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A Appendix

A.1 Periodic Boundary Conditions

Under periodic boundary conditions (PBCs), the positions of atoms outside the simulation cell are
obtained by generating periodic images of those within the cell through translations commensurate
with its periodicity. This methodology is capable of modeling infinite systems because the interactions
between atoms separated by more than a modest cutoff distance are very small and thus ignored
when defining empirical models. This limited range of interaction gives rise to the concept of an
atomic environment. The environment of a given atom consists of itself and all other atoms, including
periodic images, that fall within a prescribed cutoff distance of it. The consequence of this locality
is that an infinite system can be modeled exactly using a finite periodic cell so long as a sufficient
number of periodic images surrounding it are explicitly accounted for. An example of PBCs for a
two-dimensional square cell and a local atomic environment is illustrated in Fig. 5.
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Figure 5: Illustration of periodic boundary conditions for a two-dimensional simulation cell (solid
square) containing three atoms. For simplicity, only periodic images in the horizontal direction are
shown. The local environment of atom 1 (dashed circle) contains all atoms and their periodic images
that fall within a prescribed cutoff distance rcut of it.
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A.2 Datasets

The ANI-Al dataset [8] consists of DFT energies of 6,352 configurations of aluminum in liquid, solid,
and liquid-solid coexistence phases, each containing up to 250 atoms.

The KIM-Si dataset is a new dataset (soon to be published) that we generated for silicon comprising
a total of 16,110 configurations. It builds upon the training set first used in [4] and contains a total
of 14,510 perturbed bulk structures, 1,525 randomly generated atomic clusters ranging in size from
two atoms to ten atoms, 3 ideal surface defects, and 72 nanostructures constructed by composing
two-dimensional structures of silicon in the graphene and silicene geometries. In total, for the
KIM-Si dataset, DFT energies are available for 510 of the bulk configurations and the 1600 non-bulk
configurations.

The AgAu dataset [10] is developed to study the catalytic properties of AgAu binary nanoalloys. It
consists of configurations for elemental Ag and Au, as well as AgAu binary alloy. The dataset is
generated using an active learning strategy. First, an initial dataset of Ag, Au, and AgAu in body-
centered cubic (BCC), face-centered cubic (FCC), and hexagonal close-packed (HCP) structures are
labelled using DFT. Then, an ensemble of models are trained on the data and new configurations
are selected to be further labelled by DFT based on the uncertainty obtained from the ensemble.
This process is iterated multiple times. In this work, we randomly select 10k of the AuAg binary
configurations to test our methodology on multispecies systems.

A.3 Selection of Physics-based EIPs

We show the selected EIPs used in our experiments and their accuracy in Table 2 for reference. From
the Table, we can observe that the physics-based EIPs used in label augmentation and multi-task
pretraining perform significantly worse than the NN-based potentials and our proposed strategies.
This is mainly because the functional form of an EIP is usually developed for specific configurations
and cannot transfer very well to arbitrary structures. For example, the Tersoff (T3) potential employed
on the KIM-Si dataset was developed for cubic diamond crystal structures and thus will not perform
well for other structures in the test set.

Table 2: EIPs used in experiments and their accuracy. Standard deviations are shown in parentheses.
Species EIP name Config Atom Link

Si EDIP 4.3063(0.1767) 0.6071(0.0187) https://doi.org/10.25950/545ca247
MEAM 3.7315(0.0603) 0.5235(0.0055) https://doi.org/10.25950/b8dc8b23
SW (BalamaneHaliciogluTiller) 21.3235(0.6292) 2.7169(0.0765) https://doi.org/10.25950/3dc2cb7f
SW (ZhangXieHu) 17.6129(0.4513) 2.2711(0.0417) https://doi.org/10.25950/32a4bf2c
Tersoff (T2) 1.6326(0.1262) 0.2524(0.0177) https://doi.org/10.25950/cadc4e78
Tersoff (T3) 11.8825(0.3287) 1.5889(0.0449) https://doi.org/10.25950/d6e8a23e
Tersoff (ErhartAlbe) 6.4907(0.2466) 0.8393(0.0279) https://doi.org/10.25950/6aa22835
Tersoff (TMOD) 5.4128(0.2036) 0.7210(0.0259) https://doi.org/10.1016/j.commatsci.2006.07.013

Al EMT 50.8366(0.8829) 0.3922(0.0053) https://doi.org/10.25950/bdbaee6a
Morse (LowCutoff) 143.3241(1.4645) 1.1433(0.0082) https://doi.org/10.25950/977dc2ac
Morse (MedCutoff) 120.6183(1.4162) 0.9711(0.0080) https://doi.org/10.25950/474ccb33
Morse (HighCutoff) 116.5143(1.4021) 0.9400(0.0079) https://doi.org/10.25950/45d9848f
EAM (ErcolessiAdams) 78.8916(1.7788) 0.6105(0.0097) https://doi.org/10.25950/bc2d2486
EAM (SturgeonLaird) 79.4206(2.0645) 0.6147(0.0115) https://doi.org/10.25950/d62edb43
EAM (WineyKubotaGupta) 95.8777(0.9002) 0.7587(0.0054) https://doi.org/10.25950/23542694
EAM (ZopeMishin) 46.4869(0.6270) 0.3561(0.0042) https://doi.org/10.25950/26dbac6e
EAM (Zhakhovsky) 66.0950(1.3760) 0.5091(0.0075) https://doi.org/10.25950/c3a79c52
EAM (ZhouJohnsonWadley) 69.1926(0.5550) 0.5289(0.0020) https://doi.org/10.25950/c775fc98

AgAu EAM (ZhouJohnsonWadley) 5.7077(0.0942) 0.2438(0.0077) https://doi.org/10.25950/d77528cf
EMT (JacobsenStoltzeNorskov) 4.4587(0.1436) 0.2063(0.0012) https://doi.org/10.25950/485ab326

Most of the silicon physics-based EIPs were trained using atomic configurations similar to the bulk
diamond configurations in our dataset. This raises the concern of information leakage, where the
NN potentials indirectly learn information about the test set during training through supervision
signals provided by the physics-based EIPs, since they were potentially trained on part of the test
set. However, in the first two folds of our cross-validation, the perturbed diamond configurations
constitute only 2.4% of the test set, and in the third fold constitute only 3.6%. In the case of aluminum,
none of the physics-based EIPs used in our experiments were fitted to any configurations similar to
those in the ANI-Al dataset. Altogether, we conclude that the impact of this effect is minimal.
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Table 3: Performance of the two proposed strategies on DFT energy prediction tasks. We report the
configuration-level and atom-level mean absolute error (MAE, lower is better) in eV and eV/atom,
respectively. We denote the label augmentation strategy by LA and the multi-task pretraining strategy
by MP. Standard deviations are shown in parentheses. Cases where the training procedure failed due
to running out of memory are marked OOM.

KIM-Si ANI-Al AgAu
Config Atom Config Atom Config Atom

SOAPNet 0.7706 (0.0658) 0.0975 (0.0012) 0.2153 (0.0228) 0.0017 (0.0002) 0.5422 (0.0305) 0.0226 (0.0016)
+LA 0.5595 (0.0336) 0.0704 (0.0026) 0.1786 (0.0239) 0.0014 (0.0002) 0.5067 (0.0470) 0.0205 (0.0021)
+MP 0.5717 (0.0232) 0.0733 (0.0038) 0.1744 (0.0249) 0.0014 (0.0002) 0.3962 (0.0446) 0.0154 (0.0019)
+MP+LA 0.5307 (0.0375) 0.0657 (0.0033) 0.1697 (0.0193) 0.0013 (0.0002) 0.3858 (0.0398) 0.0154 (0.0022)

SchNet 0.4805 (0.0345) 0.0718 (0.0096) 0.1693 (0.0106) 0.0014 (0.0001) 0.7290 (0.0692) 0.0290 (0.0026)
+LA 0.4015 (0.0687) 0.0549 (0.0042) 0.0845 (0.0095) 0.0007 (0.0001) 0.6815 (0.0659) 0.0266 (0.0026)
+MP 0.4034 (0.0723) 0.0569 (0.0115) 0.1296 (0.0164) 0.0010 (0.0001) 0.3353 (0.0331) 0.0130 (0.0012)
+MP+LA 0.3719 (0.0706) 0.0490 (0.0059) 0.0816 (0.0064) 0.0006 (0.0001) 0.3496 (0.0295) 0.0135 (0.0011)

CGCNN 0.9314 (0.0379) 0.1410 (0.0099) 0.2410 (0.0318) 0.0019 (0.0002) 1.6683 (0.0851) 0.0625 (0.0049)
+LA 0.7476 (0.0516) 0.1050 (0.0036) 0.1786 (0.0241) 0.0014 (0.0002) 1.6065 (0.1314) 0.0589 (0.0055)
+MP 0.8457 (0.0611) 0.1253 (0.0063) 0.2206 (0.0380) 0.0017 (0.0003) 1.4377 (0.0852) 0.0532 (0.0036)
+MP+LA 0.7435 (0.0510) 0.1005 (0.0043) 0.1392 (0.0213) 0.0011 (0.0002) 1.3857 (0.1053) 0.0499 (0.0044)

GemNet 0.5138 (0.1097) 0.0546 (0.0023) OOM OOM 0.9257 (0.1133) 0.0342 (0.0045)
+LA 0.5024 (0.1225) 0.0531 (0.0016) OOM OOM 0.5057 (0.0691) 0.0185 (0.0026)
+MP 0.4691 (0.1296) 0.0511 (0.0075) OOM OOM 0.8381 (0.0567) 0.0300 (0.0023)
+MP+LA 0.4651 (0.1410) 0.0476 (0.0041) OOM OOM 0.6074 (0.0499) 0.0218 (0.0022)

A.4 Experimental Settings

We set the number of hidden dimensions of all NNs to 128, the number of stacked NN layers in
representation modules (GNNs and MLPs) to 5, and use the shifted softplus activation function in all
nodes. We choose sum pooling to be the readout function and an MLP to be the prediction module.
All of our models are optimized using the Adam algorithm [5] with a learning rate of 1e-3 and a batch
size of 32. For the multi-task pretraining and the training of the auxiliary classification model, we use
a slated triangular scheduler [3] for the initial warm up of the weights, and subsequently decrease the
learning rate linearly. For training the NNs with DFT energies, we decrease the learning rate linearly
from 1e-3 to 1e-5. All NNs are trained for 100 epochs. Results are reported on the checkpoint with
the best validation performance. We use validation performance to select the hyperparameter α that
controls the contribution of EIP-labeled configurations (cf. Section 4.2) from [0.01, 0.05, 0.1, 0.5, 1,
5, 10].

Our code for the (G)NN potentials and experiments is implemented using PyTorch [7]. The im-
plementation of SchNet is modified from DGL [9], and DGL-LifeSci [6]. The implementation of
CGCNN and GemNet are modified from PyG [2] and Open Catalyst Project [1] All experiments
are conducted on a machine with an Intel(R) Core(TM) i9-10900F CPU and an Nvidia RTX-3090
GPU. Pretraining SchNet and CGCNN on the ANI-Al and the KIM-Si dataset takes 1.5hr and 0.5hr,
respectively, while retraining SOAPNet on both datasets takes a few minutes. The time cost of label
augmentation depends largely on the number of unlabeled configurations added to the training set. In
our case, experiments in all settings take less than 2hrs to finish.

A.5 Additional Experimental Results

A.5.1 Performance of the Two Strategies with Standard Deviation

We report performance of the two strategies on an average over three runs on three random splits and
report the mean/std in Tab. 3

A.5.2 Ablation Study of the Tukey Loss

Tab. 4 shows the configuration-level MAE for the KIM-Si and ANI-Al datasets with and without
using the Tukey loss.The results show that the models’ performance degrades without the Tukey loss.
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Table 4: Configuration-level MAE (eV) with and without the Tukey loss.
KIM-Si ANI-Al

SOAPNet SchNet SOAPNet SchNet

w/o Tukey 0.5556 0.4374 0.1906 0.1031
w/ Tukey 0.5595 0.4015 0.1786 0.0845

Table 5: MAE (eV and eV/atom) on training sets expanded by configurations with different confidence
level.

KIM-Si ANI-Al
Confidence Config Atom Config Atom

SOAPNet Low 0.5793 0.0732 0.2174 0.0017
Medium 0.5728 0.0725 0.2133 0.0017
High 0.6196 0.0778 0.2361 0.0019

SchNet Low 0.4817 0.0657 0.1140 0.0009
Medium 0.4916 0.0668 0.1130 0.0009
High 0.5004 0.0740 0.1242 0.0010

A.5.3 Effect of Expanding Training Set with Different Confidence Level

We expand the training set with DFT energies with EIP-labeled configurations with different con-
fidence level computed by the auxiliary classification model, i.e., P (p̂ | C) (see Section 4.2). We
first sort the configurations by their confidence scores and assign them to different confidence groups.
Configurations with a confidence score higher than the 0.66 quantile are assigned to high confidence
group, configurations with a confidence score lower than the 0.33 quantile are assigned to low
confidence group, other configurations are assigned to the medium confidence group. We expand
the DFT-labeled configurations to three different training sets by adding configurations belonging to
different groups. Results are shown in Tab. 5. The results suggest that the unlabeled configurations
with medium confidence contribute the most to the training while configurations with high confidence
contribute the least. This is because the high confidence configurations may be very similar to
the configurations in the training set and thus do not provide extra information. Low and medium
confidence configurations are more dissimilar than those in the original training set and can provide
more information.

A.5.4 Number of Outliers and Configurations Selected By the Classification Model

We show the number of configurations and outliers introduced by the auxiliary classification model in
Tab. 6. Results in the table show that the auxiliary classification model reaches an accuracy of 75% to
78% for screening configurations and selecting reasonable EIPs for labeling them. This demonstrates
the utility of the classification model.

A.5.5 Influence of the Selected Potentials

We conducted an ablation study on the KIM-Si dataset to investigate the influence of the selected
set of EIPs on our two proposed strategies. Among the eight EIPs for Si, we selected two EIPs that
work the best and the worst on the KIM-Si dataset, respectively. We apply LA and MP with the two
EIPs separately and jointly (for a total of three experiments) on SOAPNet and SchNet and report

Table 6: Average number of configurations and outliers selected by the classification models on the
ANI-Al dataset.

#Mild #Normal #Severe #Selected #Unlabeled

SOAPNet 226 42 5 1211 5081
SchNet 271 50 9 1300 5081

4



Table 7: MAE (eV and eV/atom) of different selected set of EIPs on Si. Numbers in the brackets
indicate the number of EIPs used for the experiments.

SOAPNet SchNet
Config Atom Config Atom

Baseline 0.7582 0.0987 0.5021 0.0745

+LA Default (8) 0.5673 0.0725 0.4114 0.0545
Best EIP (1) 0.6084 0.0797 0.4395 0.0614
Worst EIP (1) 0.766 0.0995 0.5245 0.0782
Mix (2) 0.5878 0.0767 0.4286 0.0596

+MP Default (8) 0.5679 0.0741 0.4217 0.0545
Best EIP (1) 0.6897 0.0892 0.4127 0.0561
Worst EIP (1) 0.6734 0.0881 0.4116 0.0559
Mix (2) 0.6549 0.0856 0.3659 0.0476

their results in Tab. 7. From the table we can observe that, label augmentation (LA) with a good
EIP improves the baseline performance while LA with a bad EIP does not hurt the performance
very much thanks to the auxiliary classification model and the robust Tukey loss. When applying
LA on a mixture of good and bad EIPs, our strategy is able to select good from bad and provide
performance boost. Moreover, the more (good) EIPs leveraged in LA, the better performance it can
give. For multi-task pretraining, we observe that the number and quality of the EIPs do not influence
the performance by too much.

A.5.6 Visualization of Pretrained Configuration Representations

We show the t-SNE 2D projection plots for all datasets and NN potentials in Figs. 6, 7, and 8.
These plots show that the multi-task pretraining successfully injects domain knowledge into the
representation module of NN potentials and creates a smoother DFT energy surface.
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Figure 6: T-SNE plots of aluminum configuration representations generated by a randomly initialized
SchNet (left) and a SchNet pretrained with our proposed multi-task pretraining strategy (right).
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