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In the EIF network, each neuron’s membrane voltage, Vi(1 ≤ i ≤ N) evolves as follows:
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When the membrane voltage Vi reaches the soft threshold VS = −53 mV, it starts to diverge rapidly
until it hits the hard threshold of VH = 20 mV. At that point, the neuron spikes and the membrane
voltage resets to VR = −60 mV. The voltage stays at VR for the refractory period of 3 ms. The input
current Ii(t) has a DC level of γ = −60 mv, and a white noise term with amplitude of σ = 6.23 mV.
The white noise consists of a common input for all neurons, ξc(t) and also an independent one, ξi(t)
for neuron i. Parameter λ controls the correlation between neurons by changing the weights of these
two inputs. Other parameters are membrane time constant τm = 5 ms, and ∆T = 3 mv which gives
the spike initiation slope. We simulated this network with the backward Euler method, using time
bins of 1 ms.

To simulate a heterogeneous network, we used various voltage membrane voltage VR (to change
firing rate) and correlation parameter λ (to change dependency/correlation with other neurons)
for different subsets of the population. Specifically, neurons were divided into 4 groups with
VR = [−58,−59,−60,−61] mv and λ = [.25, .30, .45, .59], respectively. Neuron i and j had the
same parameter if and only if i = j (mod 4). Moreover, when λ2 > 0, we paired neurons with
VR = −58 mv with neurons with VR = −59 mv, and neurons with VR = −60 mv with neurons with
VR = −61 mv.

For simulating networks with heterogeneous connectivity we used the well-known connected “bal-
anced" network of excitatory and inhibitory spiking neurons from Brunel (2000). This network is
composed of NE = 10000 excitatory neurons and NI = 2500 inhibitory neurons. The dynamics of
the membrane voltage of each neuron is governed by:
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where Ii(t) are the synaptic currents caused by spikes arriving at synapses of neuron i and R is
the membrane resistance. τm = 20ms and the synaptic delay D = 1.5ms. Jij gives the PSP
amplitudes for each synapse. Excitatory synapses have Jij = J = 0.1mV and inhibitory synapses
have Jij = −gJ , where J = 0.1mV. Each neuron has synapses from a randomly chosen fraction
ϵ = 0.1 of neurons from the excitatory and inhibitory populations. External synapses are driven by
a Poisson process with a given rate νext. When the membrane potential reaches a given threshold
θ = 20mV, it is reset to a refractory potential Vr = 10mV and the neuron enters a refractory period
of fixed duration τrp = 2ms during which it ignores incoming stimulation. We specifically fit the
models to two stable setups (figure 8, c and d) of the original paper with “stationary” and “slow
oscillation” global activity Brunel (2000). These configurations correspond to g = 5, νext = 20Hz
and g = 4.5, νext = 9Hz, respectively.
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We used the Bernoulli RBM implementaion of scikit-learn library (Pedregosa et al., 2011) with the
default learning rate of .1.
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