
Published as a conference paper at ICLR 2025

DOCS: QUANTIFYING WEIGHT SIMILARITY FOR
DEEPER INSIGHTS INTO LARGE LANGUAGE MODELS

Zeping Min
Alibaba Group
Hupan Laboratory
AMSS, Chinese Academy of Sciences
minzeping.mzp@alibaba-inc.com

Xinshang Wang
Alibaba Group
xinshang.w@alibaba-inc.com

ABSTRACT

We introduce a novel index, the Distribution of Cosine Similarity (DOCS), for
quantitatively assessing the similarity between weight matrices in Large Language
Models (LLMs), aiming to facilitate the analysis of their complex architectures.
Leveraging DOCS, our analysis uncovers intriguing patterns in the latest open-
source LLMs: adjacent layers frequently exhibit high weight similarity and tend
to form clusters, suggesting depth-wise functional specialization. Additionally,
we prove that DOCS is theoretically effective in quantifying similarity for orthog-
onal matrices, a crucial aspect given the prevalence of orthogonal initializations
in LLMs. This research contributes to a deeper understanding of LLM architec-
ture and behavior, offering tools with potential implications for developing more
efficient and interpretable models.

1 INTRODUCTION

Large Language Models (LLMs), built on transformer architectures (Vaswani et al., 2017), have
ushered in a new era in natural language processing (Brown et al., 2020). These complex models
have demonstrated remarkable capabilities, but understanding their underlying mechanisms remains
a challenge. Similarity analysis techniques (Raghu et al., 2017; Morcos et al., 2018; Kornblith
et al., 2019) offer a promising approach for gaining insights into the learned representations and
computational processes within these models.

In this work, we extend the application of similarity analysis by directly examining the weight matri-
ces of various LLMs1, instead of focusing on representations. By analyzing the weights themselves,
we aim to uncover deeper insights into the model’s structure and functionality that are not apparent
from representations alone.

While prior research has explored many methods for characterizing the similarity of neural networks
(Wu et al., 2020; Khosla & Williams, 2024; Kriegeskorte et al., 2008; Klabunde et al., 2023b; Wang
et al., 2020; Barannikov et al., 2021; Hamilton et al., 2016; Rahamim & Belinkov, 2024; Tang
et al., 2020; Camastra & Staiano, 2016; Wang et al., 2018; Raghu et al., 2017; Morcos et al., 2018;
Kornblith et al., 2019), these methods are often not applicable to measuring similarity between
weight matrices due to the following two key factors. For further discussion, see Appendix E.

1. Focus on Representation, Not Weights: Similar representations across layers do not nec-
essarily imply similar weight matrices. This discrepancy arises from the use of residual
connections in transformer architectures (He et al., 2016), which create shortcuts that al-
low information to bypass layer transformations. Mathematically, a residual connection is
represented as

y = F(x,W) + x, (1)

where x is the layer’s input, W represents the weight matrices, F is the transformation
function (including the feedforward network and attention), and y is the layer’s output. As

1While different transformer-based architectures exist, in this paper we primarily focus on decoder-only
architectures, which include the Wv , Wk, Wq , Wo, MLP-UP, and MLP-DOWN weight matrices.
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shown in equation 1, the output y directly depends on the input x. While residual con-
nections mitigate issues such as vanishing gradients during training, this direct dependence
inherently creates correlations between the inputs of different layers, as the output of one
layer serves as the input for the next. Since the transformation function F depends on the
input x, these input correlations can lead to correlated representations of transformations
across layers, even if the underlying weight matrices W are distinct. This is further ev-
idenced by Figures 1a and 1b, which show that the input and output of the feedforward
network have similar patterns of representation similarity.
Consequently, observing similar representations across layers does not guarantee that the
corresponding weight matrices are also similar. Since representation and weight are two
fundamental facets of the model, each offers unique insights. Therefore, while represen-
tation analysis can provide profound understanding of large language models, examining
the weight matrices can further deepen our comprehension of their structure and behav-
ior, offering additional perspectives for potential applications. For further discussion, see
Appendix E.1.

2. Non-Discriminative for Orthogonal Matrices: Many existing similarity indices, such as
Canonical Correlation Analysis (CCA) (Ramsay et al., 1984; Morcos et al., 2018), Singular
Vector Canonical Correlation Analysis (SVCCA) (Raghu et al., 2017), and linear Centered
Kernel Alignment (linear CKA) (Kornblith et al., 2019), are non-discriminative for orthog-
onal matrices. An orthogonal matrix Q is defined by the property Q⊤Q = QQ⊤ = I ,
where I is the identity matrix. This non-discriminative nature means that these indices can
yield the same score when assessing the similarity between any two orthogonal matrices,
regardless of their actual differences. This limitation hinders accurate similarity assess-
ment, as it fails to capture genuine differences between weight matrices. This issue is
particularly relevant in the context of LLMs, where orthogonal matrices commonly occur
throughout the training process (Tian et al., 2023).

To address these challenges, we introduce a novel matrix-similarity index called the Distribution of
Cosine Similarity (DOCS). DOCS directly measures the similarity of weight matrices by computing
the cosine similarity between corresponding vectors and analyzing their distribution. Importantly,
DOCS retains the desirable properties of existing similarity indices while overcoming their non-
discriminative nature for orthogonal matrices, a critical factor in LLM analysis. Through extensive
experiments on various LLMs, we demonstrate that DOCS provides a more reliable and accurate
measure of similarity between LLM weight matrices.

(a) Representation
similarity before the
feedforward network,
measured using linear
CKA.

(b) Representation
similarity of the feed-
forward network’s
output, measured
using linear CKA.

(c) Weight similarity
of the MLP-UP ma-
trix, measured using
linear CKA.

(d) Weight similarity
of the MLP-UP ma-
trix, measured using
our DOCS method.

Figure 1: Comparison of similarity indices applied to representation similarities ((a) and (b)) and
weight similarities ((c) and (d)) across different layers of Llama 3.1-8B-Instruct (Dubey et al., 2024).

To demonstrate the effectiveness of our DOCS method, Figures 1c and 1d compare weight similarity
heatmaps generated using linear CKA (Kornblith et al., 2019) and DOCS. The linear CKA heatmap
shows light off-diagonal areas and dark stripes, indicating an inability to distinguish between distant
layers—possibly due to the orthogonality of weight matrices (see Section 2). In contrast, the DOCS
heatmap displays clear light areas near the diagonal, highlighting similarities between adjacent lay-
ers in the LLM.

Our results reveal many intriguing similarity patterns within open-source LLMs, leading us to ex-
plore several key observations in the following discussions.
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Neighboring Transformer Layers Exhibit Similar Weights.

Our analysis reveals a consistent pattern of weight similarity between adjacent layers in open-source
LLMs. This suggests that after optimization, similar neurons tend to stay in layers that best suit
their function. This observation supports recent studies (Lad et al., 2024; Song et al., 2024; Mu
et al., 2024) indicating functional redundancy in adjacent layers. These studies have demonstrated
high prediction accuracy even after layer manipulations (Lad et al., 2024), identified block-level
redundancy (Song et al., 2024), and observed analogous attention patterns in nearby layers (Mu
et al., 2024). Furthermore, we find that weight similarity decreases with increasing layer distance,
aligning with the hypothesized universal stages of inference across models (Lad et al., 2024).

Clusters of Similar Transformer Layers Exist.

Beyond merely adjacent layers, we find that clusters of multiple similar, nearby layers exist within
LLMs. As depicted in Figure 1d, layers 7–12 form such a cluster, exhibiting relatively high mutual
similarity (approximately twice the DOCS index values of other elements) in their MLP-UP module
weights according to our DOCS index. This challenges the common practice of uniform layer
configurations, as such designs fail to leverage the cluster structure revealed by DOCS, potentially
limiting optimization during the SFT stage.

Many open-source LLM implementations, including GPT-2 (Radford et al., 2019), Llama (Touvron
et al., 2023), Mistral (Jiang et al., 2023), Llama 3 (Dubey et al., 2024), Gpt-neox-20b (Black et al.,
2022), Opt (Zhang et al., 2022), Codegeex (Zheng et al., 2023), Glm-130b (Zeng et al., 2022), and
Flm (Li et al., 2023), adopt architectures where all layers have the same size. Furthermore, existing
literature on scaling laws for neural language models (Kaplan et al., 2020; Hoffmann et al., 2022)
and parameter-efficient fine-tuning (PEFT) methods (Hu et al., 2021; Houlsby et al., 2019) often
assumes uniform layer sizes, treating the model as a homogeneously scaled entity.

Our observations suggest revisiting these assumptions. The presence of mutual similarity within the
layers of a cluster indicates the potential to apply a distinct configuration to those layers, such as
adjusting neuron sizes or training strategies. DOCS similarity can guide such designs, aligning with
prior efforts to leverage layer clusters for reduced computation (Liao & Vargas, 2024).

Comparing Weight Similarities Between Base and Instruction-Tuned Models.

We investigate whether base models and their instruction-tuned counterparts exhibit similar weight
patterns. We address questions such as: How different are the base and instruction fine-tuned mod-
els? Which parts of the LLMs are most affected by instruction fine-tuning? Are there any patterns in
the changes of weight matrices due to fine-tuning? This examination sheds light on how instruction
tuning affects the internal weights of models (Ouyang et al., 2022).

Comparing Similarities Between Experts

We examine the similarity between experts in pre-trained Mixture of Experts (MoE) models. Do
the experts have similar weights? Is there any expert that is significantly different from the others?
Our analysis provides insights into the diversity among experts (Shazeer et al., 2017; Lepikhin et al.,
2020).

2 MATHEMATICAL PROPERTIES OF SIMILARITY INDICES

When evaluating similarity indices for neural network weights, especially in the context of large
language models, a critical property to consider is their ability to discriminate between orthogonal
matrices. Orthogonal matrices play a significant role in neural network initialization and training.
They are often used to improve training stability and preserve gradient flow. Even after optimization,
weight matrices may retain orthogonality properties (Tian et al., 2023). Therefore, a similarity index
that can distinguish between different orthogonal matrices is essential for capturing meaningful
variations in weight matrices.

We categorize the behavior of similarity indices concerning orthogonal matrices into three classes:

Definition 1 (Constant on Orthogonal Matrices). An index S is constant on orthogonal matrices if
there exists a constant C ∈ R such that for all n ∈ N and all orthogonal matrices X,Y ∈ Rn×n,
we have S(X,Y ) = C.
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Definition 2 (Dimension-Dependent on Orthogonal Matrices). An index S is dimension-dependent
on orthogonal matrices if for each n ∈ N, there exists a constant C(n) ∈ R such that for all
orthogonal matrices X,Y ∈ Rn×n, we have S(X,Y ) = C(n).

Definition 3 (Discriminative on Orthogonal Matrices). An index S is discriminative on orthogonal
matrices if there exist orthogonal matrices X,Y,X ′, Y ′ ∈ Rn×n such that S(X,Y ) ̸= S(X ′, Y ′).

Apart from the behavior concerning orthogonal matrices, there are other desirable mathematical
properties that ensure similarity indices provide meaningful and consistent comparisons across dif-
ferent models and layers. These properties include:

1. Permutation Transformation (PT) Invariance (Williams et al., 2021):

S(X,Y ) = S(XPX , Y PY )

where PX and PY are permutation matrices. This property characterizes the ability of an
index to be unaffected by permutations in the neuron ordering.

2. Symmetry. S(X,Y ) = S(Y,X). The similarity measure should be independent of the
order of the inputs, ensuring a fair comparison between two matrices.

3. Isotropic Scaling (IS) Invariance. (Klabunde et al., 2023a;b) S(aX, bY ) = S(X,Y ) for
any non-zero scalars a, b. This allows for meaningful comparisons of models trained under
different conditions, such as varying learning rates or initialization schemes that scale the
weights differently.

4. Reflexivity. S(X,X) = 1. A matrix should be most similar to itself, providing a normal-
ization baseline for similarity measures.

Table 1: Comparison of Mathematical Properties Across Different Similarity Indices.

Method PT Invariance Symmetry IS Invariance Reflexivity Behavior on Orthogonal Matrices

Linear Regression ✓ % ✓ ✓ Constant
CCA (R2

CCA) (Morcos et al., 2018) ✓ ✓ ✓ % Constant
CCA (ρ̄CCA) (Morcos et al., 2018) ✓ ✓ ✓ ✓ Constant
SVCCA (R2

SVCCA) (Raghu et al., 2017) ✓ ✓ ✓ ✓ Constant (assuming TX = TY = I)
SVCCA (ρ̄SVCCA) (Raghu et al., 2017) ✓ ✓ ✓ ✓ Constant (assuming TX = TY = I)
Linear HSIC (Gretton et al., 2005) ✓ % % % Dimension-Dependent
Linear CKA (Kornblith et al., 2019) ✓ ✓ ✓ ✓ Constant
DOCS (Ours) ✓ ✓ ✓ ✓ Discriminative

Table 1 compares the behavior of various similarity indices with respect to these mathematical prop-
erties. Our proposed DOCS index introduces a discriminative behavior on orthogonal matrices (see
Section 3.1 for theoretical results) and satisfies all the other mathematical properties outlined above.
This discriminative capability allows DOCS to capture meaningful differences between weight ma-
trices that other similarity indices—which are constant or dimension-dependent on orthogonal ma-
trices (see proofs in Appendix B) —might overlook. Consequently, DOCS provides a more reliable
and accurate measure of similarity between LLM weight matrices, enhancing the analysis and un-
derstanding of neural network behaviors.

In Appendix D, we discuss additional mathematical properties, some of which DOCS may not sat-
isfy. These properties, while valuable in other contexts, are not critical for evaluating weight simi-
larity measures in neural networks.

3 DISTRIBUTION OF COSINE SIMILARITY

Our DOCS method operates by comparing the weight matrices of two components (e.g., feed-
forward networks, attention heads) within a neural network. Each component is represented by
a matrix where columns correspond to individual parameter vectors (e.g., neuron weights, attention
patterns). The key idea is to quantify how well the parameters from one component align with those
from another, based on their vector representations.
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Algorithm 1 Computation of the DOCS Similarity Index SDOCS

1: Input: Matrices X = [X1, X2, . . . , Xm] ∈ Rn×m and Y = [Y1, Y2, . . . , Ym] ∈ Rn×m

2: Output: Similarity index SDOCS

3: function MAXCOSSIM(A, B)

4: Compute the cosine similarity matrix C ∈ Rm×m where Cjk =
A⊤

j Bk

∥Aj∥∥Bk∥
5: For each column Aj , find sAj = maxk |Cjk|
6: return sA = [sA1

, sA2
, . . . , sAm

]⊤

7: end function

8: Compute sX = MAXCOSSIM(X,Y )
9: Compute sY = MAXCOSSIM(Y,X)

10: Fit a Gumbel distribution to sX to estimate the location parameter uX using maximum likeli-
hood estimation

11: Fit a Gumbel distribution to sY to estimate the location parameter uY using maximum likelihood
estimation

12: Compute the similarity index:

SDOCS =
uX + uY

2

The DOCS algorithm consists of the following steps:

1. Compute Cosine Similarities: Calculate the cosine similarity between all pairs of param-
eter vectors from the two weight matrices. This results in a cosine similarity matrix C,
where each element Cjk quantifies the similarity between the j-th vector from X and the
k-th vector from Y .

2. Extract Maximum Similarities: For each vector in X , identify the vector in Y with which
it has the highest absolute cosine similarity. This captures the strongest alignment for each
vector.

3. Fit Gumbel Distribution: Fit separate Gumbel distributions to sX and sY by treating the
elements in each vector as data points. Using maximum likelihood estimation, compute the
location parameters uX and uY , respectively. This allows us to summarize each distribution
with a single parameter.

4. Compute DOCS Index: The location parameters uX and uY of the fitted Gumbel distri-
butions represent the central tendency of the maximum similarities. Averaging uX and uY

yields the DOCS similarity index SDOCS.

The DOCS index SDOCS provides a scalar value between 0 and 1 that reflects the degree of similarity
between the two weight matrices. A higher value indicates that the matrices have parameters (e.g.,
neuron weights or attention patterns) that are highly aligned, suggesting similar functional roles.
Conversely, a lower value implies less similarity, indicating that the components may be specialized
for different functions.

By focusing on maximum cosine similarities and modeling their distribution, DOCS captures signif-
icant parameter alignments instead of averaging over all pairwise similarities. In contrast, similarity
indices such as Canonical Correlation Analysis (CCA) (Morcos et al., 2018), Singular Vector CCA
(SVCCA) (Raghu et al., 2017), and linear Centered Kernel Alignment (linear CKA) (Kornblith et al.,
2019) rely on matrix multiplication to aggregate pair-wise information across entire matrices. This
aggregation can dilute strong correspondences between specific parameter vectors, potentially over-
looking meaningful alignments. Consequently, DOCS effectively detects strong correspondences
between components, enhancing the analysis of deep neural network structures.

3.1 THEORETICAL JUSTIFICATION

We establish that DOCS can distinguish between orthogonal matrices, a capability that existing
similarity indices lack (see Section 2). The following theorem demonstrates that DOCS not only
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meets the Definition 3 of being discriminative on orthogonal matrices but also achieves a stronger
level of distinction through a constructive proof.

Theorem 1. For n ≥ 2, there exist m = Ω(n) and column-orthogonal matrices X,Y ∈ Rn×m

such that their Frobenius norm difference and DOCS similarity satisfy:

∥X − Y ∥F = Ω(
√
m), and SDOCS(X,Y ) =

1√
m
.

The proof of the theorem is deferred to Appendix C. The intuition behind the proof is to construct the
matrices X and Y with orthonormal columns but differing structures to highlight their dissimilarity.
The matrix X is built from standard basis vectors, while Y leverages a normalized Hadamard matrix
to ensure orthonormality. By calculating the Frobenius norm of the difference X −Y , we show that
it scales as

√
m. Meanwhile, the DOCS value between X and Y is controlled by the normalized

entries of the Hadamard matrix, demonstrating that their cosine similarity is small, on the order
of 1/

√
m. This gap between the large Frobenius norm and small DOCS establishes the desired

properties.

This theorem proves the existence of column-orthogonal matrices with significant differences ∥X−
Y ∥F = Ω(

√
m). Unlike existing methods, DOCS similarity effectively captures these differences

SDOCS(X,Y ) = 1√
m
, demonstrating its superior discriminative power for orthogonal matrices (see

Table 1). An illustrative example is provided in Appendix A.5.

4 EXPERIMENTS

We conduct experiments to demonstrate the capabilities of DOCS and to gain insights into the inter-
nal structure of LLMs. In LLM implementations2, the rows of a weight matrix correspond to output
dimensions, and the columns correspond to input dimensions. To align the column vectors with
meaningful entities (e.g., neuron weights), we transpose Wv , Wk, Wq , and MLP-UP before com-
puting DOCS scores. In the MoE experiment, W1 and W3 (Jiang et al., 2024) are also transposed
for consistency.

4.1 COMPARISON OF SIMILARITY INDICES

Figure 2 provides a visual comparison of eight different similarity indices applied to the MLP-UP
layers of the Meta-Llama-3.1-8B-Instruct model.

(a) Linear Regression (b) CCA (c) CCA (Nuclear) (d) SVCCA

(e) SVCCA (Nuclear) (f) Linear HSIC (g) Linear CKA (h) DOCS

Figure 2: Comparison of similarity indices on the MLP-UP layers of Meta-Llama-3.1-8B-Instruct.

2https://github.com/huggingface/transformers
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In these visualizations, we observe that Linear Regression, Canonical Correlation Analysis (CCA),
and CCA (Nuclear) indices fail to exhibit clear structural patterns, with their heatmaps appearing
noisy. This suggests that they may have limitations in accurately capturing meaningful relationships
between the parameters of different transformer layers. The observed noise could be indicative of
their reduced sensitivity to the underlying layer similarities.

On the other hand, the similarity indices Singular Vector CCA (SVCCA), SVCCA (Nuclear), and
Linear Centered Kernel Alignment (Linear CKA) display more discernible patterns. Specifically,
they exhibit block-diagonal structures, which suggests that the layers in close proximity share higher
similarity. This behavior aligns with our expectations, as neighboring layers within transformer
models often exhibit greater parameter correlation due to their sequential processing of information.
However, we also observe the presence of minor blocks and stripes in the off-diagonal regions,
which could be attributed to biases or noise in the similarity indices. These artifacts may result from
the indices’ reduced ability to differentiate orthogonal matrices, as elaborated in Section 2.

In contrast, the heatmap for DOCS exhibits a clear structure along the diagonal, demonstrating
its effectiveness in identifying similar layers with minimal interference from noisy or unrelated
signals. Furthermore, we calculated the Gini coefficients of the similarity heatmaps obtained through
each method (calculation details are provided in Appendix H). A higher Gini coefficient indicates
a more uneven distribution of similarity scores, signifying a greater concentration of significant
similarities in fewer layer pairs. This concentration potentially highlights structural characteristics
of the model parameters. As shown in Table 2, DOCS achieves the highest Gini coefficient among
all the evaluated similarity indices. This result suggests that DOCS excels in revealing structural
characteristics of the model parameters.

Table 2: Gini Coefficients for Different Similarity Indices on MLP-UP of Meta-Llama-3.1-8B-
Instruct

Similarity Index Gini Value
CCA Nuclear Similarity 0.0098
CCA Similarity 0.0098
Linear CKA Similarity 0.0488
Linear HSIC Similarity 0.0617
Linear Regression Similarity 0.0098
SVCCA Nuclear Similarity 0.0186
SVCCA Similarity 0.0225
DOCS (Ours) 0.0745

Appendix E.3 provides more experimental results.

4.2 NEIGHBORING LAYERS EXHIBIT SIMILAR WEIGHTS

We investigated the similarity patterns between neighboring transformer layers by analyzing various
weight matrices (Wv , Wk, Wq , Wo, MLP-UP, MLP-DOWN) in various LLMs. We employed
DOCS to compute and visualize these similarities. Figure 3 illustrates the results for Wk, Wq , and
MLP-DOWN on gemma-2-27b-it.

The heatmaps clearly show that adjacent layers exhibit higher similarity scores. Scatter plots in
Figures (d), (e), and (f) further support this, displaying a decreasing trend in similarity as the absolute
layer index difference increases. The shaded areas, representing one standard deviation around the
mean similarity, reinforce this observation.

Interestingly, the first and last layers—the most distant ones—also display higher similarity, as in-
dicated by upward trends at the ends of the scatter plots. We hypothesize that this is because both
layers are closely connected to the token embeddings. Similar patterns were observed for other
weight matrices and across different LLMs.
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(a) Wk (b) Wq (c) MLP-UP

(d) Wk (e) Wq (f) MLP-UP

Figure 3: The top row displays heatmaps of DOCS scores between layers for different weight ma-
trices in gemma-2-27b-it. The bottom row illustrates the relationship between DOCS scores and the
distance between layers.

Due to space limitations, other results are presented in Appendix I. These findings suggest that
neighboring layers tend to share more functional similarities compared to layers that are farther
apart.

4.3 CLUSTERS OF SIMILAR LAYERS

We examined clusters of similar consecutive layers within LLMs. Figure 4 shows heatmaps of
DOCS scores for the Wv matrices. They reveal clusters represented by light regions—each contain-
ing multiple layers with high mutual DOCS scores. The bottom row displays the average DOCS
scores for diagonal blocks ranging from 3× 3 to 7× 7, providing a clearer view of cluster locations
and their similarity levels.

An interesting pattern emerges: each figure shows two clusters of layers. The first cluster, located
in the middle depths (centered around layer 19 in gemma-2-9b and gemma-2-27b, and around layer
10 in Llama-3.1-8B and Mixtral-8x7B), is the most distinct. The second cluster appears in the last
layers (after layer 27 in gemma-2-9b, after 33 in gemma-2-27b, after 21 in Llama-3.1-8B, and after
23 in Mixtral-8x7B), though it is less pronounced in some models. This phenomenon, observed
across different model sizes and even vendors, suggests a universal structural pattern resulting from
LLM training. The consistent appearance of these clusters indicates that the training process leads
to the formation of distinct functional groups of layers within the model.

Different models, however, may exhibit a varying number of clusters. For example, Figure 5 shows
that Llama-3.1-70B contains multiple clusters.

4.4 BASE VS. INSTRUCT MODELS

We used the DOCS index to measure changes in weight matrices between base and instruction-tuned
models, examining LLM families including yi-1.5, Llama-3.1, and gemma-2. Figure 6 illustrates
the results. Our analysis reveals that all DOCS scores are notably high, with values exceeding 0.7
for every matrix evaluated. This indicates that the base and instruction-tuned models largely retain
the same foundational knowledge after the fine-tuning process.

On the other hand, a notable observation from our results is the tendency of the weight matrices to
cluster into three distinct groups based on the trends observed in their DOCS scores. Specifically,
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(a) gemma-2-9b (b) gemma-2-27b (c) Llama-3.1-8B (d) Mixtral-8x7B

(e) gemma-2-9b (f) gemma-2-27b (g) Llama-3.1-8B (h) Mixtral-8x7B

Figure 4: Analysis of Wv matrices across various LLMs. Top row: Heatmaps visualize DOCS
similarity scores between transformer layers. Bottom row: Average DOCS scores are computed for
diagonal blocks (sizes 3x3 to 7x7) within each heatmap.

(a) MLP-DOWN (b) MLP-UP (c) Wq (d) Wv

Figure 5: Average DOCS scores for diagonal blocks of varying sizes (3x3 to 7x7) within heatmaps
representing different weight matrices in Llama-3.1-70B.

these groups consist of MLP-UP and MLP-DOWN, Wq and Wk, as well as Wv and Wo. This
grouping may be due to the functional similarities between these matrices in the model architecture.

4.5 MOE EXPERIMENT

We analyzed the weights of different experts in Mixtral-8x7B using DOCS to generate similarity
heatmaps for the expert weight matrices (W1, W2, W3) in the MoE network. The outcomes are
visualized in Figure 7.

In many model layers, typically just one expert stands out, indicated by dark grids that show clear
separation from the others. Figures 7a, 7b and 7c illustrate this with the third expert’s prominent dark
intersecting lines, highlighting its uniqueness. This suggests some experts may have specialized
roles, differing in function or behavior within the architecture. We hypothesize that this may be
related to data load imbalance during the MoE training process, where a large portion of the data
concentrates on a single expert (Dai et al., 2022; Zuo et al., 2021).

5 CONCLUSION AND FUTURE WORK

This work introduces DOCS, a novel index for quantifying weight similarity in large language mod-
els. Unlike existing similarity indices, DOCS effectively differentiates orthogonal matrices, ad-
dressing a key limitation and enabling deeper insights into the internal structures of LLMs. Our
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(a) yi-1.5-9b (b) yi-1.5-9b (c) yi-1.5-9b

(d) Llama-3.1-8B (e) Llama-3.1-8B (f) Llama-3.1-8B

(g) gemma-2-9b (h) gemma-2-9b (i) gemma-2-9b

Figure 6: DOCS similarity scores between the base and instruction fine-tuned weight matrices for
various models.

(a) W1 in layer one (b) W2 in layer one (c) W3 in layer one (d) W3 in layer 25

Figure 7: DOCS similarity scores between the MoE experts.

experiments uncovered meaningful patterns, including high similarity between neighboring layers
and the presence of similar layer clusters. These findings underscore the potential of DOCS to
guide applications in several ways. First, the identified cluster structures could be leveraged to in-
troduce inductive biases during the supervised fine-tuning stage of parameter-efficient techniques.
Second, the clustering results offer valuable information for designing sparsity patterns aimed at
model compression. By targeting redundant connections within clustered layers, we may be able to
significantly reduce model size and computational costs without compromising performance. Third,
these findings can inform more efficient knowledge distillation strategies by identifying critical lay-
ers that deserve prioritization in the distillation process. A student model could focus on replicating
the most representative layers within each cluster, thereby alleviating the computational overhead
associated with emulating the teacher model’s entire architecture.
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A PROOFS OF MATHEMATICAL PROPERTIES OF DOCS SIMILARITY INDICES

A.1 PROOF OF PERMUTATION TRANSFORMATION INVARIANCE

Lemma 1 (Permutation Transformation Invariance). Let X,Y ∈ Rn×m and let PX , PY ∈ Rm×m

be permutation matrices. Then the DOCS similarity index is invariant under permutation transfor-
mations:

S(X,Y ) = S(XPX , Y PY ).

Proof. We aim to show that the DOCS similarity index is invariant under permutation transforma-
tions:

SDOCS(X,Y ) = SDOCS(XPX , Y PY ),

where PX and PY are permutation matrices of size m×m.

First, recall that multiplying a matrix by a permutation matrix permutes its columns. Specifically, if
σX is the permutation associated with PX , then:

XPX = [XσX(1), XσX(2), . . . , XσX(m)],

where XσX(j) denotes the σX(j)-th column of X . Similarly, Y PY permutes the columns of Y
according to the permutation σY :

Y PY = [YσY (1), YσY (2), . . . , YσY (m)].

Next, compute the cosine similarity matrix C ∈ Rm×m between X and Y :

Cjk =
X⊤

j Yk

∥Xj∥ ∥Yk∥
,

where Xj and Yk are the j-th and k-th columns of X and Y , respectively.

When we compute the cosine similarity matrix C ′ between the permuted matrices XPX and Y PY ,
we get:

C ′
jk =

(XPX)⊤j (Y PY )k

∥(XPX)j∥ ∥(Y PY )k∥
=

X⊤
σX(j)YσY (k)

∥XσX(j)∥ ∥YσY (k)∥
.

This shows that C ′
jk = CσX(j), σY (k). In other words, C ′ is a reordering of the entries of C based

on the permutations σX and σY .

In the MAXCOSSIM function of the DOCS algorithm 1, for each j, we compute:

sXj
= max

k
|Cjk|.

Similarly, for the permuted matrices, we have:

s(XPX)j = max
k

|C ′
jk| = max

k
|CσX(j), σY (k)|.

Since σY is a permutation of {1, 2, . . . ,m}, as k ranges over 1 to m, so does σY (k). Therefore:

s(XPX)j = max
k

|CσX(j), σY (k)| = max
k

|CσX(j), k| = sXσX (j)
.

This means that s(XPX)j is equal to sXσX (j)
, indicating that the sequence {s(XPX)j} is a permuta-

tion of {sXj
} based on σX .

Similarly, for Y and its permutation Y PY , we find:

s(Y PY )k = max
j

|C ′
kj | = max

j
|CσX(j), σY (k)| = max

j
|Cj, σY (k)| = sYσY (k)

.

Thus, s(Y PY )k is equal to sYσY (k)
, so the sequence {s(Y PY )k} is a permutation of {sYk

} based on
σY .
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When we fit Gumbel distributions to the sequences {sXj
} and {s(XPX)j}, or {sYk

} and {s(Y PY )k},
the estimated location parameters uX and u′

X (or uY and u′
Y ) remain the same because the sets of

values are identical up to permutation.

Therefore, the DOCS similarity index remains unchanged:

SDOCS(XPX , Y PY ) =
u′
X + u′

Y

2
=

uX + uY

2
= SDOCS(X,Y ).

This concludes the proof that the DOCS similarity index is invariant under permutation transforma-
tions.

A.2 PROOF OF SYMMETRY

Lemma 2 (Symmetry). For any matrices X,Y ∈ Rn×m, the DOCS similarity index satisfies:

SDOCS(X,Y ) = SDOCS(Y,X).

Proof. Compute the cosine similarity matrix C ∈ Rm×m where:

Cjk =
X⊤

j Yk

∥Xj∥ ∥Yk∥
.

Note that Cjk = Ckj because:

Cjk =
X⊤

j Yk

∥Xj∥ ∥Yk∥
=

Y ⊤
k Xj

∥Yk∥ ∥Xj∥
= Ckj .

Therefore, the cosine similarity matrix C is symmetric.

The MaxCosSim function computes for each j:

sXj = max
k

|Cjk|.

Similarly, for Y and X:
sYk

= max
j

|Ckj | = max
j

|Cjk|.

Thus, the sets {sXj} and {sYk
} are identical.

Fitting Gumbel distributions to {sXj
} and {sYk

} yields identical location parameters:

uX = uY .

Therefore, the DOCS similarity index is:

SDOCS(X,Y ) =
uX + uY

2
= uX = uY = SDOCS(Y,X).

A.3 PROOF OF ISOTROPIC SCALING INVARIANCE INVARIANCE

Lemma 3 (Isotropic Scaling Invariance). For any matrices X,Y ∈ Rn×m and nonzero scalars
a, b ∈ R, the DOCS similarity index satisfies:

SDOCS(aX, bY ) = SDOCS(X,Y ).

Proof. Consider the scaled matrices:

X̃ = aX, Ỹ = bY.

The cosine similarity between columns X̃j and Ỹk is:

C̃jk =
X̃⊤

j Ỹk

∥X̃j∥ ∥Ỹk∥
=

(aXj)
⊤(bYk)

∥aXj∥ ∥bYk∥
=

abX⊤
j Yk

a∥Xj∥ · b∥Yk∥
=

X⊤
j Yk

∥Xj∥ ∥Yk∥
= Cjk.
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Therefore, the cosine similarity matrix C̃ is identical to C.

For each column X̃j , the maximum absolute cosine similarity is:

sX̃j
= max

k
|C̃jk| = max

k
|Cjk| = sXj .

Similarly, sỸk
= sYk

.

Thus, the vectors sX̃ and sX are the same, as are sỸ and sY . Fitting a Gumbel distribution yields
the same location parameters:

uX̃ = uX , uỸ = uY .

Therefore,

SDOCS(aX, bY ) =
uX̃ + uỸ

2
=

uX + uY

2
= SDOCS(X,Y ).

A.4 PROOF OF REFLEXIVITY

Lemma 4 (Reflexivity). For any matrix X ∈ Rn×m, the DOCS similarity index satisfies:

SDOCS(X,X) = 1.

Proof. Compute the cosine similarity matrix C ∈ Rm×m where:

Cjk =
X⊤

j Xk

∥Xj∥ ∥Xk∥
.

When j = k, we have:

Cjj =
X⊤

j Xj

∥Xj∥2
= 1.

Since the absolute value of the cosine similarity is bounded by 1, for each j:

sXj
= max

k
|Cjk| = 1.

Therefore, the vector sX = [1, 1, . . . , 1]⊤.

Fitting a Gumbel distribution to sX consisting of all ones yields a location parameter:

uX = 1.

Similarly, since Y = X , we have sY = sX and uY = uX = 1.

Therefore, the DOCS similarity index is:

SDOCS(X,X) =
uX + uY

2
=

1 + 1

2
= 1.

A.5 PROOF OF DISCRIMINATIVE ON ORTHOGONAL MATRICES

Lemma 5 (Discriminative on Orthogonal Matrices). There exist orthogonal matrices X,Y,X ′, Y ′

such that:
SDOCS(X,Y ) ̸= SDOCS(X

′, Y ′).

Proof. Consider the following orthogonal matrices:

First pair:

X =

[−0.6676 0.5171 −0.5357
−0.7310 −0.5917 0.3399
−0.1412 0.6185 0.7730

]
, Y =

[−0.1837 0.5950 0.7825
0.0457 −0.7900 0.6114
0.9819 0.1481 0.1179

]
.
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Second pair:

X ′ =

[−0.8499 0.0164 0.5267
−0.0816 −0.9915 −0.1009
0.5206 −0.1287 0.8440

]
, Y ′ =

[−0.7028 −0.6446 −0.3009
0.3734 −0.6943 0.6153
−0.6056 0.3200 0.7286

]
.

Compute the DOCS similarity index for each pair:

For X and Y :
SDOCS(X,Y ) = 0.88.

For X ′ and Y ′:
SDOCS(X

′, Y ′) = 0.76.

Since SDOCS(X,Y ) ̸= SDOCS(X
′, Y ′), the DOCS similarity index distinguishes between different

pairs of orthogonal matrices. Therefore, it is discriminative on orthogonal matrices.

B PROOFS OF NON-DISCRIMINATIVE NATURE OF OTHER SIMILARITY
INDICES FOR ORTHOGONAL MATRICES

In this section, we present the proofs demonstrating that other common similarity indices are either
constant or depend only on the dimensions of the matrices when applied to orthogonal matrices.

B.1 LINEAR REGRESSION

The Linear Regression Similarity is defined as:

SLR(X,Y ) =

∥∥QT
Y X

∥∥2
F

∥X∥2F
where QX and QY are orthonormal bases for the columns of X and Y , respectively.

Lemma 6. For any orthogonal matrices X,Y ∈ Rn×n,

SLR(X,Y ) =

∥∥QT
Y X

∥∥2
F

∥X∥2F
is a constant that is independent of n.

Proof. Since X and Y are orthogonal matrices, their columns form orthonormal bases. Simply let
QX = X and QY = Y .

We begin by evaluating the Frobenius norm squared of QT
Y X:∥∥QT

Y X
∥∥2
F
=

∥∥Y TX
∥∥2
F
= trace

(
(Y TX)T(Y TX)

)
= trace

(
XTY Y TX

)
.

Since Y is orthogonal, Y Y T = I . Thus, the expression simplifies to:

trace
(
XTX

)
= trace (I) = n.

Next, we compute the Frobenius norm squared of X:

∥X∥2F = trace
(
XTX

)
= trace (I) = n.

Therefore, the ratio is: ∥∥QT
Y X

∥∥2
F

∥X∥2F
=

n

n
= 1.
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B.2 CANONICAL CORRELATION ANALYSIS (CCA) WITH R2
CCA

CCA
(
R2

CCA

)
is defined as:

SCCA(R2
CCA)

(X,Y ) =

∥∥QT
Y QX

∥∥2
F

n
,

where QX and QY represent orthonormal bases corresponding to the columns of X and Y , respec-
tively.
Lemma 7. For any orthogonal matrices X,Y ∈ Rn×n, the quantity

SCCA(R2
CCA)

(X,Y ) =

∥∥QT
Y QX

∥∥2
F

n

is a constant that is independent of n.

Proof. Since X and Y are orthogonal matrices, their columns form orthonormal bases. Therefore,
QX = X and QY = Y .

Consider the matrix QT
Y QX = Y TX . Since both Y and X are orthogonal, their product Y TX is

also an orthogonal matrix.

The Frobenius norm of an orthogonal matrix Y TX is given by∥∥Y TX
∥∥2
F
= trace

(
(Y TX)T(Y TX)

)
= trace(In) = n,

where In is the n× n identity matrix.

Therefore, ∥∥QT
Y QX

∥∥2
F

n
=

n

n
= 1.

B.3 CANONICAL CORRELATION ANALYSIS (CCA) WITH ρ̄CCA

CCA (ρ̄CCA) is defined as:

SCCA(ρ̄CCA)(X,Y ) =

∥∥QT
Y QX

∥∥
∗

n
,

where QX and QY represent orthonormal bases corresponding to the columns of X and Y , respec-
tively.
Lemma 8. For any orthogonal matrices X,Y ∈ Rn×n,

SCCA(ρ̄CCA)(X,Y ) =

∥∥QT
Y QX

∥∥
∗

n

is a constant that is independent of n.

Proof. Since X and Y are orthogonal matrices, their columns form orthonormal bases. Therefore,
QX and QY are also orthogonal matrices.

The product QT
Y QX is an orthogonal matrix because the product of orthogonal matrices is orthogo-

nal. For any orthogonal matrix A, the nuclear norm ∥A∥∗ is equal to the sum of its singular values.
Since all singular values of an orthogonal matrix are equal to 1, we have:

∥QT
Y QX∥∗ =

n∑
i=1

σi(Q
T
Y QX) =

n∑
i=1

1 = n

Therefore,
∥QT

Y QX∥∗
n

=
n

n
= 1.
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B.4 SINGULAR VECTOR CCA (SVCCA) WITH R2
SVCCA

SVCCA
(
R2

SVCCA

)
is defined as:

SR2
SVCCA

=

∥∥∥(UY TY )
T
UXTX

∥∥∥2
F

min
(
∥TX∥2F , ∥TY ∥2F

) ,
where UX and UY represent the left singular vectors of X and Y , respectively, arranged in de-
scending order based on their associated singular values. Meanwhile, TX and TY denote truncated
identity matrices that retain the left singular vectors, ensuring that the accumulated variance meets
a predefined limit. Here, we consider TX = TY = I .

Lemma 9. Assume that TX = TY = I . For any orthogonal matrices X,Y ∈ Rn×n,

SR2
SVCCA

=

∥∥∥(UY TY )
T
UXTX

∥∥∥2
F

min
(
∥TX∥2F , ∥TY ∥2F

)
is a constant independent of n.

Proof. Given that TX = TY = I , the expression simplifies to∥∥∥(UY I)
T
UXI

∥∥∥2
F

min
(
∥I∥2F , ∥I∥2F

) =

∥∥UT
Y UX

∥∥2
F

∥I∥2F
.

Since UX and UY are orthogonal matrices, their product UT
Y UX is also an orthogonal matrix, de-

noted by Q. The Frobenius norm of an orthogonal matrix satisfies

∥Q∥2F =

n∑
i=1

n∑
j=1

Q2
ij = trace(QTQ) = trace(I) = n.

Additionally, the Frobenius norm of the identity matrix I is

∥I∥2F =

n∑
i=1

n∑
j=1

I2ij = trace(I) = n.

Substituting these results back into the original expression, we obtain∥∥UT
Y UX

∥∥2
F

∥I∥2F
=

n

n
= 1.

B.5 SINGULAR VECTOR CCA (SVCCA) WITH ρ̄SVCCA

SVCCA (ρ̄SVCCA ) is defined as:

Sρ̄SVCCA =

∥∥∥(UY TY )
T
UXTX

∥∥∥
∗

min
(
∥TX∥2F , ∥TY ∥2F

) ,
where UX and UY represent the left singular vectors of X and Y , respectively, arranged in de-
scending order based on their associated singular values. Meanwhile, TX and TY denote truncated
identity matrices that retain the left singular vectors, ensuring that the accumulated variance meets
a predefined limit. Here, we consider TX = TY = I .
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Lemma 10. Assume TX = TY = I . For any orthogonal matrices X,Y ∈ Rn×n,

Sρ̄SVCCA =

∥∥∥(UY TY )
T
UXTX

∥∥∥
∗

min
(
∥TX∥2F , ∥TY ∥2F

)
is a constant independent of n.

Proof. Since X and Y are orthogonal matrices in Rn×n, their singular value decompositions (SVDs)
are given by

X = UXΣXV T
X , Y = UY ΣY V

T
Y ,

where ΣX and ΣY are diagonal matrices of singular values. Because X and Y are orthogonal, their
singular values are all equal to 1; thus, ΣX = ΣY = I . Therefore, the SVDs simplify to

X = UXV T
X , Y = UY V

T
Y .

Given that TX = TY = I , the expression reduces to∥∥UT
Y UX

∥∥
∗

min
(
∥I∥2F , ∥I∥2F

) =

∥∥UT
Y UX

∥∥
∗

n
.

Since UX and UY are orthonormal matrices, UT
Y UX is also an orthogonal matrix. The singular

values of UT
Y UX are thus all equal to 1, and the nuclear norm is∥∥UT

Y UX

∥∥
∗ =

n∑
i=1

σi = n.

Substituting back, we obtain ∥∥UT
Y UX

∥∥
∗

n
=

n

n
= 1.

Therefore, the quantity is a constant equal to 1, independent of n.

B.6 LINEAR HILBERT-SCHMIDT INDEPENDENCE CRITERION (HSIC)

Linear HSIC is defined as:

SLinear HSIC(X,Y ) =

∥∥Y TX
∥∥2
F

(n− 1)2
.

Lemma 11. For any orthogonal matrices X,Y ∈ Rn×n,

SLinear HSIC(X,Y ) =

∥∥Y TX
∥∥2
F

(n− 1)2

is a constant that depends solely on n.

Proof. Let X and Y be any orthogonal matrices in Rn×n. Since both X and Y are orthogonal, their
transpose inverses satisfy XTX = Y TY = In, where In is the n× n identity matrix.

Consider the product Y TX . Since the product of two orthogonal matrices is also orthogonal, Y TX
is orthogonal. The Frobenius norm of an orthogonal matrix A satisfies

∥A∥2F = trace(ATA).

Applying this to Y TX , we have∥∥Y TX
∥∥2
F
= trace

(
(Y TX)TY TX

)
= trace

(
XTY Y TX

)
.

Since Y Y T = In, this simplifies to
trace

(
XTX

)
= trace(In) = n.

Therefore, ∥∥Y TX
∥∥2
F

(n− 1)2
=

n

(n− 1)2
,

which depends only on n. This concludes the proof.
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B.7 LINEAR CENTERED KERNEL ALIGNMENT (CKA)

Linear CKA is defined as:

SCKA(X,Y ) =
∥X⊤Y ∥2F

∥X⊤X∥F ∥Y ⊤Y ∥F
.

Lemma 12. For any orthogonal matrices X,Y ∈ Rn×n, the ratio∥∥Y TX
∥∥2
F

∥XTX∥F ∥Y TY ∥F
is a constant independent of n.

Proof. Since X and Y are orthogonal matrices, we have:

XTX = In and Y TY = In,

where In is the n× n identity matrix.

The Frobenius norm of the identity matrix is:

∥In∥F =

√√√√ n∑
i=1

n∑
j=1

δ2ij =
√
n,

where δij is the Kronecker delta.

Thus, we have: ∥∥XTX
∥∥
F
= ∥In∥F =

√
n,

∥∥Y TY
∥∥
F
= ∥In∥F =

√
n.

Next, consider the matrix Y TX . Since both X and Y are orthogonal, Y TX is also orthogonal:

(Y TX)T(Y TX) = XTY Y TX = XTX = In.

Therefore, the Frobenius norm of Y TX is:∥∥Y TX
∥∥
F
= ∥In∥F =

√
n.

Substituting these results into the original ratio, we obtain:∥∥Y TX
∥∥2
F

∥XTX∥F ∥Y TY ∥F
=

(
√
n)2√

n ·
√
n
=

n

n
= 1.

Therefore, the ratio is equal to 1, which is a constant independent of n.

C PROOF OF THEOREM 1

We construct specific matrices X and Y to verify the stated properties.

Construction of X and Y :

Let n ≥ 2. Let m = 2⌊log2 n⌋, so m = Ω(n). Define:

• X ∈ Rn×m as X = [e1, e2, . . . , em], where ei is the i-th standard basis vector in Rn.
• Y ∈ Rn×m as:

Y =
1√
m

(
Hm

0(n−m)×m

)
,

where Hm is the m×m Hadamard matrix, and 0 is a zero matrix.

Orthogonality of X and Y :
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• The columns of X are orthonormal since they are standard basis vectors.

• For Y :

Y ⊤Y =

(
1√
m
Hm

)⊤ (
1√
m
Hm

)
=

1

m
H⊤

mHm = Im,

since HmH⊤
m = mIm. Thus, the columns of Y are orthonormal.

Computing ∥X − Y ∥F :

Compute the Frobenius norm:

∥X − Y ∥2F =

n∑
i=1

m∑
j=1

(Xij − Yij)
2
.

For 1 ≤ i ≤ m:

Xij − Yij = δij −
hij√
m
,

where δij is the Kronecker delta and hij = ±1.

For m+ 1 ≤ i ≤ n:
Xij − Yij = 0− 0 = 0.

Diagonal terms (i = j):(
1− hii√

m

)2

=

(
1∓ 1√

m

)2

= 1∓ 2√
m

+
1

m
.

Off-diagonal terms (i ̸= j, 1 ≤ i, j ≤ m):(
0− hij√

m

)2

=
1

m
.

Summing all terms:

Number of diagonal terms: m. Number of off-diagonal terms: m(m− 1).

Diagonal sum:

Since the ∓ 2√
m

terms cancel out when summed over all i:

Sdiag = m

(
1 +

1

m

)
= m+ 1.

Off-diagonal sum:

Soff-diag = m(m− 1)× 1

m
= m− 1.

Total Frobenius norm:

∥X − Y ∥2F = Sdiag + Soff-diag = (m+ 1) + (m− 1) = 2m.

∥X − Y ∥F =
√
2m = Ω(

√
n).

Computing SDOCS(X,Y ):

For columns Xj and Yk, the cosine similarity is:

cos(θjk) =
X⊤

j Yk

∥Xj∥∥Yk∥
=

Yjk

∥Yk∥
.
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Since ∥Xj∥ = 1 and ∥Yk∥ = 1, and Yjk =
hjk√
m

, we have:

|cos(θjk)| =
1√
m
.

Thus, the maximum absolute cosine similarity for each column is
1√
m

, so:

SDOCS(X,Y ) =
1√
m
.

This demonstrates that the DOCS similarity is inversely proportional to the square root of the number
of columns, m.

D EXCLUDED MATHEMATICAL PROPERTIES

In this section, we discuss the additional mathematical properties that could be considered when
evaluating similarity indices:

• Invertible Linear Transformation (ILT) Invariance (Raghu et al., 2017):

S(X,Y ) = S(XA,Y B)

where A and B are arbitrary invertible matrices. This property describes the ability of
an index to remain invariant under invertible linear transformations. It is not applicable
for evaluating weight similarity measures, as weight matrices are not expected to undergo
arbitrary invertible transformations. Similarly, it does not apply to representation similarity
measures (Kornblith et al., 2019).

• Translation (TR) Invariance (Raghu et al., 2017; Klabunde et al., 2023a):

S(X,Y ) = S
(
X + 1c⊤, Y + 1d⊤)

where c and d are arbitrary constant vectors. This property describes the ability of an index
to be unaffected by additive shifts in the data. It is not applicable for evaluating weight
similarity measures because translating the parameters would result in a fundamentally
different set of parameters, which is inconsistent for evaluation purposes.

• Affine Transformations (AT) Invariance:

S(X,Y ) = S
(
XA+ 1c⊤, Y B + 1d⊤

)
where A and B are arbitrary invertible matrices and c, d are arbitrary constant vectors. This
property is a combination of linear transformations and translations and is not applicable
for evaluating weight similarity measures for the same reasons as ILT and TR Invariance.
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E FURTHER DISCUSSIONS ON THE MOTIVATIONS OF DOCS

In this section, we provide additional justifications regarding (i) why we focus on weight similarity
rather than representational similarity, (ii) the orthogonality of weight matrices in large language
models, and (iii) the advantages of DOCS compared to other existing similarity indices.

E.1 WEIGHT SIMILARITY VS. REPRESENTATIONAL SIMILARITY

As introduced in Section 1, while prior research has explored many methods for characterizing the
similarity of neural networks (Wu et al., 2020; Khosla & Williams, 2024; Kriegeskorte et al., 2008;
Klabunde et al., 2023b; Wang et al., 2020; Barannikov et al., 2021; Hamilton et al., 2016; Rahamim
& Belinkov, 2024; Tang et al., 2020; Camastra & Staiano, 2016; Wang et al., 2018; Raghu et al.,
2017; Morcos et al., 2018; Kornblith et al., 2019), these methods often focus on representational
similarity rather than weight similarity.

Similar representations across layers do not necessarily imply similar weight matrices. This discrep-
ancy arises from the use of residual connections in transformer architectures (He et al., 2016). This
is evidenced by Figures 1a and 1b, which show that the input and output of the feedforward network
have similar patterns of representational similarity

Here, we present another example where weight similarity reveals an intriguing finding that would
otherwise be overlooked. We plot both the representational and weight similarity indices for the
01-ai/Yi-1.5-9B-Chat model. On one hand, we use the Linear CKA method to calculate the simi-
larity between the outputs of MLP-UP layers. On the other hand, we employ the DOCS method to
calculate the weight similarity of the MLP-UP layers. The experimental results are shown in Figure
8.

The results underscore the strengths of DOCS in revealing the weight structure. Specifically, DOCS
reveals an intricate pattern in Figure 8a, indicating that layer 9 is highly similar to layer 25 , layer
10 is highly similar to layer 26, layer 11 is highly similar to layer 27, and so on. This suggests
a repetition of a section of layers within 01-ai/Yi-1.5-9B-Chat, possibly due to a specific training
strategy employed to save training costs.

In contrast, Figures 8b, 8c, and 8d present the representational similarity computed by Linear CKA
using different input sequences. Despite using multiple input sentences for the analysis, the results
provide a limited understanding of the weight structure. They exhibit relatively homogeneous pat-
terns, lacking the fine-grained layer correspondence seen with DOCS. Therefore, in this example,
focusing on weight similarity deepens our understanding of the model.

(a) (b) (c) (d)

Figure 8: Comparison between DOCS and Linear CKA on the MLP-UP layers of the 01-ai/Yi-
1.5-9B-Chat model. (a) shows the DOCS weight similarity of MLP-UP parameters across layers,
while (b), (c), and (d) illustrate the Linear CKA representational similarity of the corresponding
layer outputs with different input sentences.

E.2 FURTHER EXPERIMENTS ON THE NON-DISCRIMINATIVE NATURE OF OTHER
SIMILARITY INDICES

In Section 1, we emphasized that many existing similarity indices, such as Canonical Correlation
Analysis (CCA) (Ramsay et al., 1984; Morcos et al., 2018), Singular Vector Canonical Correlation
Analysis (SVCCA) (Raghu et al., 2017), and Linear Centered Kernel Alignment (Linear CKA)
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(Kornblith et al., 2019), are non-discriminative for orthogonal matrices. An orthogonal matrix Q is
defined by the property Q⊤Q = QQ⊤ = I , where I is the identity matrix. This non-discriminative
nature means that these indices can yield the same score when assessing the similarity between any
two orthogonal matrices, regardless of their actual differences. These conclusions are presented in
Section 2, with proofs provided in Appendix B. This issue is particularly relevant in the context
of LLMs, where orthogonal matrices commonly occur throughout the training process (Tian et al.,
2023). In fact, in Figure 2, we observe that when CKA is directly used to measure weight similarity,
a large number of values concentrate in the high range of 0.78–0.80. This is likely due to the non-
discriminative property for orthogonal matrices.

Here, we present additional results demonstrating a substantial degree of orthogonality among the
weight matrices in LLMs. we introduce an index named the Off-Diagonal Average Cosine Similarity
metric. This metric provides a systematic way to measure the extent of orthogonality between the
columns of a given weight matrix. The metric is defined as:

Off-Diagonal Average Cosine Similarity(X) =
1

n(n− 1)

n∑
i=1

n∑
j=1
j ̸=i

∣∣∣∣ xi · xj

∥xi∥ ∥xj∥

∣∣∣∣ ,

where X is a matrix with n columns, and xi represents the i-th column of X. This formulation
indicates that a larger Off-Diagonal Average Cosine Similarity value corresponds to a lower degree
of orthogonality in the matrix.

To further understand the orthogonality of weight matrices in LLMs, we constructed a family of
approximately orthogonal matrices, denoted as Mθ, defined by:

Mθ = In + θ v 1⊤,

where:

• In is the identity matrix of size n× n.

• θ ∈ R is a scalar controlling the deviation from orthogonality; smaller values of θ corre-
spond to matrices closer to orthogonal.

• v ∈ Rn is a random vector sampled from the normal distribution v ∼ N (0, 1).

• 1 ∈ Rn is a vector of ones.

In our study, we utilized the Q matrices and O matrices from each layer of the Meta-Llama-3.1-
8B-Instruct model. Additionally, we generated four sets of approximately orthogonal matrices by
sampling Mθ with θ values of 0.005, 0.003, 0.002, and 0.001, ensuring that their shapes matched
those of the Q and O matrices. We then computed the Off-diagonal Average Cosine Similarity for
these matrices.

The experimental results, presented in Figures 9, reveal that the majority of the Q and O matrices
from each layer of the Meta-Llama-3.1-8B-Instruct model exhibit stronger orthogonality compared
to M0.003. According to the definition of Mθ, M0.003 only has a very small perturbation added to
the identity matrix. This observation suggests that the Q and O matrices in the Meta-Llama-3.1-8B-
Instruct model are highly orthogonal.
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Figure 9: Average cosine similarity for Meta-Llama-3.1-8B-Instruct, with the Q matrix on the left
and the O matrix on the right.

E.3 ADVANTAGES OF DOCS OVER OTHER SIMILARITY INDICES

In Section 4.1, Figure 2 showcases the evaluation outcomes of eight different similarity indices on
the MLP-UP layers from the Meta-Llama-3.1-8B-Instruct model. The resulting heatmaps highlight
that indices like Linear Regression, Canonical Correlation Analysis (CCA), and CCA (Nuclear) fail
to display discernible structural patterns. On the other hand, methods such as Singular Vector CCA
(SVCCA), SVCCA (Nuclear), and Linear Centered Kernel Alignment (Linear CKA) exhibit faint
block-like or striped formations in the off-diagonal regions, which might be attributed to either noise
or inherent limitations in the indices themselves. These anomalies could arise due to the reduced
sensitivity of these indices in differentiating between orthogonal matrices, as elaborated in Section 2.

To further compare the effectiveness of the DOCS method with other approaches, we conducted
additional experiments using three models:

(A) meta-llama/Meta-Llama-3.1-8B (the base model)

(B) meta-llama/Meta-Llama-3.1-8B-Instruct (an instruction-tuned version of
the base model)

(C) A version of meta-llama/Meta-Llama-3.1-8B with randomly initialized weights

Intuitively, the weight matrices of corresponding layers in models (A) and (B) should exhibit signif-
icantly higher similarity compared to those between models (A) and (C), since model (C) contains
random weights and lacks the learned structure present in models (A) and (B).

To quantify this, we define the similarity ratio as the ratio of the similarity scores between models
(A) and (B) to those between models (A) and (C). Specifically, for each similarity index, we compute
the similarity of the corresponding MLP-UP and MLP-DOWN weight matrices between models (A)
and (B), and between models (A) and (C). A higher ratio indicates that the similarity index is better
at distinguishing between meaningful relationships in model weights (as seen in models (A) and
(B)) and unrelated weights (as seen in models (A) and (C)). Thus, a higher ratio reflects the ability
of the index to highlight structural patterns specific to related models while minimizing noise from
uncorrelated data.

As shown in Figure 10, the experimental results reveal that the similarity ratio computed using the
DOCS method is much higher—approximately 10 times greater—than those obtained with the other
indices. This demonstrates the effectiveness of DOCS in capturing meaningful similarity patterns in
model weights.
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(a) Similarity ratio com-
puted using the DOCS
method.

(b) Similarity ratio com-
puted using the Linear
CKA method.

(c) Similarity ratio com-
puted using the SVCCA
method.

(d) Similarity ratio com-
puted using the SVCCA
(nuclear) method.

Figure 10: Comparison of similarity ratios between models (A) and (B) relative to models (A) and
(C) across four methods: DOCS, Linear CKA, SVCCA, and SVCCA (nuclear). The DOCS method
demonstrates a significantly higher ratio, indicating more effective performance.

F COMPARISON OF SIMILARITY INDICES ON A RANDOMLY INITIALIZED
MODEL

Figure 11 provides a visual comparison of eight different similarity indices applied to the MLP-UP
layers of the reinitialized Meta-Llama-3.1-8B-Instruct model. We observed that all of them exhibit
relatively random patterns.

(a) Linear Regression (b) CCA (c) CCA (Nuclear) (d) SVCCA

(e) SVCCA (Nuclear) (f) Linear HSIC (g) Linear CKA (h) DOCS

Figure 11: Comparison of similarity indices on the MLP-UP layers of reinitialized Meta-Llama-
3.1-8B-Instruct.

G JUSTIFICATIONS FOR SPECIFIC STEPS IN THE DOCS ALGORITHM

In this section, we provide justifications for specific design choices made in the DOCS algorithm,
focusing on the use of the Gumbel distribution and the maximization function in computing the
similarity index.

Justification for the Choice of Gumbel Distribution

To illustrate why the Gumbel distribution is suitable for modeling the data in the DOCS algorithm,
we analyze the distribution of maximum cosine similarities between columns of weight matrices
from different layers.

Let X be the MLP-UP weight matrix from the 4th layer, and let Y be the MLP-UP weight matrix
from the 8th layer of the meta-llama/Meta-Llama-3.1-8B model. We compute the vectors
sX = MAXCOSSIM(X,Y ) and sY = MAXCOSSIM(Y,X), where MAXCOSSIM refers to the
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function that computes, for each column in one matrix, the maximum absolute cosine similarity
with any column in the other matrix.

The histograms of sX and sY are plotted in Figure 12. As observed, the distributions of the max-
imum cosine similarities closely resemble the Gumbel distribution, which is commonly used to
model the distribution of extreme values (maxima or minima) of samples of random variables. This
empirical observation supports our choice of fitting a Gumbel distribution to the maximum cosine
similarities in the DOCS algorithm.

By fitting a Gumbel distribution to these maximum similarity values and using the location parame-
ter u as the similarity index, we capture the central tendency of the extreme similarities in a way that
is robust to outliers and sensitive to the most significant alignments between the weight matrices.

(a) Histogram of sX (Layer 4 to Layer 8). (b) Histogram of sY (Layer 8 to Layer 4).

Figure 12: Histograms of the maximum cosine similarity vectors sX and sY for the MLP-UP weight
matrices from layers 4 and 8. The overlaid curves represent the fitted Gumbel distributions.

Importance of the Maximization Function

The maximization operation in the MAXCOSSIM function plays a crucial role in the DOCS algo-
rithm. To demonstrate this, we compare the results of the standard DOCS algorithm with a variant
where the maximum operation is replaced by averaging.

In the standard DOCS algorithm, for each column in matrix X , we compute the maximum absolute
cosine similarity with any column in matrix Y . This approach emphasizes the strongest alignments
between the weight matrices, which are essential for detecting structural similarities.

Alternatively, using the average of the absolute cosine similarities incorporates all pairwise sim-
ilarities, including weaker alignments. This averaging process can dilute the impact of the most
significant similarities by combining them with less relevant ones.

Figure 13 compares the similarity heatmaps generated by the average-based DOCS
and the standard DOCS algorithm for the MLP-UP parameter matrices of the
meta-llama/Meta-Llama-3.1-8B model.
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(a) Similarity heatmap using average-based
DOCS.

(b) Similarity heatmap using standard DOCS al-
gorithm.

Figure 13: Comparison of similarity heatmaps for the MLP-UP parameter matrices of the
meta-llama/Meta-Llama-3.1-8B model: (a) average-based DOCS and (b) standard DOCS
algorithm.

As shown in Figure 13, the similarity heatmap generated by the average-based DOCS lacks clear
structural patterns and appears more uniform. In contrast, the heatmap produced by the standard
DOCS algorithm reveals distinct structural similarities between specific layers, evident through pro-
nounced diagonal and off-diagonal patterns.

This comparison highlights the importance of using the maximum operation in the MAXCOSSIM
function. By focusing on the strongest relationships between columns of the weight matrices, the
DOCS algorithm effectively captures meaningful structural patterns that might be obscured when
using an averaging approach. The maximum operation ensures that significant alignments are em-
phasized, enhancing the sensitivity of the similarity measure to relevant features in the model’s
architecture.

H COMPUTATION DETAILS OF GINI COEFFICIENT

The computation of the Gini coefficient involves several steps. First, we exclude the diagonal el-
ements from the similarity matrix as they are always equal to one, focusing solely on inter-layer
relationships. For each row, the remaining elements are normalized by dividing them by the sum
of all row values, ensuring that the resulting coefficients reflect the relative distribution of similarity
scores within the row. The Gini coefficient for each row is then calculated to quantify the inequality
in the distribution of these scores, with higher values indicating a greater concentration of simi-
larity among fewer layer pairs. Finally, the mean Gini coefficient across all rows is computed to
summarize the overall inequality in the similarity matrix.

A higher Gini coefficient suggests a more uneven distribution of similarity scores, implying a greater
concentration of significant similarities in fewer layer pairs, which potentially reveals structural
characteristics of the model parameters. As demonstrated in Table 2, our proposed method (DOCS)
achieves higher Gini coefficients compared to other methods, indicating its ability to isolate signifi-
cant layer similarities.

I HEATMAPS OF DOCS SCORES ON VARIOUS LLMS
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(a) MLP-UP (b) MLP-DOWN (c) Wk

(d) Wv (e) Wq (f) Wo

Figure 14: DOCS scores between transformer layers in gemma-2-9b.

(a) MLP-UP (b) MLP-DOWN (c) Wk

(d) Wv (e) Wq (f) Wo

Figure 15: DOCS scores between transformer layers in gemma-2-27b.
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(a) MLP-UP (b) MLP-DOWN (c) Wk

(d) Wv (e) Wq (f) Wo

Figure 16: DOCS scores between transformer layers in Llama-3.1-3B.

(a) MLP-UP (b) MLP-DOWN (c) Wk

(d) Wv (e) Wq (f) Wo

Figure 17: DOCS scores between transformer layers in Llama-3.1-8B.
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