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Can we transfer laboratory data to offer personalized stress prediction in everyday life?
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Chronic stress can lead to serious health issues like cardiovas-
cular diseases, depression, and anxiety. In this work, we

1. Propose Multi-level Stress Predictor, (MuStP), a
two-level ML pipeline that can operate with low-
resolution HR and high-resolution ECG measure-
ments for stress prediction.

2. Transfer the model trained in laboratory environment
to everyday environment.
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3. Perform personalized stress prediction with model fine-
tuning, similarity matching, and post-hoc optimization.
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4. Operate with low-resolution heart rate (HR) signals in
default mode, e.g. suitable to run with incoming data from
commercial smartwatches.

5. Require minimum active participation of the user for
real-time stress prediction in everyday life setting.

MuStP is trained with LABORATORY DATA and transfer

them to everyday environment using EVERYDAY DATA.

e Level 1: Uses an isolation forest-based anomaly detector for
HR measurements over 30 minutes. Personalized through
similarity matching (SM), selecting model of user with

minimum distance:
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where 11 and o statistics of baseline HR measurements, 7 and
7 are indices of query and key users, respectively.

e Level 2: Utilizes a Convolutional LSTM network which clas-
siflies 30-second ECG signals into stress and non-stress. The
last layer can be Fine-tuned (FT).

We perform post-hoc optimization (P O) to user decision thresh-
olds by maximizing F1 score on held-out data.

We present our results of MUSTP model with 60% of EVERY-

DAY DATA where only 317% of data is labeled as stress.
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e Baseline: Level 1-2 are trained with LABORATORY DATA
for the whole population and decision thresholds are chosen.

e Transferred: In Level 1, for each everyday user, the model is
decided with SM. In Level 2, we apply FT by using 40% of
everyday user data collected over time.

e Transferred + PO: We apply PO after model transfer.
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