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A Experimental Details

In this section, we provide more technical details of the proposed UVTR. Because of the inherent
properties, LiDAR- and camera-based methods usually adopt different pipelines for network training.
For instance, GT-sampling and global augmentation are adopted for LiDAR-based approaches, while
image-level augmentations are used for camera-based manners. To bridge the modality gap, we
utilize the unified sampler and augmentation for network optimization.

Unified Sampler. Given point clouds of the captured scene, traditional LiDAR-based methods usually
adopt GT-sampling [22] to supplement more samples from the whole database. However, due to the
object overlapping in each view, this is seldom used for camera-based manners. In this work, we
follow previous studies [50, 7] and use a unified approach for GT-sampling. In particular, we first
generate point clouds and image crops of each sample from training scenes. For the multi-modality
setting like UVTR-M in Tables 7 and 9, point clouds of sampled objects are attached to the original
scene, and image crops are reorganized according to the actual depth and then pasted on the original
image. For LiDAR-based settings, only point clouds are sampled for training, which is the same as
previous work. The unified sampler is disabled at the last 2 epochs to fit the normal distribution.

Unified Augmentation. With the unified representation, global augmentations can be synchronized
in the voxel space. Specifically, given the widely-adopted global scaling, rotation, and flipping for
point clouds, we apply the same augmentations to the image voxel space VI . That means we first
construct the voxel space VI for images and then conduct space-level augmentations to stay the
same with that of point cloud VP . In this manner, both modalities are well aligned in augmentation
for cross-modality interactions and the following object-level interaction in the transformer decoder.
For LiDAR-based and multi-modality settings, we adopt all the augmentations during training. For
camera-based settings, only global scaling and rotation are applied to image voxel space VI .

Training Schedule. In Section 4.1 of the main paper, we give training details with different modalities.
To be more specific, for the multi-modality setting, we finetune the framework for 20 epochs, which
may not be fully optimized. Following previous work [50, 7], CBGS sampler is utilized for class
balance optimization in the training process. Specifically, we initialize the camera- or LiDAR-based
branch from the corresponding pretrained model and reduce the total training epoch to 10. In Table 11,
we compare with previous methods on the nuScenes dataset. Obviously, the proposed UVTR can
further be improved to 70.6% NDS and 65.9% mAP with CBGS on the nuScenes val set.

Training Setting. Due to different pipelines, we construct each training batch on 8 devices with
32, 8, and 16 input data for LiDAR-, camera-based, and multi-modality settings, respectively. For
camera-based setting, we initialize our image backbone from the pretrained FCOS3D [27]. Most of
our models are trained on NVIDIA V100 GPU. Part of memory-consuming models with multi-frame
or multi-modality settings like UVTR-CS and UVTR-M are trained on NVIDIA A100 GPU. Here,
we also provide the comparison of different distances for knowledge transfer in Table 12. The partial
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Table 11: Comparisons of different methods with a single model on the nuScenes val set. We compare
with classic methods on the multi-modality setting. M indicates the Multi-modality input.

Method Backbone NDS(%) mAP(%) mATE↓ mASE↓ mAOE↓ mAVE↓ mAAE↓
LiDAR+Camera

FUTR3D [9] V0.075-R101 68.3 64.5 - - - - -
UVTR-M V0.075-R101 70.2 65.4 0.332 0.258 0.268 0.212 0.177
UVTR-M-CBGS V0.075-R101 70.6 65.9 0.320 0.256 0.262 0.219 0.176

Table 12: Comparisons between L2 and partial L2 distance [40] on the nuScenes val set. Models are
optimized on 1/4 mini nuScenes train set. L2C represents knowledge transfer from LiDAR.

Method Backbone Distance NDS(%) mAP(%)

UVTR-L2C R50 L2 36.0 28.0
UVTR-L2C R50 Partial L2 36.4 28.2

Table 13: Model inference runtime on the nuScenes val set. We test all the models and report results
on a single NVIDIA Tesla V100 GPU.

Method Backbone NDS(%) Latency(ms) FPSBackbone ViewTrans Encoder Decoder

UVTR-L V0.1 66.4 71.5 - 17.1 18.4 9.3
UVTR-C R50 41.9 103.4 64.1 32.1 36.5 4.2
UVTR-C R101 44.1 194.1 64.7 32.3 36.1 3.1

Table 14: Comparisons with convolution-based head in the nuScenes val set. CPHead indicates the
adopted convolution-based head in CenterPoint [24].

Method Backbone Head NDS(%) mAP(%)

LiDAR

CenterPoint [24] V0.1 Convolution 64.9 56.6
UVTR-L-CPHead V0.1 Convolution 65.4 58.1
UVTR-L V0.1 Transformer 66.4 59.3

Camera

UVTR-C-CPHead R101 Convolution 40.0 35.1
UVTR-C R101 Transformer 44.1 36.2

L2 distance brings a 0.4% NDS gain compared with the naive version. Therefore, we adopt partial
L2 distance for knowledge transfer by default.

Model Inference. In the inference stage, we keep 300 top-scoring predictions within the range
[−10m,−10m] for Z axis and [−61.2m,−61.2m] for X and Y axis. We also provide the inference
speed of the framework in Table 13. For the LiDAR-based setting, UVTR-L consumes cost mainly
from the sparse convolution backbone. And the transformer decoder with 3 layers costs about 18ms.
For the camera-based setting, the consumption is mainly from the image backbone and view transform
process. The voxel encoder and transformer decoder with 6 layers also bring a noticeable cost. In
this work, we focus more on the unified representation with good performance. And the framework
can be further accelerated with several engineering skills. For example, we directly adopt the naive
grid sampling in the view transform. It can be optimized a lot using a CUDA version operator.

Decoder Head. The transformer decoder is designed for object-level interaction and efficient object
feature capture from the voxel space VU . Here, we compare it with the classic convolution-based
CenterPoint [24] head in Table 14. In particular, to suit the CenterPoint head without bringing too
much cost, we compress the axis Z of the constructed unified voxel space VU (after voxel encoder)
in Figure 2 with a summation. As presented in Table 14, with the same head, the proposed UVTR
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Figure 6: Visualization of UVTR predictions with different modalities on nuScenes val set. The
important area that needs more attention is marked with dotted red box. Best viewed in color.

still surpasses CenterPoint with 0.5% NDS and 1.5% mAP. Compared with the convolution-based
head, the designed transformer head achieves significant gains with 1.0% NDS and 4.1% NDS for
LiDAR-based and camera-based settings, respectively. This proves the effectiveness of the designed
transformer decoder in UVTR.

B Qualitative Analysis

In this section, we give visualizations of UVTR predictions on different modalities and different
views, as presented in Figures 6 and 7. We draw the predicted results on LiDAR-based BEV views
and each camera view for clear comparisons. It is clear that UVTR performs well on nuScenes [43]
dataset, and most of the objects are detected in these scenes.

Multi-modality Results. The multi-modality results are given in the second column of Figures 6
and 7. Compared with the ground truth, the multi-modality detector gives accurate predictions
of object location, category, speed, and orientation (arrows in each figure). Although the multi-
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Figure 7: Extended visualization of UVTR predictions with different modalities on nuScenes val set.
The important area that needs more attention is marked with dotted red box. Best viewed in color.

modality setting introduces advantages from both LiDAR and camera, there still exists missing
objects, especially for far or small objects. It remains potential to be further explored for these cases.

LiDAR-based Results. For LiDAR-based detector, predictions are presented in the third column
of Figures 6 and 7. Different from that of multi-modality results, the LiDAR-based method lacks
sufficient context from images for accurate classification and thus brings the wrong detection. For
example, without surrounding context, the tree in last row of Figure 6 is detected as vehicle.

Camera-based Results. For camera-based approach, we plot results in the last column of Figures 6
and 7. Because accurate positions are missing in images, locations of predicted boxes are not so
accurate. But the camera-based manner provides more context cues for better recognition. As shown
in the second row of Figure 7, barriers are well detected with the aid of images for camera-based and
multi-modality methods, while this is not the case for LiDAR-based manner.
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