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Can we transfer laboratory data to offer personalized stress prediction in everyday life?

Motivation and Contributions

Chronic stress can lead to serious health issues like cardiovas-

cular diseases, depression, and anxiety. In this work, we

1. Propose Multi-level Stress Predictor, (MuStP), a

two-level ML pipeline that can operate with low-

resolution HR and high-resolution ECG measure-

ments for stress prediction.

2. Transfer the model trained in laboratory environment

to everyday environment.

3. Perform personalized stress prediction with model fine-

tuning, similarity matching, and post-hoc optimization.

4. Operate with low-resolution heart rate (HR) signals in

default mode, e.g. suitable to run with incoming data from

commercial smartwatches.

5. Require minimum active participation of the user for

real-time stress prediction in everyday life setting.

MuStP

MuStP is trained with Laboratory Data and transfer

them to everyday environment using Everyday Data.

• Level 1: Uses an isolation forest-based anomaly detector for

HR measurements over 30 minutes. Personalized through

similarity matching (SM), selecting model of user with

minimum distance:
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where µ and σ statistics of baseline HR measurements, i and

j are indices of query and key users, respectively.

• Level 2: Utilizes a Convolutional LSTM network which clas-

sifies 30-second ECG signals into stress and non-stress. The

last layer can be Fine-tuned (FT).

We perform post-hoc optimization (PO) to user decision thresh-

olds by maximizing F1 score on held-out data.

Results

We present our results of MuStP model with 60% of Every-

day Data where only 31% of data is labeled as stress.

•Baseline: Level 1-2 are trained with Laboratory Data

for the whole population and decision thresholds are chosen.

•Transferred: In Level 1, for each everyday user, the model is

decided with SM. In Level 2, we apply FT by using 40% of

everyday user data collected over time.

•Transferred + PO: We apply PO after model transfer.
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