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Excess Risk in Hyperparameter Selection Excess Risk with Exact ERM Excess Risk with Approximate ERM
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Additional Sources of Excess Risk n=n:+ny n=n:+n, n=ny+nNt n=ny,+ng
Risk bounds reflect relative performance
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1 Inner ERM approximated, implying following hyperparameter selection Data-driven choice of approximation in inner ERM

Data-driven Choice for Final Model does not increase excess risk significantly over exact inner ERM
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1 Provide novel excess risk bounds for above scenarios

Data-driven choice of approximation in inner ERM
provides 2X speedup over exact ERM with no additional excess risk, and
can provide 4-6X speedup with slight increase in excess risk

| Propose novel data-driven practical heuristics for improved performance

Data-driven heuristic able to match best in most cases

Notations
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Bayes optimal model

True risk minimizer




