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A SPECIFICS OF DATA GENERATING PROCESS

For our simulations, we generate data according to the graph shown in Figure 6 and modifications of it that violate the
shadow variable or backdoor conditions. We generate the pre-treatment covariates W from a multivariate normal distribution
with mean 0 and covariance matrix Σ = 

1.2 0 0 0
0 1 0.4 0.4
0 0.4 1 0.3
0 0.4 0.3 1

 .
The above data generating process is equivalent to a structural equation model with correlated errors due to unmeasured
confounders between the pairs (W2,W3), (W2,W4), and (W3,W4). We generateA, Y (1), I , andRY according to structural
equation models following edges in Figure 6. Note that we also clip all probabilities to be between the ranges of 0.01 and
0.99.

We generate A as a binary variable with the following probabilities:

p(A = 1 |W1,W2,W3,W4) = expit(0.52 + 2 ∗W1 + 2 ∗W2 + 2 ∗W3 + 2 ∗W4)

p(A = 0 |W1,W2,W3,W4) = 1− p(A = 1 |W1,W2,W3,W4)

Next, Y (1) is generated similarly with the following probabilities:

p(Y (1) = 1 | A,W2,W3,W4) = expit(3 ∗A+ 2 ∗W2 + 2 ∗W3 + 2 ∗W4)

p(Y (1) = 0 | A,W2,W3,W4) = 1− p(Y (1) = 1 | A,W2,W3,W4)

The variable I is simply a random normal variable with mean 0 and variance 2, i.e. I ∼ N (0, 2).

We use the odds ratio parameterization to generate RY with the following two probabilities. We first specify p(RY = 1 |
Y (1) = 0,W \ {W1}, I), which represents the probability of RY = 1 when Y (1) is at its chosen reference value of 0. We
then use that probability to generate p(RY = 1 | Y (1),W \ {W1}, I) at all values of Y (1).

p(RY = 1 | Y (1) = 0,W \ {W1}, I) = expit(W2 +W3 +W4 + 0.5 ∗ I)

p(RY = 1 | Y (1),W \ {W1}, I) =
p(RY = 1 | Y (1) = 0,W \ {W1}, I)

p(RY = 1 | Y (1) = 0,W \ {W1}, I) + exp(−1.5 ∗ Y (1))× (1− p(RY = 1 | Y (1) = 0,W \ {W1}, I))
.

In the case where we add A→RY to Figure 6, we add 1.5 ∗A in the expit function for p(RY = 1 | Y (1) = 0, ·).
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B PROOF OF THEOREM 1

We first note that the presence ofRY in the numerator ensures that we only use observed rows of data. Further, the propensity
scores in the denominator are identified: p(A | Z) only depends on observed quantities, and p(RY = 1 | A, Y (1),Z) =
p(RY = 1 | Y (1),Z) is identified using S1, S2, and the completeness condition. We now prove that the proposed identifying
functional is equal to the backdoor adjustment functional and counterfactual mean under the full data law.

Proof.

E
[

RY × I(A = a)× Y
p(RY = 1 | Y (1),Z)× p(A = a | Z)

]
=(1)

∑
RY ,Y (1),A,Z,Y

p(RY , Y
(1), A,Z, Y )× RY × I(A = a)× Y

p(RY = 1 | Y (1),Z)× p(A = a | Z)

=(2)
∑

Y (1),A,Z

p(RY = 1, Y (1), A,Z)× I(A = a)× Y (1)

p(RY = 1 | Y (1),Z)× p(A | Z)

=(3)
∑

Y (1),A,Z

p(RY = 1 | Y (1), A,Z)p(Y (1) | A,Z)p(A | Z)p(Z)× I(A = a)× Y (1)

p(RY = 1 | Y (1),Z)× p(A = a | Z)

=(4)
∑
Y (1),Z

p(RY = 1 | Y (1),Z)p(Y (1) | A = a,Z)p(A = a | Z)p(Z)× Y (1)

p(RY = 1 | Y (1),Z)× p(A = a | Z)

=(5)
∑
Y (1),Z

p(Y (1) | A = a,Z)× p(Z)× Y (1)

=(6)
∑
Z

E[Y (1) | A = a,Z]× p(Z) =(7) E[Y (a,1)].

In (1) we apply the law of the unconscious statistician; in (2) we evaluate the sum over RY and use missing data consistency;
in (3) we apply the chain rule of probability; in (4) we evaluate the sum over A and drop A from the propensity score of RY
due to condition S2; (5) follows from cancellation of common terms in the numerator and denominator; (6) follows from
definition of expectation; the last step (7) follows from the fact that Z satisfies the backdoor conditions B1 and B2.

C PROOF OF EQUATION 3

For completeness, we provide a proof for odds ratio parameterization of the propensity score in (3). First, from Chen [2007]
we have an odds ratio factorization of the joint distribution p(RY , Y (1) | Z) as follows,

p(RY , Y
(1) | Z) = p(RY | Y (1) = y0,Z)× p(Y (1) | RY = 1,Z)× OR(Y (1), RY | Z)∑

RY ,Y (1) p(RY | Y (1) = y0,Z)× p(Y (1) | RY = 1,Z)× OR(Y (1), RY | Z)
, (1)

where y0 is a reference value for Y (1) and 1 is the reference value for RY , and the denominator of is a normalizing function.
Let ψ = p(RY | Y (1) = y0,Z) × p(Y (1) | RY = 1,Z) × OR(Y (1), RY | Z) and ψ1 = ψ|RY =1. As in the main section
of the paper, π0 := p(RY = 1 | Y (1) = y0,Z) and η(Y (1),Z) := OR(RY = 0, Y (1) | Z). We present the proof and an
explanation of each step below.

(1) and (2) follow from standard laws of probability. In (3), we apply the odds ratio factorization in (1) to both the numerator
and the denominator. In (4), we cancel out like terms in both the numerator and denominator. In (5), we simply expand out
ψ1 and ψ according to our previous definitions of these two terms. In (6), we note that OR(Y (1), RY = 1 | Z) has RY at
its reference value of 1; hence, it is equal to 1. Further, we move the term p(Y (1) | RY = 1,Z) outside of the sum in the
denominator because this term is not a function of RY . In (7), we cancel out like terms from the numerator and denominator.
Finally, in (8), we explicitly write out the sum over RY , which has only two possible values. When RY = 1, RY is at its
reference value in the odds ratio, so the odds ratio term disappears, and we are just left with π0(Z). When RY = 0, we
know that p(RY = 0 | Y (1) = y0,Z) = 1− π0(Z) and that neither Y (1) nor RY are at their reference values in the odds
ratio term. Therefore, the odds ratio term remains.



Proof.

p(RY = 1 | Y (1),Z) =(1) p(RY = 1, Y (1) | Z)
p(Y (1) | Z)

=(2) p(RY = 1, Y (1) | Z)∑
RY

p(RY , Y (1) | Z)

=(3)

ψ1∑
RY ,Y (1) ψ∑

RY
ψ∑

RY ,Y (1) ψ

=(4) ψ1∑
RY

ψ

=(5) p(RY = 1 | Y (1) = y0,Z)× p(Y (1) | RY = 1,Z)× OR(Y (1), RY = 1 | Z)∑
RY

p(RY | Y (1) = y0,Z)× p(Y (1) | RY = 1,Z)× OR(Y (1), RY | Z)

=(6) p(RY = 1 | Y (1) = y0,Z)× p(Y (1) | RY = 1,Z)

p(Y (1) | RY = 1,Z)×
∑
RY

p(RY | Y (1) = y0,Z)× OR(Y (1), RY | Z)

=(7) p(RY = 1 | Y (1) = y0,Z)∑
RY

p(RY | Y (1) = y0,Z)× OR(Y (1), RY | Z)

=(8) π0(Z)

π0(Z) + η(Y (1),Z)(1− π0(Z))

D ADDITIONAL SIMULATION RESULTS

We report additional simulation results for simulations of the search algorithm described in section 7. Table 1 gives results
when using α = 0.01 to conclude dependence between two variables.

Sample Size Sensitivity Specificity
500 0.0 0.394

2500 0.269 0.383
5000 0.690 0.717

10000 0.828 0.952

Table 1: Tables showing the accuracy of tests for different sample sizes and α = 0.01.

Next, Table 2 gives the results of the simulations when using α = 0.1 to conclude dependence between two variables.

Sample Size Sensitivity Specificity
500 0.022 0.363

2500 0.671 0.630
5000 0.837 0.770

10000 0.949 0.857

Table 2: Tables showing the accuracy of tests for different sample sizes and α = 0.1.

As the p-value increases, the accuracy of the tests for correctly predicting an adjustment set when one is possible increases.
On the other hand, the accuracy of the tests for correctly identifying that there is no possible adjustment set when no such
set exists decreases as p-value increases. For all p-values, the accuracy of the tests in general increase as the sample size
increases.

Next, we report additional simulation results for estimation of the causal effect described in Section 7. Figure 1 shows the
estimation results for sample size 500. When using the correct adjustment method, our practical estimation method is able to



Figure 1: Estimation results for sample size 500.

accurately recover the causal effect. However, using the full pipeline of our method, the estimates are fairly inaccurate. This
is to be expected, as the sensitivity of the covariate search at a small sample size is quite inaccurate regardless of p-value. In
addition, due to missing data, the effective sample size of the data is roughly 300.
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