ/L4 gives us (31) with probability at least 1− δ.

B.6 Details on Empirical Validation

Synthetic data. The binary classification data is generated using the make classification

function (Guyon, 2003) in the datasets module of scikit-learn (Pedregosa et al., 2011).
We ensure that the classes are not overlapping and there is no label noise, ensuring that the
Bayes optimal risk E(f?) = 0.

HPO search space. We considered 36 configurations for a fully connected multi-layered
perceptron, varying (i) the depth, (ii) the number of neurons in each layer, (iii) the initial
learning rate for the SGD optimizer, (iv) the batch size for SGD. The implementation is in
PyTorch (Paszke et al., 2019).

Bound computation. For any HP λ, (i) the approximation error Eapp(λ) is estimated as
the best test-set error during ERM on Fλ with training sets of different sizes and different
ERM restarts, (ii) the maximum error discrepancy supf∈Fλ |En(f) − E(f)| ≤ ∆(Fλ, n, δ) is
approximated with the empirical Radamacher complexity for Fλ. Thus, ∆(Fλ, n, δ) is defined
by the following quantity:

∆(Fλ, n, δ)
.
= max
f∈Fλ

n∑
i=1

σif(xi) +
√

log(2/δ)/n, σi =

{
+1 w. p. 1/2,
−1 otherwise.

(42)

B.6.1 Complete results

The complete results for all values of nv
n ∈ [0.1, 0.5] for Figure 1 and Figure 2 in Figure 3

and Figure 4 respectively.
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(a) Theorems 1 vs 2 bounds

(b) Data dependent choice of f̂n,λ̂ vs ĝnt,λ̂

Figure 3: Empirical validation of presented theoretical results and proposed heuristic on
synthetic data for a HPO problem for Neural Network configurations. Complete results for
Figure 1.
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(a) Excess-risk compared to exact ERM

(b) Speedup over exact ERM

Figure 4: Empirical validation of the utility for data-dependent choice of ρin. Complete
version of Figure 2.
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