
Proceedings of Machine Learning Research vol 272:1–37, 2025 36th International Conference on Algorithmic Learning Theory

Cost-Free Fairness in Online Correlation Clustering

Eric Balkanski EB3224@COLUMBIA.EDU
Columbia University

Jason Chatzitheodorou IC2621@COLUMBIA.EDU
Columbia University

Andreas Maggiori AM6292@COLUMBIA.EDU

Columbia University

Editors: Gautam Kamath and Po-Ling Loh

Abstract
In the correlation clustering problem, the input is a signed graph where the sign indicates whether
pairs of nodes should be placed in the same cluster or not. The goal is to create a clustering that
minimizes the number of disagreements with these signs. Correlation clustering is a key unsu-
pervised learning problem with many practical applications. It has been widely studied in various
settings, including versions with fairness constraints and cases where nodes arrive online. In this
paper, we explore a problem that combines these two settings: nodes arrive online and reveal their
membership in protected groups upon arrival. We are only allowed to output fair clusters, i.e., clus-
ters where the representation of each protected group is upper bounded by a user-specified constant
at the beginning of the arrival sequence. Our aim is to maintain approximately optimal fair clus-
tering while minimizing a node’s worst-case recourse, i.e., the number of times it changes clusters.
We present an algorithm that achieves worst-case logarithmic recourse per node while maintaining
a constant-factor fair approximate clustering. Additionally, our approach simplifies the algorithm
and analysis used in prior work by Cohen-Addad et al. (2022) in the online setting with recourse.
Keywords: fairness, correlation clustering, online algorithms

1. Introduction

The fairness of algorithms used to make decisions that directly affect individuals is an important
concern in a growing number of applications, such as recidivism predictions for bail determina-
tions (Dressel and Farid, 2018; Wadsworth et al., 2018), hiring processes (Raghavan et al., 2020;
Schumann et al., 2020), and credit-risk assessment for loan approvals (Kumar et al., 2022; Ko-
zodoi et al., 2022). Motivated by these applications, there has been extensive literature on designing
fair algorithms for a wide variety of problems, including classical problems in machine learning
and algorithm design such as resource allocation (Li et al., 2020; Bateni et al., 2022), classifica-
tion (Agarwal et al., 2018; Zafar et al., 2017), and clustering (Chierichetti et al., 2017; Bera et al.,
2019). The vast majority of this work has studied fairness in offline settings where the entire input
is known to the algorithm. However, loan, bail, and hiring decisions are often made in an online
manner. Satisfying fairness properties in an online setting is significantly more challenging than in
offline settings because, in an online problem, the fairness constraints are evolving over time and
decisions must be made without knowing what these constraints will be in the future.

In this paper, we study fair and online decision-making in the context of the classical correlation
clustering problem. In this problem, the input is a complete graph where each edge is either marked
positive, indicating two nodes are similar, or negative, indicating dissimilarity. The goal is to cluster

© 2025 E. Balkanski, J. Chatzitheodorou & A. Maggiori.

BALKANSKI CHATZITHEODOROU MAGGIORI

the nodes such that the number of intra-cluster negative edges and inter-cluster positive edges are
minimized. An important application of correlation clustering is automated labeling (Agrawal et al.,
2009; Chakrabarti et al., 2008), which is used in scenarios where it is expensive to individually label
each point in a large data set. Instead, automated labeling clusters the points based on their features
and points in the same cluster are then assigned the same label. Although automated labeling is an
appealing approach to labeling massive datasets very quickly, important fairness concerns emerge
when these labels lead to decision-making that directly impacts individuals.

A long line of work has studied fair clustering, including fair correlation clustering (Ahmadian
et al., 2020; Ahmadi et al., 2020; Ahmadian and Negahbani, 2023; Schwartz and Zats, 2022; Frig-
gstad and Mousavi, 2021), where each node has one, or more, colors that encode protected features.
In the fairness setting from (Ahmadian and Negahbani, 2023), which is the fairness setting we con-
sider, there is a parameter ai ∈ [0, 1] associated with color i and a clustering is fair if each cluster
either is a singleton1 or it contains, for each color i, at most an ai fraction of nodes of color i. In
this setting, when ai > 0 and ρ > 0 are constants, Ahmadian and Negahbani (2023) achieve a
clustering that is a constant factor approximation to the optimal fair solution and ρ-fair, meaning
that it violates the fairness constraints by at most a 1 + ρ multiplicative factor.

Since data points often arrive online, there is a separate line of work that has studied online
correlation clustering. In the online setting, nodes u arrive one by one and, upon arrival, the sign
marking of each edge between u and a previously arrived node v is revealed, and the algorithm
must irrevocably decide which cluster node u should be assigned to. Mathieu et al. (2010) have
shown a strong Ω(n) lower bound on the best competitive ratio achievable for this online correlation
clustering problem. A standard relaxation in online algorithms to overcome strong impossibility
results is to consider recourse, where a small number of past decisions can be changed, which was
initiated by Lattanzi and Vassilvitskii (2017) in the context of clustering. Cohen-Addad et al. (2022)
give an algorithm for online correlation clustering that maintains a constant factor approximation
at every time step and has O(log n) recourse per node, i.e., each node is re-assigned a cluster at
most logarithmically many times. Due to the importance of both the online and fair settings for
correlation clustering, our main question is the following.

Is there a constant competitive algorithm for online correlation clustering
that is fair and has low recourse?

Ideally, we would like to obtain the best-known fairness guarantee achieved by an offline constant-
factor approximation algorithm as well as the best-known logarithmic recourse achieved by an on-
line constant competitive algorithm. We emphasize that it is a priori unclear if such an algorithm
exists since maintaining the fairness guarantees could potentially cause a large recourse. Our main
result is that we answer the above question affirmatively.

Theorem For the online correlation clustering problem, if ai, ρ > 0 are constants for all i, then
there is an algorithm that maintains, with O(log n) recourse per node, a solution that is, at every
time step, a constant factor approximation and ρ-fair.

This result shows that the best-known fairness and online guarantees can both be simultaneously
achieved. Since Cohen-Addad et al. (2022) give a tight lower bound showing that Ω(log n) recourse

1. One motivation for considering a singleton cluster to be fair is in the context of automated labeling, where the label
of a node in a singleton cluster is not impacted by other nodes.

2

COST-FREE FAIRNESS IN ONLINE CORRELATION CLUSTERING

is required for maintaining a solution that is a constant approximation, our result implies that there
is no cost in the recourse and competitive ratio guarantees when adding fairness constraints for
online correlation clustering. Additionally, our approach simplifies the algorithm and analysis used
in prior work by Cohen-Addad et al. (2022) in the online setting with recourse.

Technical overview. The main technical challenge in our work lies in computing clusters that
remain stable over successive iterations, regardless of how new nodes connect or their colors. In
traditional online settings with recourse, the challenge is limited to maintaining low recourse under
changing node connections, which is already complex. However, simple examples reveal that al-
gorithms optimized for low recourse can result in highly unfair clusters. A key insight of our work
(formally presented in Lemma 6) is that clusters violating the fairness condition beyond a tolerance
ρ can be split into singletons, with the incurred cost being charged to the optimal fair clustering.
This means that splitting highly unfair clusters does not lead to excessive costs.

Building on this, we design a procedure that monitors the fairness of evolving clusters. If a
cluster becomes significantly unfair (i.e., violating some fairness constraint by more than 1 + ρ1),
the procedure splits it. If all fairness constraints are satisfied with a slack of at most 1+ρ2, the cluster
remains intact. In cases where neither condition is met, the procedure repeats the decision made in
the previous iteration. By setting ρ1 = 2ρ2 = ρ, we ensure that the cost of maintaining a cluster
can be bounded by creating a multiplicative gap between 1+ ρ1 and 1+ ρ2. This multiplicative gap
ensures that when a cluster is split due to unfairness and then merged again, it is because its size has
increased by a multiplicative factor, which can only occur logarithmically many times.

As a byproduct of our approach, we significantly simplify both the algorithm and the proof
of Cohen-Addad et al. (2022) for the online setting with recourse.

2. Problem Statement and Preliminaries

Correlation clustering. In correlation clustering, the input is a complete signed undirected graph
Gs = (V,E, s) where each edge e = {u, v} is assigned a sign s(e) ∈ {‘+’, ‘−’}. To ease notation,
we convert this complete signed graph Gs = (V,E, s) to a non-signed graph G = (V,E) where for
each pair of nodes {u, v} there is an edge between them in G if and only if s ({u, v}) = ‘ + ’ in
Gs. Using this conversion and the standard disagreements minimization objective, the quality of a
partition C = {C1, C2, . . . } of V , i.e., a clustering, is:

cost(C) = |(u, v) ∈ E : u ̸∼C v|+ |(u, v) ̸∈ E : u ∼C v|

where u ∼C v if and only if ∃Ci ∈ C such that u, v ∈ Ci and u ̸∼C v otherwise.

Fairness. In fair correlation clustering, each node u is assigned at least one of l colors where the
sets V1, . . . , Vl ⊆ V correspond to those colors. A clustering C is called fair with respect to the
fairness parameters a1, . . . , al if and only if for every C ∈ C:

(fair) |C ∩ Vi| ≤ ai|C| ∀i or |C| = 1

Following (Ahmadian and Negahbani, 2023), we consider a singleton cluster C (i.e., |C| = 1)
to be fair. This aligns with the earlier discussion of automated labeling, where a node clustered as
a singleton is unaffected by other nodes’ labels. Consistent with (Ahmadian and Negahbani, 2023),
we define a ρ-fair clustering as one where fairness constraints are violated by at most a factor of

3

BALKANSKI CHATZITHEODOROU MAGGIORI

(1 + ρ). Formally, a clustering C is ρ-fair with respect to fairness parameters a1, . . . , al if and only
if, for every C ∈ C:

(ρ-fair) |C ∩ Vi| ≤ (1 + ρ)ai|C| ∀i or |C| = 1

Online arrival. In online correlation clustering, nodes arrive one at a time, revealing upon arrival
its colors and all the edges to previously arrived nodes. An instance of the fair online correlation
clustering problem can be described by a tuple I = (G, a1,...,l, V1,...,l, σ) where G = (V,E) is
the final graph, a1,...,l = ⟨a1, . . . , al⟩ contains l positive numbers which represent the fairness
parameters, V1,...,l = ⟨V1, . . . , Vl⟩ contains l subsets of V which represent the colors of the nodes
and σ is an order on the nodes of G: σ = ⟨v1, v2, . . . , v|V |⟩. For any 0 ≤ t ≤ |V |, let V t =
⟨v1, v2, . . . , vt⟩ be the set of the first t nodes in the order σ. We refer to these nodes as the nodes
that have arrived until time t, and we refer to vt as the node arriving at time t. Also, we use n to
denote the total number of nodes, i.e., |V | = n. We let Gt be the subgraph of G induced by V t,
NGt(u) the neighborhood of node u in Gt, V t

i = Vi ∩ V t the nodes with color i arrived until time
t, Ot the optimal correlation clustering solution for graph Gt and Ofair

t the optimal fair correlation
clustering solution.

Competitive ratio. Note that the solution of an algorithm ALG on an online instance I can be
described as a sequence of clustering C1, C2, . . . , C|V |. We say that ALG is a c-approximation to the
optimal fair solution if ∀t ∈ {1, 2, . . . , |V |} (1) cost(Ct) ≤ c · cost(Ofair

t); and (2) Ct is fair with
respect to a. Additionally, an algorithm is a c-competitive algorithm if the solution it produces is a
c-approximation for all instances I.

Recourse. The recourse notion captures how many times a node changes its cluster. To formally
define the recourse of a node it is convenient to represent a clustering solution using an assign-
ment function f : V −→ Z. We say that clustering C is equivalent to the assignment function
f if: (1) u ∼C v ⇔ f(u) = f(v); and (2) u ̸∼C v ⇔ f(u) ̸= f(v). Similarly, we say
that a sequence of clustering solutions C1, C2, . . . , C|V | is equivalent to a sequence of assignment
functions f1, f2, . . . , f|V | if fi is equivalent to Ci for all i ∈ {1, 2, . . . , |V |} and we denote by
FC1,C2,...,C|V | the set of sequences of assignment functions that are equivalent with the clustering
sequence C1, C2, . . . , C|V |. We define the recourse of a node u, arrived at time t, with respect to an
assignment function sequence f1, f2, . . . , f|V |, rf1,f2,...,f|V |(u) as the number of times that sequence
changes the “cluster id” assigned to u. That is rf1,f2,...,f|V |(u) =

∑
t′>t I {ft′−1(u) ̸= ft′(u)}.

Given a clustering sequence C1, C2, . . . , C|V | the recourse of a node u is defined as rC1,C2,...,C|V |(u) =

inf
{
rf1,f2,...,f|V |(u) : (f1, f2, . . . , f|V |) ∈ FC1,C2,...,C|V |

}
. The recourse of an algorithm is the worst-

case recourse over all instances I and nodes u.

3. The Algorithm

In this section, we describe our main algorithm that simultaneously achieves three competing goals:
a strong competitive ratio, a low recourse, and a desirable fairness guarantee. Our main techni-
cal contribution is to achieve constant-fairness while maintaining the constant-competitiveness and
O(log n) recourse guarantees from Cohen-Addad et al. (2022). In Subsection 3.1 we describe the
AGREEMENT subroutine from Cohen-Addad et al. (2021), on which we rely for our algorithm. In

4

COST-FREE FAIRNESS IN ONLINE CORRELATION CLUSTERING

Subsection 3.2, we outline the skeleton of our algorithm, which is structured around three key sub-
routines. These subroutines, described in Subsection 3.3—MAKEFAIR, AGREEMENT, and MAKE-
CONSISTENT—are responsible for ensuring fairness, maintaining the approximation ratio, and pro-
viding recourse guarantees, respectively. The main challenge is for the three subroutines to work
together such that the guarantee achieved by one subroutine is not compromised by another subrou-
tine aiming to achieve a different guarantee.

3.1. The AGREEMENT Algorithm

AGREEMENT is the algorithm from Cohen-Addad et al. (2021) that takes as input the current graph
Gt, a parameter ϵ ∈ [0, 1], and outputs a clustering Cagr. We refer to this clustering as the agreement
decomposition and rely on it as the base for our other two subroutines for two reasons: (1) its cost is
a constant-factor approximation to the optimal solution, and (2) it produces dense clusters which are
relatively stable between consecutive iterations. In the rest of the paper, we assume that the input
graph contains self-loops, in other words, for any node u we have u ∈ NG(u). We start defining
two central notions that quantify the similarity between the neighborhood of two nodes and are used
by the AGREEMENT algorithm.

Definition 1 (Agreement) Two nodes u, v are in ϵ-agreement in G if

|NG(u)△NG(v)| < ϵmax{|NG(u)|, |NG(v)|}

where△ denotes the symmetric difference of two sets.

Definition 2 (Heaviness) A node is called ϵ-heavy if it is in ϵ-agreement with more than a (1− ϵ)-
fraction of its neighbors. Otherwise, it is called ϵ-light.

The AGREEMENT algorithm uses the agreement and heaviness definitions to compute a solution
to the correlation clustering problem. We call the output of AGREEMENT(G, ϵ) the agreement
decomposition of graph G. As mentioned before, the cost of this decomposition is a constant factor
approximation to the cost of the optimal correlation clustering:

Lemma 3 (rephrased from Cohen-Addad et al. (2021)) Let Cagr be the agreement decomposi-
tion derived from AGREEMENT(G, ϵ). There exists constant ϵ̃ such that for any ϵ < ϵ̃ we have that
cost(Cagr) ≤ Θ(1) cost(O).

The agreement decomposition also exhibits several useful structural properties. Specifically, every
non-singleton cluster C ∈ Cagr is “almost” a clique in the initial graph. We defer the formal
statement of these structural properties to Appendix A.

Algorithm 1 The AGREEMENT algorithm
Input: graph G, agreement parameter ϵ ∈ [0, 1]
Create a graph Gfiltered from G by discarding all edges whose endpoints are not in ϵ-agreement.
Discard all edges of Gfiltered between light nodes of G.
Compute the connected components of Gfiltered and output them as the solution.

5

BALKANSKI CHATZITHEODOROU MAGGIORI

3.2. The Algorithm Skeleton

We describe our algorithm, called FAIR-CONSISTENT-AGREEMENT and formally defined in Al-
gorithm 2, as a function of the three subroutines. At each time step t, it first computes an initial
clustering Cagrt of the current graph Gt with the AGREEMENT subroutine. Then, for each non-
singleton cluster C in Cagrt , it applies the MAKECONSISTENT subroutine to C and obtains a cluster
C̃ ⊆ C. It then applies MAKEFAIR to C̃ and obtains a cluster Cfair ⊆ C̃. The final clustering Ct
for time step t consists of the clusters Cfair obtained with the non-singleton cluster C ∈ Cagrt and
singleton clusters for the remaining nodes. The algorithm also initializes and updates variables gv
and t̃v for each node v, which we discuss in Subsection 3.2 when describing the MAKECONSIS-
TENT subroutine. The main interest is in the three subroutines, which we describe next, and their
analyses.

Algorithm 2 The FAIR-CONSISTENT-AGREEMENT algorithm
Input: instance I, agreement parameter ϵ ∈ [0, 1], fairness parameter ρ ∈ [0, 1]

for each time step t do
Let vt be the newly arrived node and Gt the updated graph
Initialize Ct ← ∅, gvt ← 1, t̃vt ← t

Cagrt ← AGREEMENT(Gt, ϵ)

for each singleton cluster {v} ∈ Cagrt do
Add {v} to Ct
Update gv ← 0, t̃v ← t

for each non-singleton cluster C ∈ Cagrt such that |C| > 1 do
C̃ ←MAKECONSISTENT

(
Gt, {gv}v∈C , {t̃v}v∈C , C

)
▷ C̃ ⊆ C

Cfair ←MAKEFAIR
(
Gt, ρ, C̃, Ct−1

)
▷ Cfair ⊆ C̃

Add Cfair and {u}, for all u ∈ C \ Cfair, to Ct
Output Ct

3.3. The Subroutines

MAKEFAIR, described in Algorithm 3, takes as input the current graph Gt, the fairness tolerance
parameter ρ, the cluster C̃ produced by the first subroutine, and Ct−1, the clustering constructed by
our main algorithm at time t − 1. The output is either the entire cluster C̃ or an empty set, which
signifies that the cluster C̃ is split into singleton clusters in Ct. To determine whether to split C̃ into
singletons, the subroutine calculates the parameter ρt(C̃) and identifies the cluster Cprev, which is
the cluster in Ct−1 with the maximum intersection with C̃. The parameter ρt(C̃) indicates the extent
to which C̃ violates the fairness constraints. The decision rule is as follows: split C̃ into singletons if
ρt(C̃) > ρ; keep C̃ together if ρt(C̃) < ρ/2. If ρt(C̃) lies within the range (ρ/2, ρ), the subroutine
takes a “conservative” approach, repeating the action taken at time t − 1. If |Cprev| > 1, this
suggests that C̃ is part of an evolving cluster that was previously maintained as a single entity. In
this case, the subroutine follows the prior decision and outputs C̃ as it is. In summary, for a cluster
C̃, the subroutine: (1) keeps it together if it is almost fair, i.e., ρt(C̃) ≤ ρ/2; (2) splits it if it is

6

COST-FREE FAIRNESS IN ONLINE CORRELATION CLUSTERING

very unfair, i.e., ρt(C̃) ≥ ρ; and (3) repeats the previous decision if it is neither almost fair nor very
unfair. The reason for introducing a multiplicative gap between what is considered almost fair and
very unfair is to ensure that the evolving cluster must increase multiplicatively in size each time the
decision on whether to split it or not changes. The latter helps us bound the increase in recourse
incurred due to maintaining fair clusters.

Algorithm 3 The MAKEFAIR subroutine

Input: current graph Gt, fairness parameter ρ ∈ [0, 1], cluster C̃, and clustering Ct−1

If |C̃| = 1 then return C̃

ρt(C̃)← max{r : |Vi ∩ C̃| ≤ (1 + r)ai|C̃| ∀i}
Cprev ← argmax{|C̃ ∩ C ′| : C ′ ∈ Ct−1}
/* Small fairness violation or medium violation and cluster existed at time t− 1 */
If ρ(C̃) ≤ ρ/2 or (ρt(C̃) ∈ (ρ/2, ρ) and |Cprev| > 1}) then return C̃

/* Large violation of fairness or cluster did not exist at time t− 1, split cluster */
Else return ∅

MAKECONSISTENT takes as input the current graph Gt, two labeling functions g and t̃, and
a non-singleton cluster C from the current agreement decomposition. The subroutine outputs a
cluster C̃ ⊆ C, where the nodes in C \ C̃ will be clustered as singletons in the final solution Ct,
while cluster C̃ may either be entirely split into singletons by MAKEFAIR or preserved as is. The
subroutine heavily relies on the two labeling functions g and t̃, which store important information
regarding previous clustering decisions for each node u ∈ C. As a first step, the subroutine checks
whether the set {u ∈: gu = 0} is too large-—specifically, if its size exceeds 100ϵ|C|—the algorithm
sets gu = 0 for all nodes in C. Next, among the nodes with gu = 0, we compute the one whose
degree was minimum at time t̃u. If that node, denoted as uC , t, has increased its degree by a factor
of at least (1+100ϵ), we update the labeling functions g and t̃ for all nodes in C and output C̃ = C.
If this condition is not met, we output C̃ and cluster all nodes with gu = 0 as singletons. The
function g is designed to track whether a node was clustered as a singleton in the previous iteration.
Specifically, if gu = 0 at the beginning of iteration t, then node u was clustered as a singleton at
time t−1, and gu is updated accordingly at each iteration. The variable t̃u is initialized to the arrival
time of node u and is updated to the current time t under two conditions: (1) when u is clustered as
a singleton by the agreement decomposition (see FAIR-CONSISTENT-AGREEMENT), or (2) when
gu = 0 and the condition in the second “if” statement of MAKECONSISTENT is satisfied. Thus, t̃u
records the most recent occurrence of one of the following events: (1) u’s arrival; (2) the last time
u was clustered as a singleton (if it has ever been); or (3) the last time u was part of a cluster where
the condition in the second “if” statement was met (if this has ever occurred).

MAKECONSISTENT seeks to maintain a constant-factor approximate clustering while minimiz-
ing the recourse. Since Cagrt is already a constant approximate solution, we aim to set C̃ ≃ C
whenever feasible. However, to reduce recourse, we only ”add” nodes previously clustered as sin-
gletons if their degree has increased by a multiplicative factor. That way, if C̃ = C, any recourse
increase for nodes with gu = 0 is attributed to their degree growth. Otherwise, the cost of clustering
them as singletons is charged to previous agreement decompositions.

7

BALKANSKI CHATZITHEODOROU MAGGIORI

Algorithm 4 The MAKECONSISTENT subroutine
Input: graph Gt, cluster C, node labelings {gv}v∈C and {t̃v}v∈C
if |{u ∈ C : gu = 0}| > 100ϵ|C| then

gv ← 0,∀v ∈ C

uC,t ← argminu∈C:gu=0|NGt̃u
(u)|

if |NGt(uC,t)| > (1 + 20ϵ)|NGt̃uC,t
(uC,t)| then

gv ← 1, t̃v ← t,∀v ∈ C

return C

else
return C \ {u ∈ C : gu = 0}

4. Analysis of the Recourse

In this section, we prove that if ϵ is set to a small enough constant then the worst-case recourse of a
node is O(log n), formally stated in Theorem 1. In the remainder of the paper, we assume that all
nodes u have degree |N(u)| ≥ 1

2ϵ . We show that this is without loss of generality in Appendix E.

Theorem 1 There exists a small enough constant ϵ̃ such that for any ϵ < min{ρmini ai
11200 , ϵ̃}, the

recourse of Algorithm 2 is O
(
logn
ϵ

)
.

To prove Theorem 1 we upper bound the number of times that a node transitions from being
a singleton to a non-singleton cluster in our solution. In Lemma 7 of the appendix we prove that
the latter quantity is at most two times the recourse, consequently, upper bounding it implies the
same (up to constant terms) upper bound for the recourse. Formally, let S(C) denote the single-
ton clusters of clustering C, then we define rauxC1,C2,...,C|V |

(u) =
∑

t′>t I {u ∈ S(Ct′) \ S(Ct′−1)},
prove (in Lemma 7) that Algorithm 2 produces clustering sequences where rC1,C2,...,C|V |(u) ≤ 2 ·
rauxC1,C2,...,C|V |

(u)+1, and focus in the rest of the section on proving that rauxC1,C2,...,C|V |
(u) ≤ O(log n).

To ease notation, whenever the clustering sequence that we are referring to is clear from the context
we write raux (u) instead of rauxC1,C2,...,C|V |

(u). Also, to better describe increases of raux (u) we define
the partial sums function rauxtA,tB

(u) =
∑

t∈[tA+1,tB] I {u ∈ S(Ct−1) \ S(Ct)} and say that “raux (u)
increases at time t” if I {u ∈ S(Ct) \ S(Ct−1)} = 1. The proof proceeds by arguing that a constant
increase of raux (u) between times t′ and t implies a multiplicative increase of u’s degree between
the same times t′ and t. Thus, since the degree of any node is upper bounded by n we deduce that
raux (u) can increase at most O(log n) times.

As aforementioned in Section 3.3, in the intermediate clustering computed by MAKECONSIS-
TENT, gu is clustered in a non-singleton cluster if and only if gu = 1. Thus, whenever the label of
node u transitions from 0 to 1 its recourse increases. A crucial concept in our analysis, which will
help us bound raux (u), is the Important event definition.

Definition 1 Let C be a non-singleton cluster of Cagrt and node uC,t be as calculated by Algo-
rithm 4 at time t. If |NGt(uC,t)| > (1 + 20ϵ)|NGt̃uC,t

(uC,t)| then we say that cluster C and all its

nodes participate in an important event at that time.

8

COST-FREE FAIRNESS IN ONLINE CORRELATION CLUSTERING

Definition 1 tries to capture transitions of gu from 0 to 1. Those transitions are related to the
recourse increase due to the online nature of a problem. In Lemma 2 we relate those transitions,
through Definition 1, with the degree increase of a node.

Lemma 2 Let t1 < t2 be two times that u participates in an important event. Then |NGt2
(u)| ≥

(1 + ϵ)|NGt1
(u)|

However, the recourse can also increase between times where the label gu remains 1 due to the
MAKEFAIR procedure which keeps the output fair. We deal with such increases in Lemma 3.

Lemma 3 Let tA < tD be two consecutive times that node u participates in an important event
and let tB, tC ∈ [tA, tD] be such that rauxtB ,tC

(u) > 1. If ϵ is a small enough constant for which
ϵ < aiρ

100·112 then |NGtC
(u)| ≥ (1 + ϵ)|NGtB

(u)|.

We continue by proving the main Theorem 1 and then provide the more technical proof of Lemma 3
while we defer the proof of Lemma 2 to Appendix B.
Proof of Theorem 1. Fix node u, from Lemma 7 we know that r(u) ≤ 2 · raux (u) + 1 therefore
it suffices to upper bound raux (u). To that end, we show that between the times when raux (u)
increases by a constant amount, the degree of u increases multiplicatively. Then the statement
follows as the degree is at most the number of nodes n. Now suppose that t1 < t2 < · · · < tk
are the times when u participates in an important event. Note that at these times raux (u) can never
increase as it is then that u transitions in the opposite way, from singleton to clustered. Now let r
be the times raux (u) increases between two consecutive important events at ti and ti+1:

• r = 0: It is irrelevant whether the degree of u increases.

• r = 1: In this case Lemma 2 suffices to show that the degree of u increased multiplicatively
by a factor of 1 + ϵ.

• r ≥ 2: We can partition the interval [ti, ti+1] into r/2 consecutive intervals so that in each of
them there are exactly two increases of raux (u). Then applying Lemma 3 to each of them
gives a total increase of (1 + ϵ)r/2 to the degree of u.

Overall, for every two consecutive increases of raux (u) the degree of u increases at least by 1 + ϵ.
Then we have,

raux (u) ≤ 2 · log1+ϵ n = 2 · log n

log (1 + ϵ)
≤ 2 ·

(
1 +

1

ϵ

)
log n = O

(
log n

ϵ

)
where the second inequality is due to log(1 + ϵ) ≥ ϵ

1+ϵ since ϵ > −1.

Proof of Lemma 3. Let Cagrt , C̃t, Ct be the clusters to which u is clustered by AGREEMENT, the
intermediate clustering produced by MAKECONSISTENT and the final cluster produced by FAIR-
CONSISTENT-AGREEMENT. Since rauxtB ,tC

(u) > 1 there exist t1 < t2 < t3 ∈ (tA, tB) such that
|Ct1 | > 1, |Ct2 | = 1 and |Ct3 | > 1 and it is enough to prove that |NGt3

(u)| ≥ (1 + ϵ)|NGt1
(u)|.

Without loss of generality, we assume that among all such triplets, t3 is chosen to be the smallest,
and t2 is the smallest time in (t1, t3) such that |Ct2 | = 1. Note that this implies |Ct2−1| > 1 and
|Ct3−1| = 1.

9

BALKANSKI CHATZITHEODOROU MAGGIORI

First note that |Cagrt | > 1 and |C̃t| > 1 for all t ∈ [tA, t3]. Indeed, if the latter was not true
then we would have |Ct′ | = 1 for some t′ ∈ [tA, t3]. Consequently, at that time t′ we would have
set gu = 0 and node u could be reinserted in a non-singleton cluster only through an “important”
event, which happens at time tD > t3, contradicting that |C3| > 1. Similarly, we can argue that
∀t ∈ [tA, t3] |u ∈ Cagrt : gu = 0| ≤ 100ϵ|Cagrt |, otherwise gu would have been set to 0 at some
t′ ∈ [ta, t3] which contradicts |C3| > 1. Thus for all times t ∈ [t1, t3] we have that:

|Cagrt \ C̃t| ≤ 100ϵ|Cagrt | ⇔ |C̃t| ≥ (1− 100ϵ)|Cagrt | (⋆)

and:

|NGt(u) ∩ C̃t| ≥ |NGt(u) ∩ C
agr
t | − |C

agr
t \ C̃t|

≥ (1− 9ϵ)|Cagrt | − 100ϵ|Cagrt |
= (1− 109ϵ)|Cagrt |

where in the second inequality we used Eq. (⋆) and Property 4. Combining this last inequality with
|Cagrt | ≥ (1− 3ϵ)|NGt(u)| from Property 1 and the fact that Cagrt ⊇ C̃t. We get:

|NGt(u) ∩ C̃t| ≥ max
{
(1− 109ϵ)|C̃t|, (1− 109ϵ)(1− 3ϵ)|NGt(u)|

}
≥ (1− 112ϵ)max

{
|C̃t|, |NGt(u)|

}
.

From this last inequality we have that NGt2
(u) ≃ C̃t2 and NGt3

(u) ≃ C̃t3 . At the same time
since |Ct2−1| > 1, |C̃t2 | > 1 and |Ct2 | = 1 we deduce that C̃t2 is not ρ-fair (otherwise it would
not have been split into singletons by MAKEFAIR). Similarly, since |Ct3−1| = 1, |C̃t3−1| > 1
and |Ct3 | > 1 we deduce that C̃t3 is ρ/2-fair. Consequently, there exists i ∈ {1, . . . , l} such that
|C̃t2 ∩ Vi| > (1 + ρ)ai|C̃t2 | and |C̃t3 ∩ Vi| ≤ (1 + ρ/2)ai|C̃t3 |. Next,

|NGt2
(u) ∩ Vi| ≥ |C̃t2 ∩ Vi| − |NGt2

(u) \ C̃t2 |

≥ (1 + ρ)ai|C̃t2 | − 112ϵ|C̃t2 |

= (ai + aiρ− 112ϵ) |C̃t2 |
= (ai + aiρ− 112ϵ) (1− 112ϵ)|NGt2

(u)|.

Likewise we upper bound |NGt3
(u) ∩ Vi| as follows:

|NGt3
(u) ∩ Vi| ≤ |C̃t3 ∩ Vi|+ |NGt3

(u) \ C̃t3 |

≤ (1 + ρ/2)ai|C̃t3 |+ 112ϵ|C̃t3 |

= (ai + (ρ/2)ai + 112ϵ)
NGt3

(u)

1− 112ϵ
.

Combining the upper bound on |NGt3
(u)∩ Vi|, the lower bound on |NGt2

(u)∩ Vi| and the fact
that NGt2

(u) ⊆ NGt3
(u) =⇒ |NGt2

(u) ∩ Vi| ≤ |NGt3
(u) ∩ Vi| we have:

10

COST-FREE FAIRNESS IN ONLINE CORRELATION CLUSTERING

(ai + ρ/2ai + 112ϵ)
NGt3

(u)

1− 122ϵ
≥ (ai + aiρ− 112ϵ) (1− 112ϵ)|NGt2

(u)| ⇒ (1)

NGt3
(u)

NGt2
(u)
≥ (ai + aiρ− 112ϵ) (1− 112ϵ)2

(ai + ρ/2ai + 112ϵ)
(2)

≥ (1 + ρ− 112ϵ/ai) (1− 112ϵ)2

(1 + ρ/2 + 112ϵ/ai)
(3)

≥ (1 + 99ρ/100) (1− 112ϵ)2

(1 + 51ρ/100)
(4)

≥ (1 + ρ/10) (1− 112ϵ)2 (5)

≥ (1 + 1000ϵ) (1− 112ϵ)2 (6)

≥ (1 + ϵ) (7)

where from (3) to (4) we used the left-hand side and in (5) to (6) the right-hand side of the inequality
ϵ < aiρ

100·112 < ρ
10000 .

5. Analysis of the Competitive Ratio

In this section, we show that FAIR-CONSISTENT-AGREEMENT (Algorithm 2) is a constant-factor
approximation to the optimal fair clustering at every step. Note that at each time t, our algorithm
may only modify non-singleton clusters of Cagrt . Consequently, only these modifications may in-
crease the cost it incurs with respect to the agreement decomposition, and the goal of this section is
to bound such increases.

Theorem 4 There exists a small enough constant ϵ̃ such that for any ϵ < min{ρmini ai
11200 , ϵ̃}, we

have that cost(Ct) ≤ Θ
(

1
ϵ3ρmini a2i

)
· cost(Ofair

t) for any t.

Given a clustering C, let Cfair be a clustering identical to C, except that any non ρ-fair cluster
C ∈ C is split into singletons. In Theorem 4 we argue that the cost of Cfair is a constant-factor
approximation to the cost of the optimal fair solution. In other words, splitting very unfair clusters
of a good solution does not substantially affect our approximation guarantee. In addition, let C̃ be the
clustering produced by running MAKECONSISTENT across all C ∈ Cagr (we formally define this
clustering in Appendix C), and note that the clustering which our algorithm outputs is essentially
C̃fair. Given Lemma 6 to conclude the main Theorem 4 it is enough to argue that cost(C̃t) ≤
Θ(1) · cost(Ot) which we do in Lemma 5 of Appendix C.

Lemma 5 For a constant ϵ small enough we have cost(C̃t) ≤ Θ
(
1
ϵ3

)
· cost(Ot) for any t.

For the rest of the section, we focus on proving Lemma 6.

Lemma 6 Let C̃ be the output of any constant-factor approximation algorithm to the uncon-
strained problem and Cfair be the clustering which results in splitting all non ρ/2-fair clusters of C̃
into singletons. Then:

cost(Cfair) ≤ Θ

(
1

ρmini a2i

)
· cost(Ofair).

11

BALKANSKI CHATZITHEODOROU MAGGIORI

Proof Let C̃split ⊆ C̃ be the set of clusters where the relaxed fairness condition is violated, we have
that cost(Cfair) ≤ cost(C̃) +

∑
C∈C̃split |C|

2. We argue that for every C ∈ C̃split either the optimal

fair clustering or the optimal clustering to the unconstrained problem “pays” ≃ Θ
(

1
ρmini a2i

)
|C|2.

We do that by identifying two large sets of nodes in each case, for which all in-between edges
(which we call E+

C) and non-edges (which we will call E−
C) contribute to these. We note that each

of the charged edges or non-edges will be charged by only one cluster C. Let C be one of those
clusters and let i be the color for which the relaxed fair constraint is violated, then we know that
|C ∩ Vi| > (1 + ρ/2)ai|C| as the algorithm only splits a cluster with a medium or large violation.
Now, denote by C ′ ∈ Ofair the cluster in the optimal fair solution which contains the maximum
number of nodes in C ∩ Vi. We distinguish between two cases:

1. |C ′ ∩ C ∩ Vi| > (1 + ρ/4)ai|C| in which case we charge |C|2 to the edges between C ′ and
C; and

2. |C ′ ∩C ∩ Vi| ≤ (1 + ρ/4)ai|C| in which case we charge |C|2 to the edges between nodes in
C ∩ Vi that belong to different clusters of Ofair.

In the first case using the condition above as well as the fact that C ′ ∈ Ofair we have:

(1 + ρ/4)ai|C| ≤ |C ′ ∩ C ∩ Vi| ≤ |C ′ ∩ Vi| ≤ ai|C ′| (*)

Then we can prove that C ′ has a lot of elements outside of C:

|C ′ \ C| ≥ |C ′| − |C| ≥ ρ/4|C|.

where the second inequality comes from Equation (*) after dividing by ai.
The latter implies that in C ′ there are two “large” sets of nodes, i.e., C ′ \C and C ′ ∩C ∩Vi that

were not clustered together in C. Between these sets there are many tuples {(u, v) : u ∈ C ′ \C, v ∈
C ′∩C∩Vi}which we partition in E+

C and E−
C for edges and non-edges respectively. Then the edges

of E+
C are cut by C and contribute to C̃ while the non-edges of E−

C are paid by C ′ and contribute to
Ofair. Therefore every one of these tuples can be charged to cost(Ofair) + cost(C̃) and there are
many of them:

|E+
C |+ |E

−
C | = |C

′ \ C| · |C ′ ∩ C ∩ Vi| ≥ ρ/4|C| · (1 + ρ/4)ai|C| ≥ Θ(ρ)min
i

ai|C|2

Then we can upper bound |C|2:

|C|2 ≤ Θ

(
1

ρmini ai

)(
|E+

C |+ |E
−
C |
)
. (1)

In the second case, we know that |C ′ ∩ C ∩ Vi| is small for any C ′ ∈ Ofair, therefore Ofair

leaves a lot of tuples between its clusters within C ∩ Vi. We proceed by constructing a set of nodes
S using clusters of Ofair so that there are a lot of tuples between |S ∩ C ∩ Vi| and |(C ∩ Vi) \ S|.
The set S satisfies the property:

1

2
(1 + ρ/4)ai|C| ≤ |S ∩ C ∩ Vi| ≤ (1 + ρ/4)ai|C|.

12

COST-FREE FAIRNESS IN ONLINE CORRELATION CLUSTERING

We start by ordering C ′
j ∈ Ofair by decreasing |C ′

j ∩ C ∩ Vi|. Then we greedily add as many
of them as we can to S so that the upper bound of the property is not violated. Suppose that
we have added k clusters and adding the next one violates the property. Notice that by definition
|C ′

k+1 ∩ C ∩ Vi| ≤ |C ′
i ∩ C ∩ Vi| for i ≤ k. By summing we have:

k · |C ′
k+1 ∩ C ∩ Vi| ≤

k∑
i=1

|C ′
i ∩ C ∩ Vi| = |S ∩ C ∩ Vi|.

Since adding the cluster C ′
k+1 violates the property and using the last inequality we have:

(1 + ρ/4)ai|C| < |(S ∪ C ′
k+1) ∩ C ∩ Vi|

= |S ∩ C ∩ Vi|+ |C ′
k+1 ∩ C ∩ Vi|

≤
(
1 +

1

k

)
· |S ∩ C ∩ Vi|

where the equality is due to C ′
k+1 being a different cluster, therefore having no intersection with S.

Using k ≥ 1 we obtain the lower bound of the property. Now we can proceed to show that there are
many remaining elements of |C ∩ Vi| outside of S. Using the fact that C violates fairness by ρ/2
for Vi we have |C ∩ Vi| ≥ (1 + ρ/2)ai|C|. Then the nodes of C ∩ Vi not in S are:

|(C ∩ Vi) \ S| = |C ∩ Vi)| − |C ∩ Vi ∩ S| ≥ (1 + ρ/2)ai|C| − (1 + ρ/4)ai|C| = (ρ/4)ai|C|

Between that and the rest nodes of C ∩ Vi there are many tuples {(u, v) : u ∈ S ∩ C ∩ Vi, v ∈
(C ∩ Vi) \ S}, of which those that are edges (E+

C as before) contribute to Ofair since they belong
to different clusters, while those that are non-edges (E−

C as before) contribute to C̃ as both nodes are
in C and there are many of them:

|E+
C |+ |E

−
C | = |S ∩ C ∩ Vi| · |(C ∩ Vi) \ S| ≥

1

2
(1 + ρ/4)ai|C| · (ρ/4)ai|C| ≥ Θ(ρ)min

i
a2i |C|2.

Then we can upper bound |C|2:

|C|2 ≤ Θ

(
1

ρmini a2i

)(
|E+

C |+ |E
−
C |
)
. (2)

Overall we can see that in both cases

cost(Cfair) ≤ cost(C̃) +
∑

C∈C̃split

|C|2 ≤ cost(C̃) + Θ

(
1

ρmini a2i

) ∑
C∈C̃split

(|E+
C |+ |E

−
C |)

≤ cost(C̃) + Θ

(
1

ρmini a2i

)(
cost(C̃) + cost(Ofair)

)
≤ Θ

(
1

ρmini a2i

)
cost(Ofair).

where the second inequality is due to Equation (1), Equation (2) as 1
ρmini ai

≤ 1
ρmini a2i

, the third

inequality due to all tuples in |E+
C |, |E

−
C | contributing to cost(C̃)+cost(Ofair) (note that the tuples

are counted once each across all C) and the last inequality due to C̃ being a constant approximation
of the optimal unconstrained cost which lower bounds the optimal fair cost.

13

BALKANSKI CHATZITHEODOROU MAGGIORI

References

Alekh Agarwal, Alina Beygelzimer, Miroslav Dudı́k, John Langford, and Hanna Wallach. A re-
ductions approach to fair classification. In International conference on machine learning, pages
60–69. PMLR, 2018.

Rakesh Agrawal, Alan Halverson, Krishnaram Kenthapadi, Nina Mishra, and Panayiotis Tsaparas.
Generating labels from clicks. In Proceedings of the Second ACM International Conference on
Web Search and Data Mining, pages 172–181, 2009.

Saba Ahmadi, Sainyam Galhotra, Barna Saha, and Roy Schwartz. Fair correlation clustering. arXiv
preprint arXiv:2002.03508, 2020.

Sara Ahmadian and Maryam Negahbani. Improved approximation for fair correlation clustering.
In International Conference on Artificial Intelligence and Statistics, pages 9499–9516. PMLR,
2023.

Sara Ahmadian, Alessandro Epasto, Ravi Kumar, and Mohammad Mahdian. Fair correlation clus-
tering. In International conference on artificial intelligence and statistics, pages 4195–4205.
PMLR, 2020.

MohammadHossein Bateni, Yiwei Chen, Dragos Florin Ciocan, and Vahab Mirrokni. Fair resource
allocation in a volatile marketplace. Operations Research, 70(1):288–308, 2022.

Suman Bera, Deeparnab Chakrabarty, Nicolas Flores, and Maryam Negahbani. Fair algorithms for
clustering. Advances in Neural Information Processing Systems, 32, 2019.

Deepayan Chakrabarti, Ravi Kumar, and Kunal Punera. A graph-theoretic approach to webpage
segmentation. In Proceedings of the 17th international conference on World Wide Web, pages
377–386, 2008.

Flavio Chierichetti, Ravi Kumar, Silvio Lattanzi, and Sergei Vassilvitskii. Fair clustering through
fairlets. Advances in neural information processing systems, 30, 2017.

Vincent Cohen-Addad, Silvio Lattanzi, Slobodan Mitrovic, Ashkan Norouzi-Fard, Nikos Parotsidis,
and Jakub Tarnawski. Correlation clustering in constant many parallel rounds. In Proceedings of
the 38th International Conference on Machine Learning (ICML), volume 139, pages 2069–2078,
2021.

Vincent Cohen-Addad, Silvio Lattanzi, Andreas Maggiori, and Nikos Parotsidis. Online and consis-
tent correlation clustering. In International Conference on Machine Learning, pages 4157–4179.
PMLR, 2022.

Julia Dressel and Hany Farid. The accuracy, fairness, and limits of predicting recidivism. Science
advances, 4(1):eaao5580, 2018.

Zachary Friggstad and Ramin Mousavi. Fair correlation clustering with global and local guarantees.
In Algorithms and Data Structures: 17th International Symposium, WADS 2021, Virtual Event,
August 9–11, 2021, Proceedings 17, pages 414–427. Springer, 2021.

14

COST-FREE FAIRNESS IN ONLINE CORRELATION CLUSTERING

Nikita Kozodoi, Johannes Jacob, and Stefan Lessmann. Fairness in credit scoring: Assessment,
implementation and profit implications. European Journal of Operational Research, 297(3):
1083–1094, 2022.

I Elizabeth Kumar, Keegan E Hines, and John P Dickerson. Equalizing credit opportunity in algo-
rithms: Aligning algorithmic fairness research with us fair lending regulation. In Proceedings of
the 2022 AAAI/ACM Conference on AI, Ethics, and Society, pages 357–368, 2022.

Silvio Lattanzi and Sergei Vassilvitskii. Consistent k-clustering. In Proceedings of the 34th Inter-
national Conference on Machine Learning (ICML), pages 1975–1984, 2017.

Tian Li, Maziar Sanjabi, Ahmad Beirami, and Virginia Smith. Fair resource allocation in federated
learning. In International Conference on Learning Representations, 2020.

Claire Mathieu, Ocan Sankur, and Warren Schudy. Online correlation clustering. In 27th Inter-
national Symposium on Theoretical Aspects of Computer Science-STACS 2010, pages 573–584,
2010.

Manish Raghavan, Solon Barocas, Jon Kleinberg, and Karen Levy. Mitigating bias in algorithmic
hiring: Evaluating claims and practices. In Proceedings of the 2020 conference on fairness,
accountability, and transparency, pages 469–481, 2020.

Candice Schumann, Jeffrey Foster, Nicholas Mattei, and John Dickerson. We need fairness and
explainability in algorithmic hiring. In International Conference on Autonomous Agents and
Multi-Agent Systems (AAMAS), 2020.

Roy Schwartz and Roded Zats. Fair correlation clustering in general graphs. In Approximation, Ran-
domization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM
2022). Schloss Dagstuhl-Leibniz-Zentrum für Informatik, 2022.

Christina Wadsworth, Francesca Vera, and Chris Piech. Achieving fairness through adversarial
learning: an application to recidivism prediction. arXiv preprint arXiv:1807.00199, 2018.

Muhammad Bilal Zafar, Isabel Valera, Manuel Gomez Rogriguez, and Krishna P Gummadi. Fair-
ness constraints: Mechanisms for fair classification. In Artificial intelligence and statistics, pages
962–970. PMLR, 2017.

Appendix A. Structural Properties of the Agreement Decomposition

Let C be the clustering produced by AGREEMENT(G, ϵ) and u, v two nodes which belong to the
same cluster C ∈ C, then for ϵ small enough the following properties hold, which were shown
in Cohen-Addad et al. (2021).

Property 1 |NG(u) ∩ C| ≥ (1− 3ϵ)|NG(u)|

Property 2 |NG(u) \ C| < 3ϵ|NG(u)|

Property 3 |C| ≥ (1− 3ϵ)|NG(u)|

15

BALKANSKI CHATZITHEODOROU MAGGIORI

Property 4 |NG(u) ∩ C| ≥ (1− 9ϵ)|C|

Property 5 |C \NG(u)| < 9ϵ|C|

Property 6 |NG(u)| ≥ (1− 9ϵ)|C|

Property 7 |NG(u) ∩NG(v)| ≥ (1− 5ϵ)max{|NG(u)|, |NG(v)|}

Property 8 |NG(v)|(1− 5ϵ) ≤ |NG(u)| ≤ |NG(v)|
1−5ϵ

Property 9 |C \NG(u)| < 9ϵ|C| < 9ϵ
1−9ϵ |NG(u)|

Property 10 |NG(u) \ C| < 3ϵ|NG(u)| < 3ϵ
1−3ϵ |C|

Property 11 NG(u) ∩NG(v) ̸= ∅

Appendix B. Additional Lemmas for Bounding the Recourse

This section is devoted to giving more intuition on how to bound the recourse. We start by proving
that bounding raux suffices to bound the recourse, then we make a series of observations regarding
the inner workings of our algorithm, and finally, we add the proof of the missing Lemma 3.

B.1. Cluster id Assignment

To bound the recourse we need to specify how the ids are assigned to the clusters with an assignment
function ft that is equivalent to Ct at every step t. Then due to Lemma 9, this function can have the
following simple form. If we have a singleton node at time t that was singleton at time t−1 as well,
then we use the same id, otherwise, it was split from a cluster and it is assigned a new id. On the
other hand, if we have a non-singleton cluster C at time t, we check whether this cluster existed at
t − 1, in which case we use the same id, or if it is a new cluster. In terms of notation it is useful to
see the is as a cluster property and for any cluster C ⊆ V define:

ft(C) = y ⇔ ft(u) = y ∀u ∈ C.

Furthermore, it is useful to define for any clustering C the set of singleton nodes S(C) = {u ∈
C ∈ C : |C| = 1} and the set of nodes of non-trivial clustersR(C) = {u ∈ C ∈ C : |C| > 1}.

Lemma 7 The recourse of node u is upper bounded by 2 · raux (u) + 1.

Proof Suppose that u is a node that appears in the input at time t. For its recourse, we have:

rC1,...,C|V |(u) ≤ rf1,...,f|V |(u)

=
∑
t′>t

I {ft′−1(u) ̸= ft′(u)}

=
∑
t′>t

I {u ∈ S(Ct′) \ S(Ct′−1)}+
∑
t′>t

I {u ∈ R(Ct′) \R(Ct′−1)} (1)

where the first inequality follows from the definition of r given that ft is equivalent to Ct due to
Lemma 8, the second equality follows from the definition of ft which only changes its value for u

16

COST-FREE FAIRNESS IN ONLINE CORRELATION CLUSTERING

Algorithm 5
function ID-UPDATE(Ct, Ct−1, idmax)

for C ∈ Ct do
Cprev ← argmax{|C ′ ∩ C| : C ′ ∈ Ct−1}
if |C| = 1 then

if |Cprev| = 1 then ft(C)← ft−1(C)
elseft(C)← idmax++

else
if |Cprev| = 1 then ft(C)← idmax++
elseft(C)← ft−1(Cprev)

return ft, idmax

when it transitions from being in a cluster to singleton or vice versa. We proceed to show that the
right-hand side of 1 is upper bounded by:

2 ·
∑
t′>t

I {u ∈ S(Ct′) \ S(Ct′−1)}+ 1

which suffices for the statement. Define a sequence t = t0 ≤ t1 ≤ · · · ≤ T such that u incurs
1 recourse only on these iterations ti and T is the last iteration. We consider two cases, based on
whether u is singleton or not at iteration t. First, assume that it was in a non trivial cluster C,
then on ti such that i is even, u is in a non-trivial cluster and singleton for odd i. Define i∗ =
argmax{i : ti ≤ T}. If i is even, we have that rC1,...,C|V |(u) = 2 ·

∑
t′>t I {u ∈ S(Ct′) \ S(Ct′−1)},

otherwise rC1,...,C|V |(u) = 2 ·
∑

t′>t I {u ∈ S(Ct′) \ S(Ct′−1)} − 1 and in both cases the statement
holds. Second, assume that on iteration t, u is singleton. If t1 > T then rC1,...,C|V |(u) = 0, while if
t1 ≤ T , u incurs 1 recourse and joins a cluster on that iteration. From that point on, our previous
analysis on starting from being in a cluster holds, therefore the statement follows.

Lemma 8 The function ft defined in Algorithm 5 is an assignment function and is equivalent to Ct
for any t.

Proof We start by showing that ft is a well-defined assignment function. We can show that it is
possible to track the evolution of a cluster. First, note that Ct only differs from Cagrt in that a part
of some clusters has been split into singletons, therefore the statement of Lemma 9 holds for Ct as
well. Therefore, between t− 1 and t a cluster C ′ ∈ Ct−1 can remain the same, have some or all of
its nodes split to singletons, or gain some singletons, but it can never receive nodes from another
cluster as it becomes C ∈ Ct. Therefore, Cprev describes exactly C ′, the previous state of the same
cluster. Now what remains is to show that ft is equivalent to Ct. For any C ∈ Ct, Algorithm 5
assigns the same id to all nodes of C, therefore we have u ∼C v if and only if ft(u) = ft(v).

Lemma 9 (Lemma 8 in Cohen-Addad et al. (2022)) Let ϵ be a small enough constant and C,C ′

be non-singleton clusters of Cagrt−1 and u, v two nodes in C,C ′ respectively. In Cagrt , nodes u, v
cannot belong to the same cluster.

17

BALKANSKI CHATZITHEODOROU MAGGIORI

B.2. Deferred Proofs

We start by making a series of observations that help us understand under which conditions raux (u)
may increase. First, a node u may be clustered in a non-singleton cluster of our solution Ct only
if AGREEMENT “recommends” so, i.e., u ∈ C ∈ Cagrt : |C| > 1. Secondly, even if the latter
is true our algorithm may decide to cluster u as a singleton depending on the result of procedures
MAKECONSISTENT and MAKEFAIR. Following our main algorithms notation let C̃, Cfair be the
output of MAKECONSISTENT and MAKEFAIR respectively, and let gtu to be the value of gu at the
end of iteration t.

Note that:

1. Cfair is either equal to C̃ or empty.

2. gtu = 0 implies that u ̸∈ C̃. Thus, independently of whether Cfair is equal to C̃ or not, u is
clustered as a singleton at time t.

3. gtu = 1 implies that u ∈ C̃. In that case, u is clustered as a singleton if and only if Cfair = ∅.

We can deduce that, if raux (u) increases at time t then either: (a) {gt−1
u = 1} ∧ {gtu = 0}; or (b)

{gt−1
u = 1}∧ {gtu = 1} and Cfair = ∅. At a high level, Lemma 2 and Lemma 3 provide bounds on

the number of times t when conditions (a) and (b) occur, respectively.
We now repeat the definition of an important event for completeness.

Definition 1 Let C be a non-singleton cluster of Cagrt and node uC,t be as calculated by Algo-
rithm 4 at time t. If |NGt(uC,t)| > (1 + 20ϵ)|NGt̃uC,t

(uC,t)| then we say that cluster C and all its

nodes participate in an important event at that time.

Note that {gt−1
u = 0}∧{gt−1

u = 1} implies that u participates in an “important event” at time t.
In addition, note that |

{
t : {gt−1

u = 1} ∧ {gtu = 0}
}
| ≤ |

{
t : {gt−1

u = 0} ∧ {gtu = 1}
}
|+ 1. Thus,

we can concentrate on upper bounding the number of important events that a node participates in.

Lemma 2 Let t1 < t2 be two times that u participates in an important event. Then |NGt2
(u)| ≥

(1 + ϵ)|NGt1
(u)|

Proof Let C1, C2 be the non-singleton clusters found by AGREEMENT that u belongs to at times
t1 and t2 respectively. W.l.o.g. we assume that u does not participate in any other important event
between times t1 and t2. In the following, for any node v ∈ C we denote by T (v, t) the value of
variable tv at the beginning of iteration t. To ease notation we denote by u⋆ the node that provokes
the important event for cluster C2 at time t2, i.e., u⋆ = uC2,t2 . Also, we assume w.l.o.g. that
uC2,t2 ̸= u, otherwise we have that |NGt2

(u)| > (1 + 20ϵ)|NGT (u,t2)
(u)| ≥ (1 + 20ϵ)|NGt1

(u)|
where the first inequality is true since u = u⋆ provokes the “important event” and the second
inequality is true since u participates at an “important event at time t1, and consequently for any
t′ ≥ t1 we have T (u, t′) ≥ t1, and in particular, T (u, t2) ≥ t1. In addition, let t⋆in = T (t2, u

⋆)
and denote by C⋆

in ∋ u⋆ the cluster found by AGREEMENT at time t⋆in + 1. Note that C⋆
in is a

non-singleton cluster. Indeed, if u⋆ was ever clustered as a singleton by AGREEMENT, the last time
it may have happened is t⋆in.

We now turn our attention to upper bounding |NGt2
(u⋆) \ NGt⋆

in
+1
(u⋆)|. We proceed to show

that at time t2 − 1, u⋆ ∈ C⋆
t2−1 does not participate in an important event, where C⋆

t2−1 ∈ C
agr
t2−1.

18

COST-FREE FAIRNESS IN ONLINE CORRELATION CLUSTERING

Towards a contradiction we assume that u⋆ participates in an important event at iteration t2 − 1 as
well. Then at the end of that iteration we have t̃u = t2 − 1 for all u ∈ C⋆

t2−1. Since there is an
important event at t2 we have that:

|NGt2−1(uC⋆
t2
,t2)|+ 1 ≥ |NGt2

(uC⋆
t2
, t2)| ≥ (1 + 20ϵ)|NGt2−1(uC⋆

t2
, t2)|

where the first inequality is due to the degree of any node changing by at most 1 between two
iterations and the second due to the important event at time t2. But solving the inequality gives
|NGt2−1(uC⋆

t2
, t2)| ≤ 1

20ϵ which is a contradiction to the assumption that all degrees are above 1
2ϵ .

Let Ct2−1 be the non-singleton cluster to which u⋆ belongs according to the AGREEMENT at time
t2 − 1 and u′ = uCt2−1,t2−1. Since u⋆ did not participate in an important event at time t2 − 1 we
have

|NGt2−1(u
′)| < (1 + 20ϵ)D(t2 − 1, u′).

At the same time since both u′ and u⋆ belong to the same non-singleton cluster in the agreement
decomposition of time t2 − 1 we can use Property 7 and get

(1− 5ϵ)|NGt2−1(u
⋆)| ≤ |NGt2−1(u

′)|.

Also by the definition of u′, we have that

D(t2 − 1, u′) ≤ D(t2 − 1, u⋆) = |NGt⋆
in
(u⋆)| ≤ |NGt⋆

in
+1
(u⋆)|

Combining the last three inequalities we get:

|NGt2−1(u
⋆)| <

(1 + 20ϵ)|NGt⋆
in

+1
(u⋆)|

(1− 5ϵ)

for small enough ϵ
≤ (1 + 26ϵ)|NGt⋆

in
+1
(u⋆)|.

Thus,

|NGt2
(u⋆) \NGt⋆

in
+1
(u⋆)| ≤ |NGt2−1(u

⋆) \NGt⋆
in

+1
(u⋆)|+ 1 ≤ 26ϵ|NGt⋆

in
+1
(u⋆)|+ 1. (⋆⋆)

We now consider two cases based on whether the intersection of C⋆
in and C1 is empty or non-empty.

1. If C⋆
in ∩ C1 = ∅ then we argue that most of the common neighbors of u⋆ and u at time t2

were not present at time t1 and consequently u’s degree increased by more than a (1 + ϵ)
multiplicative term. To argue the latter, it is enough to show that:

|NGt⋆
in

+1
(u) \NGt1

(u)|+ |NGt2
(u) \NGt⋆

in
(u)| ≥ 2ϵ|NGt1

(u)|. (⋆)

Indeed, Eq. (⋆) implies that one of the two terms of the left-hand side is greater than ϵ|NGt1
(u)|.

Assume it is the first one (and the argument is the same if the second inequality is not satis-
fied), then |NGt2

(u)| ≥ |NGt⋆
in

+1
(u)| ≥ |NGt1

(u)|+ |NGt⋆
in

+1
(u)\NGt1

(u)| ≥ |NGt1
(u)|+

ϵ|NGt1
(u)| = (1 + ϵ)|NGt1

(u)|. Thus, we focus on proving Eq. (⋆) and to ease notation we
denote the sum in the left-hand side as I .

Since u⋆ ∈ C⋆
in at time t⋆in + 1 and u ∈ C1 at time t1 we can apply Property 10 and get:

|NGt1
(u) \ C1| ≤ 3ϵ|NGt1

(u)|
|NGt⋆

in
+1
(u⋆) \ C⋆

in| ≤ 3ϵ|NGt⋆
in

+1
(u⋆)| (⋆ ⋆ ⋆)

19

BALKANSKI CHATZITHEODOROU MAGGIORI

combining the latter with |NGt⋆
in

+1
(u) \ NGt1

(u)| ≤ ϵ|NGt1
(u)| helps us upper bound the

term |NGt⋆
in

+1
(u) ∩NGt⋆

in
+1
(u⋆)| as follows:

|NGt⋆
in

+1
(u) ∩NGt⋆

in
+1
(u⋆)| ≤ |NGt1

(u) ∩NGt⋆
in

+1
(u⋆)|+ |NGt⋆

in
+1
(u) \NGt1

(u)|

≤ |C1 ∩ C⋆
in|+ |NGt1

(u) \ C1|+ |NGt⋆
in

+1
(u⋆) \ C⋆

in|+ |NGt⋆
in

+1
(u) \NGt1

(u)|

≤ 0 + 3ϵ|NGt1
(u)|+ 3ϵ|NGt⋆

in
+1
(u⋆)|+ |NGt⋆

in
+1
(u) \NGt1

(u)| =⇒

|NGt⋆
in

+1
(u) ∩NGt⋆

in
+1
(u⋆)| ≤ 3ϵ(|NGt1

(u)|+ |NGt⋆
in

+1
(u⋆)|) + |NGt⋆

in
+1
(u) \NGt1

(u)|
(⋆ ⋆ ⋆⋆)

where in the third inequality we used that C1 ∩ C⋆
in = ∅ since we are in the first case

and Eq. (⋆ ⋆ ⋆). Similarly we upper bound |NGt2
(u) ∩NGt2

(u⋆)| as follows:

|NGt2
(u) ∩NGt2

(u⋆)|
≤ |NGt⋆

in
+1
(u) ∩NGt⋆

in
+1
(u⋆)|+ |NGt2

(u) \NGt⋆
in

+1
(u)|+ |NGt2

(u⋆) \NGt⋆
in

+1
(u⋆)|

≤ 3ϵ(|NGt1
(u)|+ |NGt⋆

in
+1
(u⋆)|) + I + 26ϵ|NGt⋆

in
+1
(u⋆)|+ 1

≤ 32ϵmax{|NGt2
(u)|, |NGt2

(u⋆)|}+ 1 + I
Property7
=======⇒

(1− 5ϵ)max{|NGt2
(u)|, |NGt2

(u⋆)|} ≤ 32ϵmax{|NGt2
(u)|, |NGt2

(u⋆)|}+ 1 + I =⇒

I ≥ (1− 37ϵ)max{|NGt2
(u)|, |NGt2

(u⋆)|} − 1 =⇒

I ≥ (1− 37ϵ)|NGt1
(u⋆)| − 1

ϵ small enough
========⇒

I ≥ 2ϵ|NGt1
(u⋆)|

where in the second inequality we used Eq. (⋆ ⋆ ⋆⋆) and Eq. (⋆⋆).

2. If C⋆
in ∩ C1 ̸= ∅ then let v ∈ C⋆

in ∩ C1 be a node which at time t1 is in the same cluster as u
and at time t⋆in + 1 is in the same cluster as u⋆. The following series of inequalities provides
a rough sketch of the formal proof. We will use the definition of an “important” event and the
observation that nodes within the same cluster of the agreement decomposition have similar
neighborhoods:

|NGt2
(u)|

u,u⋆∈C2≃ |NGt2
(u⋆)|

“important” event
> (1 + 20ϵ)|NGt⋆

in
(u⋆)| ≃ (1 + 20ϵ)|NGt⋆

in
+1
(u⋆)|

u⋆,v∈C⋆
in≃ (1 + 20ϵ)|NGt⋆

in
+1
(v)| ≥ (1 + 20ϵ)|NGt1

(v)|
u,v∈C1≃ (1 + 20ϵ)|NGt1

(u)|.

We now proceed to formally prove the latter.

From Property 7 we have that:

|NGt1
(u) ∩NGt1

(v)| ≥ (1− 5ϵ)max{|NGt1
(u)|, |NGt1

(v)|}
|NGt⋆

in
+1
(u⋆) ∩NGt⋆

in
+1
(v)| ≥ (1− 5ϵ)max{|NGt⋆

in
+1
(u⋆)|, |NGt⋆

in
+1
(v)|}.

20

COST-FREE FAIRNESS IN ONLINE CORRELATION CLUSTERING

From this we get that:

|NGt1
(v)| ≥ (1− 5ϵ)|NGt1

(u)|
|NGt⋆

in
+1
(u⋆)| ≥ (1− 5ϵ)|NGt⋆

in
+1
(v)|.

Combining the last two inequalities with the facts that |NGt⋆
in

+1
(v)| ≥ |NGt1

(v)| as well as
|NGt⋆

in
(u⋆)|+ 1 ≥ |NGt⋆

in
+1
(u⋆)| we conclude that:

|NGt1
(v)| ≥ (1− 5ϵ)|NGt1

(u)|
|NGt⋆

in
(u⋆)| ≥ (1− 5ϵ)2|NGt1

(u)| − 1. (*)

At time t2 nodes u and u⋆ are in the same cluster C2. Thus, using Property 7 we have that:

|NGt2
(u⋆) ∩NGt2

(u)| ≥ (1− 5ϵ)max{|NGt2
(u⋆)|, |NGt1

(v)|} ⇒
|NGt2

(u)| ≥ (1− 5ϵ)|NGt2
(u⋆)| ⇒

|NGt2
(u)| ≥ (1− 5ϵ)(1 + 20ϵ)|NGt⋆

in
(u⋆)| ⇒

|NGt2
(u)| ≥ (1− 5ϵ)(1 + 20ϵ)

(
(1− 5ϵ)2|NGt1

(u)| − 1
)

|NGt2
(u)| ≥ (1 + ϵ)|NGt1

(u)|

where the last inequality holds for ϵ small enough.

Appendix C. Bound the Competitive Ratio

The main idea behind the proof of Lemma 5 is to use a charging argument in Lemma 10 and
Lemma 11 to show that the cost MAKECONSISTENT incurs by splitting clusters of AGREEMENT is
within a constant of the optimal cost.

Before we proceed with the statements, we introduce some notation that helps indicate which
nodes have been singletons in the past and when. For any C ∈ Cagrt we define indicator s(u, t) that
is 1 only if u has been clustered as a singleton by AGREEMENT in some iteration before t, formally
s(u, t) = I

{
∃t′ < t : u ∈ S(Cagrt′)

}
. We also define as T (t, u), D(t, u) as the last such time and

degree of u at that time respectively:

T (t, u) =

{
max{t′ ≤ t : u ∈ S(Cagrt′)} if s(u, t) = 1
∞ otherwise

D(t, u) = |NGT (t,u)
(u)|.

Now we define the nodes of a cluster that have label 0 at the end of an iteration as ZC = {u ∈
C : g(u) = 0} and further define Zs

C = {u ∈ ZC : T (t, u) = t̃u}, i.e. the set of nodes u with
label gu = 0 which have been singleton in the agreement decomposition of time T (u, t) and have
not participated in an important event since then. These are exactly the nodes that will allow us to

21

BALKANSKI CHATZITHEODOROU MAGGIORI

charge the algorithm’s cost to the optimal solution. We further define as Zs
t all the nodes u that have

label gu = 0 and have been singletons in the past:

Zs
t =

⋃
C∈Cagr

t

Zs
C .

Now we are ready to state the two charging lemmas, which resemble Lemma 3.7 and 3.8 of Cohen-
Addad et al. (2021). The crucial difference is that we charge edges at a previous time and collect
the debt at the current time t to charge it to either Ot or Cagrt .

Lemma 10 The edges adjacent to all vertices u ∈ Zs
t which (1) are not paid for by Ot, (2) have

endpoints in agreement at time t and (3) were removed at time T (t, u) by Line 1 of Algorithm 1 are
at most 4

ϵ(1−ϵ) cost(Ot).

Lemma 11 The edges adjacent to all vertices u ∈ Zs
t which (1) are not paid for by Ot, (2) have

endpoints in agreement at time t and (3) were removed at time T (t, u) by Line 2 of Algorithm 1 are
at most 2

ϵ(1−ϵ)3
cost(Cagrt) + (4

ϵ(1−ϵ)3
+ 2

ϵ2(1−ϵ)3
) cost(Ot).

Intuitively the charging arguments work because (1) in Lemma 12 we show that there are suf-
ficiently many nodes in each cluster that have been singleton in some “recent” iteration; and (2) as
shown in Lemma 13 the degrees of these nodes have not changed significantly since the last time
AGREEMENT clustered them as singletons.

The next lemma formalizes (1), by showing that whenever MAKECONSISTENT splits a cluster
C ∈ Cagrt into singletons ZC and a cluster C \ ZC there are enough nodes in C which have been
singleton in the “recent” past, as these are nodes to which we can charge the cost incurred.

Lemma 12 Let C ∈ Cagrt then |Zs
C | >

ϵ
100 |ZC |.

We defer the proof to Appendix D as it is highly technical. We now proceed to show (2), i.e.,
that the degree of any node u ∈ Zs

C has not changed since time t̃u.

Lemma 13 Let ϵ be an adequately small constant. Let C ∈ Cagrt that does not participate in an
important event at time t, then for any u ∈ Zs

C we have |NGt(u)| ≤ 2 ·D(t, u).

Note that at each time t, FAIR-CONSISTENT-AGREEMENT may only modify non-singleton clus-
ters of Cagrt . Consequently, only those modifications may increase the cost incurred by FAIR-
CONSISTENT-AGREEMENT with respect to AGREEMENT, and the goal of this section is to bound
such increase. Such modifications are achieved by further splitting each non-singleton cluster
C ∈ Cagrt using the subroutines MAKECONSISTENT and MAKEFAIR sequentially. Thus, in the
analysis, we first prove that only applying MAKECONSISTENT to each non-singleton cluster of
Cagrt is constant competitive to the optimal unconstrained clustering Ot on every step t. Before
we state the lemma we need some auxiliary notation that captures the clustering produced by
MAKECONSISTENT across all clusters of AGREEMENT. Let C̃(t, C) be the output of running
MAKECONSISTENT on cluster C ∈ Cagrt as in Algorithm 2 and ZC = C \ C̃(t, C). We denote by
C̃t the clustering produced by running MAKECONSISTENT across all C ∈ Cagrt , which is formally
defined as

C̃t = {C̃(t, C) : C ∈ Cagrt }
⋃
{{u} : u ∈

⋃
C∈Cagr

t

ZC}.

22

COST-FREE FAIRNESS IN ONLINE CORRELATION CLUSTERING

Lemma 5 For a constant ϵ small enough we have cost(C̃t) ≤ Θ
(
1
ϵ3

)
· cost(Ot) for any t.

Proof Let C ∈ Cagrt . Unless it participates in an important event at time t, MAKECONSISTENT

splits C into singletons ZC and a new cluster C \ZC . Thus, for every node u ∈ ZC we pay at most
1 for every one of its adjacent edges at time t. Then we have:

cost(C̃t) ≤ cost(Cagrt) +
∑

C∈Cagr
t

∑
u∈ZC

|NGt(u)| (0)

We now show that the cost incurred by splitting the nodes in ZC is only a constant away from that
of splitting Zs

C , i.e.
∑

u∈ZC
|NGu(t)| ≤ O(1)

∑
u∈Zs

C
|NGt(u)|. To do that we charge the cost

incurred by each node in ZC \ Zs
C to that of nodes in Zs

C . Intuitively this argument works because
the degrees of nodes in a cluster are nearly equal and Zs

C is large enough. Let u ∈ ZC \ Zs
C , then u

charges |NGt (u)|
|Zs

C | to each v ∈ Zs
C . Then in total u has charged

|NGt(u)|
|Zs

C |
· |Zs

C | = |NGt(u)| ≥ (1− 9ϵ)|C| (1)

where the inequality is due to Property 6. Now let v ∈ Zs
C , then it has been charged by every

u ∈ ZC for a total of ∑
u∈ZC\Zs

C
|NGt(u)|

|Zs
C |

≤
∑

u∈ZC\Zs
C

1
1−3ϵ · |C|

|Zs
C |

≤
|ZC | 1

1−3ϵ · |C|
|Zs

C |

≤
|ZC | 1

1−3ϵ · |C|
ϵ

100 |ZC |

=
100

ϵ(1− 3ϵ)
|C| (2)

where the first inequality is due to Property 10, the second inequality is due to ZC \ Zs
C ⊆ ZC and

the third inequality is due to Lemma 12. Combining Equations (1) and (2) and summing we have
that∑
u∈ZC

|NGt(u)| ≤
∑

u∈ZC\Zs
C

|NGt(u)| ≤
100

ϵ(1− 3ϵ)(1− 9ϵ)

∑
u∈Zs

C

|NGt(u)| ≤
400

ϵ

∑
u∈Zs

C

|NGt(u)|

(3)

where the last inequality is due to 1 − 9ϵ ≤ 1
2 for ϵ small enough. We proceed with bounding the

cost from Equation (0):

cost(C̃t) ≤ cost(Cagrt) +
∑

C∈Cagr
t

400

ϵ
·
∑
u∈Zs

C

|NGt(u)|

≤ cost(Cagrt) +
∑

C∈Cagr
t

400

ϵ
·
∑
u∈Zs

C

2 ·D(t, u)

= cost(Cagrt) +
400

ϵ
·

∑
C∈Cagr

t

∑
u∈Zs

C

D(t, u)

23

BALKANSKI CHATZITHEODOROU MAGGIORI

where the first inequality is due to Equation (3) and the second due to Lemma 13. Since by Lemma 3
it holds that cost(Cagrt) ≤ Θ(1) cost(Ot), to prove the current lemma it is sufficient to argue that∑

u∈Zs
t
D(t, u) ≤ Θ(1) cost(Ot). Note that for any node u ∈ Zs

t , at time T (t, u) it was singleton
in CagrT (t,u) and had D(t, u) neighbors by definition. For it to be singleton all its edges (u, v) must
have been removed by Algorithm 1 so we can proceed as follows:

1. All edges (u, v) that are paid for by Ot can be charged to it for a total of cost(Ot).

2. All edges (u, v) that are paid for by Cagrt can be charged to it for a total of cost(Cagrt).

3. All edges (u, v) that do not belong to categories (1) or (2) and were deleted by Line 1 of
Algorithm 1 at T (t, u) can be charged to Ot with Lemma 10 for a total of 4

ϵ(1−ϵ) cost(Ot).

4. All edges (u, v) that do not belong to categories (1), (2) or (3) were deleted by Line 2
of Algorithm 1 at T (t, u) and can be charged to Cagrt ,Ot with Lemma 11 for a total of

2
ϵ(1−ϵ)3

cost(Cagrt) + (4
ϵ(1−ϵ)3

+ 2
ϵ2(1−ϵ)3

) cost(Ot).

Proof of Lemma 10 Take a u ∈ Zs
t at time t and one of its adjacent edges (u, v) that was present

at T (t, u). To ease notation we define dt(u) = |NGt(u)|. Notice that u was singleton in CagrT (u,t) as
such a time exists that it was singleton by definition of Zs

t . We can restate the properties given by
the assumption as follows:

1. Ot does not pay for (u, v) therefore it clusters u, v together.

2. At time t u, v are in ϵ-agreement which implies that their degrees are very close:

max{dt(u), dt(v)} ≤
1

1− ϵ
dt(u) ≤

2

1− ϵ
D(t, u)

where the second inequality is due to Lemma 13.

3. At time T (t, u) they must have not been in ϵ-agreement since Line 1 deleted their edge. So
|NGT (t,u)

(u)△NGT (t,u)
(v)| > ϵmax{dT (t,u)(u), dT (t,u)(v)} and this implies there are many

nodes w which have an edge with only u or only v. This property remains true at time t since
nothing has changed in the triangle u, v, w. Then Ot must pay for either (u,w) or (v, w)
since it has clustered u and v together.

Using these properties we can formulate the charging argument as follows. Every such edge (u, v)
charges 1

ϵmax{dt(u),dt(v)} to each of the neighboring edges/non-edges (u,w) or (v, w) that Ot pays
for. Then each (u, v) has charged for a total of

ϵmax{dT (t,u)(u), dT (t,u)(v)}
ϵmax{dt(u), dt(v)}

≥ D(t, u)
2

1−ϵD(t, u)
=

1− ϵ

2
.

If we consider an edge/non-edge (a, b) thatOt pays for then only neighboring edges charge it. Each
of the neighboring edges to a charge it at most by 1

ϵdt(a)
and similarly for b so the total charge is at

most
1

ϵdt(a)
· dt(a) +

1

ϵdt(b)
· dt(b) =

2

ϵ
.

24

COST-FREE FAIRNESS IN ONLINE CORRELATION CLUSTERING

Overall, since by definition of the charging argument, only edges paid for by Ot are charged, we
have paid 4

ϵ(1−ϵ) for every edge that Ot paid.

Proof of Lemma 11 Take a u ∈ Zs
t at time t and one of its adjacent edges (u, v) that was present

at T (t, u). To ease notation we define dt(u) = |NGt(u)|. Notice that u was singleton in CagrT (u,t)
by definition of Zs

t . As before we know by the assumption that Ot clusters u, v together and
that they are in ϵ-agreement at time t so their degrees can be at most 1

1−ϵ away by definition of
agreement. But now we also know that at time T (t, u) they were in agreement and they were both
light so for y ∈ {u, v} we have that y disagrees with ϵdT (t,u)(y) of its neighbors which we denote
v1, . . . , vϵdT (t,u)(y). We can proceed with charging:

• If (y, vi) is not paid for by Ot we distinguish between the following cases:

– If y, vi disagree at time t then (u, v) charges 1
2ϵdt(y)

to edge (y, vi) that will be paid by
Cagrt since it cuts this edge and is denoted purple debt.

– If y, vi agree at time t, then we use that at time T (t, u), y and vi disagree. Thus there
exist ϵmax{dT (t,u)(y), dT (t,u)(vi)} triangles (y, vi, w) so that Ot pays for either (y, w)
or (vi, w):

* If Ot pays for edge/non-edge (vi, w) then (u, v) charges 1
2ϵ2dt(y)dt(vi)

to it. We call
such charge, blue debt and note that Ot will pay for that.

* IfOt pays for edge/non-edge (y, w) then (u, v) charges 1
2ϵ2dt(y)2

to it .We call such
charge, red debt and note that Ot will pay for that.

• If (y, vi) is paid for by Ot then edge (u, v) charges 1
2ϵdt(y)

to it that will be paid by Ot and is
denoted green debt.

By definition only edges/non-edges paid by Ot or Cagrt are charged. The proof proceeds by
lower bounding the amount of charge that an edge (u, v) distributes and upper bounding the amount
of charge that any edge/non-edge paid by eitherOt or Cagrt receives. We start with the former lower
bound.

In our charging scheme, notice that for y ∈ {u, v} if (y, vi) is not cut by Ot

either blue or red debt is at least 1
2ϵ2dt(y)max{dt(y),dt(vi)} per triangle so each edge (y, vi) causes

(u, v) to charge

ϵmax{dT (t,u)(y), dT (t,u)(vi)}
2ϵ2dt(y)max{dt(y), dt(vi)}

=
1

2ϵdt(y)

max{dT (t,u)(y), dT (t,u)(vi)}
max{dt(y), dt(vi)}

≥ 1

2ϵdt(y)

(1− ϵ3)

2

=
(1− ϵ)3

4ϵdt(y)

where the inequality is due to u, v agreeing in T (t, u) which makes the numerator greater than
(1 − ϵ)D(t, u) and u, v, vi agreeing at t in the case of blue debt so the divisor is at most dt(u)

(1−ϵ)2
≤

2D(t,u)
(1−ϵ)2

due to Lemma 13. Then green or purple debt charge at least that much per (y, vi) edge, and

since there are two choices for y and ϵdT (t,u)(y) such edges the total charge is at least (1−ϵ)3

2 .

25

BALKANSKI CHATZITHEODOROU MAGGIORI

Now we can count the total debt charged to the edges cut by Ot and Cagrt . Consider edge/non-
edge (a, b) paid for by Ot and we have the following cases:

• Blue debt: Edge/non-edge (a, b) is of the form (vi, w). For half the debt assume vi ≡ a
then it can be charged at most for each neighbor of y where y is any of a′s neighbors so

1
2ϵ2dt(y)dt(vi)

· dt(y) · dt(vi). Overall that is at most 1
ϵ2

debt.

• Red debt: Edge/non-edge (a, b) is of the form (y, w). For half the debt assume y ≡ a then
this edge is charged at most for each of its neighbors it disagrees with, for each possible debt
charging edge (u, v) so 1

2ϵ2dt(a)2
· ϵdt(a) · dt(a). Overall that is at most 1

ϵ debt.

• Green debt: Edge (a, b) is of the form (y, vi). For half the debt assume y ≡ a then it is
charged at most once for each of its neighbors so 1

2ϵdt(a)
·dt(a). Overall that is at most 1

ϵ debt.

Consider edge (a, b) cut by Cagrt :

• Purple debt: Edge (a, b) is of the form (y, vi). For half the debt assume y ≡ a then it is
charged at most for each neighbor of a so 1

2ϵdt(y)
· dt(y). Overall that is 1

ϵ debt.

Overall for each edge/non-edge paid for by Ot we paid at most 2/ϵ+1/ϵ2

(1−ϵ)3/2
= 4

ϵ(1−ϵ)3
+ 2

ϵ2(1−ϵ)3
and

for each edge cut by Cagrt we paid at most 1/ϵ
(1−ϵ)3/2

= 2
ϵ(1−ϵ)3

.

Proof of Lemma 13 We know that u has a similar degree with ug,C,t as they are both clustered in C
at time t by AGREEMENT, but we also know that by definition uC,t had the lowest degree last time
it was a singleton so we have:

|NGt(u)| ≤
1

1− 5ϵ
· |NGt(uC,t)| ≤

1− 100ϵ

1− 5ϵ
·D(t, uC,t) ≤

1− 100ϵ

1− 5ϵ
·D(t, u) ≤ 2 ·D(t, u)

where the first inequality is due to Property 8, the second inequality due to not having an important
event therefore the condition in line 6 of Algorithm 4 is false, the third inequality by definition of
uC,t and the fourth due to ϵ being adequately small.

Appendix D. Dynamic Analysis of the Clustering Sequence Cagr1 , Cagr2 , . . .

To bound the competitive ratio we need to first understand the clustering structure of the MAKE-
CONSISTENT algorithm. This inevitably leads us to examine how a cluster may evolve in the rec-
ommendations given by the agreement algorithm.

Definition 4 (history of a cluster) Given a cluster Ctl ∈ C
agr
tl

v we say that the sequence of clusters
Ct1 , . . . , Ctl is the “history” of Ctl and than t1 is the formation time of Ctl

1. Cti ∈ R(C
agr
ti

), for all i ∈ [l]; and

2. Ci ∩ Ci+1 ̸= ∅ for all i ∈ [l − 1];and

3. Ct1 , . . . , Ctl is the sequence of maximum length for which (1) and (2) hold.

26

COST-FREE FAIRNESS IN ONLINE CORRELATION CLUSTERING

Lemma 14 The history of any cluster is unique.

Proof Let C ∈ Cagrt and its history CtC , CtC+1, . . . , Ct = C. We will argue inductively that for any
t′ ∈ tC , . . . , t Ct′ is uniquely defined by the requirement that consecutive clusters have nonempty
intersections. The base case t′ = t is obvious as Ct = C. Then for the inductive step, we argue
that Ct′−1 is unique. By the definition of the history we have Ct′−1 ∩ Ct′ ̸= ∅. Notice that both
clusters were the output of AGREEMENT at consecutive times, therefore by Lemma 9 we conclude
the induction.

Definition 5 (Split event) We have a “split event” for node C at time t if at the end of Algorithm 4
we have ZCt = Ct and the cluster is split into singletons.

Definition 6 (Split event indicators) When it is clear from context that we focus on the history of
C: CtC , . . . , Ct, we define Et′ = {ZCt′ ≤ 100ϵ|C|} where ZCt′ are the nodes u : g(u) = 0 at the
end of iteration t′.

Lemma 15 Let Et′ be the indicator function that refers to the history of some cluster C ∈ Cagrt .
Then Et′ is false if and only if there is a split event.

Proof We start by assuming that Et′ is false. Then cluster Ct′ must have particiapated in a split
event because line 6 of Algorithm 4 can only decrease the number of nodes u with g(u) = 0,
therefore in line 2 of Algorithm 4 the condition was true. Now suppose Et′ is true. Cluster Ct′

cannot have participated in a split event either because the condition in line 2 of Algorithm 4 was
false, or because it was true and an important event kept the cluster together.

Definition 7 (Transition event) We have a “transition event” at time t if Et−1 ∧ Et is true.

Lemma 12 Let C ∈ Cagrt then |Zs
C | >

ϵ
100 |ZC |.

Proof Assume towards a contradiction that |Zs
Ct
| ≤ ϵ

100 |ZCt |. Denote by tC = tCt the cluster
formation time of Ct and let CtC , CtC+1, . . . , Ct be the “history” of Ct.

Overview We make a series of observations:

1. ∃t′ ∈ {tC , . . . , t} : Et′ otherwise we would have that Zs
Ct

= ZCt .

From now on denote t∗ as the maximum time in {tC , . . . , t} such that Et∗−1 ∧ Et∗ , i.e. a
transition event. We proceed to study the events that occur after t∗.

2. No important events occur between t∗ and t.

3. Split events occur on every iteration between t∗ and t.

Now we turn to the iterations before t∗ and informally we show that between tC and t∗ the
nodes that join the cluster without ever being singleton are not too many.

4. Between any consecutive transition events t1, t2 there is an important event tI . Furthermore,
between tI and t2, there are no split events.

27

BALKANSKI CHATZITHEODOROU MAGGIORI

5. Using the previous observation we argue that |{u ∈ Ct∗ : s(u, t∗) = 0}| < (1− 100ϵ)|Ct∗ |.

Using these observations we can conclude the contradiction. The intuition is that due to the as-
sumption at t, many more nodes have never been singleton. Since there were significantly fewer
at time t∗ that implies many of them must have joined between t∗ and t. But once they join they
cannot change cluster (they would have to become singleton first). Therefore the first of them to
arrive must have increased its degree significantly between the time it arrived and t, as it remained
clustered with them for the whole duration. But that would imply an important event. We now
proceed to prove the observations in the order they were stated:

Observation 1 Suppose that there were no t′ ∈ {tC , . . . , t} : Et′ . Then the condition on line
2 of Algorithm 4 would always be false and any node u with g(u) = 0 for tC < t′′ ≤ t would
have acquired this label due to line 8 of Algorithm 2 (at no other point does the algorithm assign
g(u) = 0). We also know that Zs

CtC
= ZCtC

since by definition of tC , its nodes were singletons
due to AGREEMENT for all previous times. This implies Zs

Ct
= ZCt which is a contradiction.

Observation 2 Assume that an important event does happen before t and denote the first such
time after t∗ as tI ∈ {t∗, . . . , t}. Then at the end of MAKECONSISTENT we have ZCtI

= ∅. But
that would imply |ZCs

tI
| = |ZCtI

| = 0 and EtI is true. Due to the maximality of t∗ we know that for
any t′ ∈ {tI , . . . , t} : Et′ . We will now show that this implies Zs

Ct
= ZCt which is a contradiction

to our initial assumption. In fact we can show inductively that Zs
Ct′

= ZCt′ for any t′ ∈ {tI , . . . , t}.
Note that any node u ∈ ZCtI

before the important event had its label g(u) = 1 which gives the base
case. For the inductive step consider time t′ + 1 and denote Zstart, Zend as the set ZCt′+1

at the
beginning and the end of the execution of Algorithm 4. The only nodes in Zstart \ ZCt′ are those
that Cagrt′+1 brought into the cluster. These must have been singletons at time t′ since AGREEMENT

cannot join different clusters. Therefore they only contribute to Zs
Ct′

. Furthermore, notice that
Zend ⊆ Zstart as either the condition in line 2 of Algorithm 4 was false, or it was true and the
condition at line 5 was true as well, which gave an important event and Zend = ∅. These are the
only possible cases as Et′+1 is true. Therefore Zs

Ct′+1
= ZCt′+1

and that concludes the inductive
step and the contradiction.

Observation 3 Due to maximality of t∗ there are only two cases for the values of Et′ for t′ ∈
{t∗, . . . , t}. Either they are all false, or there is a switching time ts such that

∧ts
t′=t∗ Et′ is true and∧t

t′=ts+1Et′ is true. Notice that in the second case, there must be an important event at time ts + 1
which would contradict observation 3. We assume that ts + 1 is not an important event towards a
contradiction. Since Cts , Cts+1 are consecutive clusters in the history of C by Lemma 18 we have:

|Cts \ Cts+1| ≤ 18ϵ|Cts |. (*)

We define Z as ZCtS
at the end of Algorithm 4 and notice that Z = Cts since Ets is true. We

also define Zstart, Zend as ZCts+1 at the start and end of Algorithm 4 and notice that since Ets+1 is
true and ts + 1 is not an important event we have |Zstart| ≤ |Zend| ≤ 100ϵ|Cts+1|. Notice that if
u ∈ Z \ Zstart then AGREEMENT must have removed it from the cluster and set it as a singleton
since there was no important event to change its label g(u) from 0 to 1. Furthermore, for any node
u ∈ Cts+1 : g(u) = 1 we must have that u ∈ Cts (except for the node that arrived at ts + 1), as
no nodes from other clusters could have been included by AGREEMENT and any singleton at ts that

28

COST-FREE FAIRNESS IN ONLINE CORRELATION CLUSTERING

joins CtS+1 has label 0. All such u ∈ Cts as well. Then we have

|Cts \ Cts+1| ≥ |Cts \ Zstart|
≥ |Cts | − |Zstart|
≥ |Cts | − 100ϵ|Cts+1|
≥ |Cts | − 300ϵ|Cts |
≥ (1− 300ϵ)|Cts |

where the first inequality is due to Zstart ⊆ Cts+1, the second due to lower bounding the cardinality
of set difference by the difference of set cardinalities, the third due to the assumption that Ets+1 is
true and the fourth due to Lemma 18. Notice that this is a contradiction to Eq. (*) as for adequately
small ϵ we have 1− 300ϵ ≥ 18ϵ and we obtain the statement.

Observation 4 Now we attempt to study the iterations before t∗, in which there might have been
multiple transition events. From Lemma 17 we know that between any two consecutive transition
events, there is an important event. Furthermore, the lemma states that between the important event
and the second transition event, there are no split events.

Observation 5 We show the claim by arguing that there is no u ∈ ZCt∗ : s(u, t) = 0, i.e. all
such u have been singletons sometime in the past. In that direction, we consider two cases. If
there was another transition event before t∗ we denote that t∗∗ and from observation 5 we know
that there must have been an important event tI ∈ {t∗∗, . . . , t∗} and after that no split events until
t∗. Otherwise, there is no transition event before t∗. But any u ∈ CtC was singleton at tC − 1
so Zs

CtC
= ZCtC

and the first split event after tC happens at t∗. As we have already shown in
observation 2, the absence of split events in consecutive iterations implies that in the beginning of
iteration t∗ we have Zs

Ct∗
= ZCt∗ > 100ϵ|Ct∗ | by definition of t∗ as a transition event. Then we

have |{u ∈ Ct∗ : s(u, t∗) = 0}| < |Ct∗ \ Zs
Ct∗
| ≤ (1− 100ϵ)|Ct∗ |.

Putting everything together From the initial assumption and observation 3 we have |{u ∈ Ct :
s(u, t) = 0}| ≥ |ZCt \ Zs

Ct
| ≥ (1 − ϵ

100)|Ct| and from observation 5 we have that |{u ∈ Ct∗ :
s(u, t∗) = 0}| < (1 − 100ϵ)|Ct∗ |. Now we define N = |{u ∈ Ct \ Ct∗ : s(u, t) = 0}|, i.e. the
nodes that have never been singleton, belong to Ct and were not present at time t∗. By the definition
of N we have:

|N | ≥ |{u ∈ Ct : s(u, t) = 0}| − |{u ∈ Ct∗ : s(u, t∗) = 0}|

= (1− ϵ

100
)|Ct| − (1− 100ϵ)|Ct∗ |

≥ (1− ϵ

100
)|Ct| −

1− 100ϵ

1− 20ϵ
|Ct|

≥ (1− ϵ

100
)|Ct| − (1− 80ϵ

1− 20ϵ
)|Ct|

≥ (80ϵ− ϵ

100
)|Ct|

≥ 79ϵ|Ct| (*)

where the second inequality is due to Lemma 16 and the last inequality holds since ϵ is sufficiently
small. Notice that any node in N must have been included in some cluster between t∗ and t at the

29

BALKANSKI CHATZITHEODOROU MAGGIORI

iteration when it appeared in the input, otherwise, it would have been a singleton before. Consider
the first such node u ∈ N to be included in the history of C and denote the iteration when it appeared
in the input tu. Further define Nu = N \ {u}. In the following, we show that its degree increases
multiplicatively between tu and t which implies an important event and thus concludes the proof.
We start by lower bounding the nodes of Nu that are neighbors of u at t and we have:

|NGt(u) ∩Nu| = |Nu \ (NGt(u) \Nu)|
≥ |Nu| − |NGt(u) \Nu|
≥ |Nu| − |NGt(u) \ Ct|

≥ 79ϵ|Ct| − 1− 3ϵ

1− 3ϵ
|Ct|

≥ 70ϵ|Ct| − 1 (1)

where the third inequality is due to Eq. (*), Property 10 and the fact that 1−3ϵ ≥ 1/3 for adequately
small ϵ. Then we lower bound Ct by the neighbors of u at time tu:

|Ct| ≥ (1− 20ϵ)|Ctu |
≥ (1− 20ϵ)(1− 3ϵ)|NGtu

(u)|
≥ (1− 23ϵ)|NGtu

(u)| (2)

where the first inequality is due to Lemma 16, the second inequality is due to Property 3 and the
third inequality due to omitting square terms. The increase in the degree of u is:

|NGt(u)| − |NGtu
(u)| = |NGt(u) \NGtu

(u)| ≥ |NGt(u) ∩Nu| ≥ 70ϵ|Ct| − 1

where the first inequality is by definition of Nu and the second is due to Eq. (1). Reordering the
terms we have:

|NGt(u)| ≥ |NGtu
(u)|+ 70ϵ|Ct| − 1

≥ |NGtu
(u)|+ 70ϵ(1− 23ϵ)|NGtu

(u)| − 1

≥ (1 + 35ϵ)|NGtu
(u)| − 1

≥ (1 + 35ϵ)|NGtu
(u)| − 2ϵ|NGt(u)|

where the second inequality is due to Eq. (2), the third due to 1− 23ϵ ≥ 1/2 for adequately small ϵ
and the fourth due to the assumption that |NGt(u)| ≥ 1

2ϵ . Reordering again we have that:

|NGt(u)| ≥
1 + 35ϵ

1 + 2ϵ
|NGtu

(u)| ≥ (1 + 32ϵ)|NGtu
(u)|

where 1+35ϵ
1+2ϵ ≥ 1 + 32ϵ holds for small enough epsilon. By definition we know that |NGtu

(u)| ≥
|NGtuC,t

(uC,t)| and since u, uC,t ∈ C, Property 8 gives |NGt(uC,t)| ≥ (1 − 5ϵ)|NGt(u)|. Overall
we have that:

|NGt(uC,t)| ≥ (1− 5ϵ)|NGt(u)| ≥ (1− 5ϵ)(1 + 32ϵ)|NGtu
(u)| ≥ (1 + 26ϵ)|NGtuC,t

(uC,t)|

where (1 − 5ϵ)(1 + 32ϵ) ≥ 1 + 26ϵ for small enough ϵ. This concludes our contradiction as it
implies that there was an important on iteration t in which u participated.

30

COST-FREE FAIRNESS IN ONLINE CORRELATION CLUSTERING

Lemma 16 Let Ct1 , . . . , Ctl be the “history” of cluster Ctl . Then for any i, j ∈ {1, . . . , l} we have
that if i > j then |Cti | ≥ (1− 20ϵ)|Ctj |.

Proof We consider two cases, depending on whether the intersection Cti ∩ Ctj is empty.

1. Let u ∈ Cti ∩ Ctj ̸= ∅. Then we have:

|Cti |
Property3
≥ (1− 3ϵ)|NGti

(u)|
ti>tj
≥ (1− 3ϵ)|NGtj

(u)|
Property4
≥ (1− 3ϵ)(1− 9ϵ)|Ctj | ≥ (1− 12ϵ)|Ctj |

2. If Cti ∩ Ctj = ∅ we assume towards a contradiction that |Cti | < (1 − 20ϵ)|Ctj | and w.l.o.g.
we assume that tj is the maximum t ≤ ti, for which this condition holds. In other words, for
all tj′ ∈ (tj , ti] we have that |Cti | ≥ (1−20ϵ)|Ctj′ |. We end up in a contradiction by proving
that Cti ∩ Ctj = ∅ and the fact that Cti , Ctj both belong to the same “history” sequence
implies that ∃tj′ ∈ (tj , ti] such that |Ctj | ≤ |Ctj′ |. Since Cti ∩Ctj = ∅ let tj′ be the first time
after tj such that Ctj′ ∩ Ctj = ∅. We have that:

Ctj′−1
∩ Ctj ̸= ∅ and Ctj′ ∩ Ctj = ∅ by the definition of tj′

Ctj′ ∩ Ctj′−1
̸= ∅ since they are consecutive in the “history” sequence

Let u1 ∈ Ctj ∩ Ctj′−1
and u2 ∈ Ctj′−1

∩ Ctj′ , we prove that |Ctj | ≤ |Ctj′ | by upper and
lower bounding |NGtj′−1

(u2) ∩ Ctj |. For the upper bound we have:

|NGtj′−1
(u2) ∩ Ctj |

j′>j′−1
≤ |NGtj′

(u2) ∩ Ctj |
Ctj∩Ctj=∅
≤ |NGtj′

(u2) \ Ctj′ |
Property10
≤ 3ϵ

1− 3ϵ
|Ctj′ |

For the lower bound we have:

|NGtj′−1
(u2) ∩ Ctj | ≥ |NGtj′−1

(u1) ∩ Ctj | − |NGtj′−1
(u2) \NGtj′−1

(u1)|
Property7 since both u1,u2∈Ctj′−1

≥ |NGtj′−1
(u1) ∩ Ctj | − 5ϵ|NGtj′−1

(u2)|
j′>j′−1≥j
≥ |NGtj

(u1) ∩ Ctj | − 5ϵ|NGtj′
(u2)|

Property6
≥ (1− 9ϵ)|Ctj | − 5ϵ|NGtj′

(u2)|
Property3
≥ (1− 9ϵ)|Ctj | −

5ϵ

1− 3ϵ
|Ctj′ |

Combining the upper and lower bounds of |NGtj′−1
(u2) ∩ Ctj | we get:

3ϵ

1− 3ϵ
|Ctj′ | ≥ (1− 9ϵ)|Ctj | −

5ϵ

1− 3ϵ
|Ctj′ | ⇒

8ϵ

1− 3ϵ
|Ctj′ | ≥ (1− 9ϵ)|Ctj | ⇒

|Ctj′ | ≥
(1− 3ϵ)(1− 9ϵ)

8ϵ
|Ctj |

ϵ small enough
========⇒

|Ctj′ | ≥ |Ctj |

which is a contradiction.

31

BALKANSKI CHATZITHEODOROU MAGGIORI

Lemma 17 Let C ∈ Cagrt and t1, t2 where tC ≤ t1 < t2 ≤ t be two consecutive transition events
in the history of C. Then we have the following:

1. t2 ≥ t1 + 2.

2. There exists at least one tI ∈ {t1 + 1, . . . , t2 − 1} so that there is an important event at tI .

3. For every t′ ∈ {tI , t2 − 1} we have Et′ true, i.e. no split events.

Proof We proceed to prove each statement:

1. At time t1, t2 we have transition events which implies Et1 ∧Et2−1∧Et2 is true by definition.
Therefore t2 − 1 > t1 and the statement follows.

2. Assume there is no such tI towards a contradiction. After the transition event at time t1, we
have ZCt1

= Ct1 due to the split event. By induction we show that for any t′ ∈ {t1, . . . , t2 −
1} we have Et′ false, i.e. consecutive split events. The base case t′ = t1 is implied by t1
being a transition event. For the inductive step, we know that at the end of the split event at
time t′ we have ZCt′ = Ct′ , which we denote by Z ′. Since Ct′ , Ct′+1 are consecutive clusters
in the history of C by Lemma 18 we have:

|Ct′+1 \ Ct′ | ≤
2

3
|Ct′+1|. (*)

Now we examine the size of ZCt′+1
before line 2 of Algorithm 4, which we denote Z ′

next.
Note that any node u ∈ Z ′ cannot exit the cluster between consecutive iterations unless
AGREEMENT sets it as singleton which implies Z ′

next ⊆ Z ′ = Ct′ and cannot change its
label g(u) from 0 to 1 as we have assumed no important events. Then all nodes v ∈ Ct′+1 :
g(v) = 1 must be nodes that were not in Ct′ and we have:

|Ct′+1 \ Ct′ | ≥ |Ct′+1 \ Z ′
next| = |Ct′+1| − |Z ′

next|.

Now assume Et′+1 is true. That would imply that Z ′
next ≤ 100ϵ|Ct′+1| and from the previous

inequality we have:

|Ct′+1 \ Ct′ | ≥ (1− 100ϵ)|Ct′+1|

which is a contradiction to Eq. (*) and concludes the inductive step. Overall we have shown
Et2−1 is false which is a contradiction to t2 being a transition event.

3. At time tI we showed that there is an important event, so we know that EtI is true as there
could not have been a split event. Suppose that there is some t′ ∈ {tI+1, t2−1} such that Et′

is false. That implies that there must have been a transition event at some time t′′ ∈ {tI+1, t′}
which contradicts the fact that t1, t2 are consecutive.

32

COST-FREE FAIRNESS IN ONLINE CORRELATION CLUSTERING

Lemma 18 Suppose C ∈ Cagrt and Ct′ , Ct′+1 are two consecutive clusters in the history of C at
times t′, t′ + 1 respectively. Then for adequately small ϵ we have the following:

1. |Ct′ | ≥ 1
3 |Ct′+1|,

2. |Ct′ \ Ct′+1| ≤ 18ϵ|Ct′ |, and

3. |Ct′+1 \ Ct′ | ≤ 2
3 |Ct′+1|.

Proof By definition of the history of a cluster, there exists u ∈ Ct′∩Ct′+1 ̸= ∅. Using the properties
of AGREEMENT we proceed to prove the statements in the same order:

1. Note that

|Ct′ | ≥ |Ct′ ∩NGt′ (u)|
≥ (1− 3ϵ)|NGt′ (u)|
≥ (1− 3ϵ)(|NGt′+1

(u)| − 1)

≥ (1− 3ϵ)(1− 9ϵ)|Ct′+1| − (1− 3ϵ)

≥ (1− 12ϵ)|Ct′+1| − (1− 3ϵ)

where the first inequality is due to the intersection, the second due to Property 1, the third
since the neighbors of u cannot increase by more than 1 from t′ to t′ + 1, the fourth due
to Property 6 and the fifth by omitting the positive square terms. Note that |Ct′+1| ≥ 2 by
definition of a cluster which implies 1− 3ϵ ≤ 1−3ϵ

2 |Ct′+1| and we have:

|Ct′ | ≥ (1− 12ϵ)|Ct′+1| −
1− 3ϵ

2
|Ct′+1| =

1− 21ϵ

2
|Ct′+1| ≥

1

3
|Ct′+1|

where the last inequality holds for ϵ ≤ 1
63 .

2. Note that

|Ct′ \ Ct′+1| = |(Ct′ \ Ct′+1) \NGt′+1
(u)|+ |NGt′+1

(u) ∩ (Ct′ \ Ct′+1|
≤ |(Ct′ \ Ct′+1) \NGt′ (u)|+ |(NGt′+1

(u) ∩ Ct′) \ Ct′+1|
≤ |Ct′ \NGt′ (u)|+ |NGt′+1

(u) ∩ Ct′ \ Ct′+1|

where the in the first line we partition the set using NGt′+1
(u), in the first inequality we use

that NGt′ (u) ⊆ NGt′+1
(u) and reorder the second term, in the second inequality we use that

NGt′+1
(u) ∩ Ct′ ⊆ NGt′+1

(u). Now using Property 5 we can upper bound the first term:

|Ct′ \NGt′ (u)| ≤ 9ϵ|Ct′ |.

For the second term, we proceed as follows:

|NGt′+1
(u) ∩ Ct′ \ Ct′+1| ≤ |NGt′+1

(u) \ Ct′+1|
≤ 3ϵ|NGt′+1

(u)|
≤ 3ϵ(|NGt′ (u)|+ 1)

≤ 3ϵ

1− 3ϵ
|Ct′ |+ 3ϵ

≤ 9ϵ|Ct′ |

33

BALKANSKI CHATZITHEODOROU MAGGIORI

where the second inequality is due to Property 2, the third inequality is due to NGt′ (u) ≤
NGt′+1

(u)+1 since u can acquire at most 1 new neighbor between consecutive times (exactly
the new node arriving in the input), the fourth due to Property 10 and the fifth due to 1−3ϵ ≥
0.5 as ϵ is adequately small. Then combining the two bounds we have the statement.

3. The proof is similar to the previous case so we state it briefly:

|Ct′+1 \ Ct′ | ≤ |(Ct′+1 \ Ct′) \NGt′+1
(u)|+ |NGt′+1

(u) ∩ (Ct′+1 \ Ct′ |
≤ |Ct′+1 \NGt′+1

(u)|+ |NGt′+1
(u) \ Ct′ |

≤ 9ϵ|Ct′+1|+ 1 + |NGt′ (u) \ Ct′ |
≤ 9ϵ|Ct′+1|+ 1 + 3ϵ|NGt′ (u)|
≤ 9ϵ|Ct′+1|+ 1 + 3ϵ|NGt′+1

(u)|

≤ 9ϵ|Ct′+1|+ 1 +
3ϵ

1− 3ϵ
|NGt′+1

(u)|

≤ 9ϵ|Ct′+1|+ 1 + 6ϵ|NGt′+1
(u)|

≤ (15ϵ+ 1/2)|Ct′+1|

which gives the statement as for small enough ϵ 15ϵ+1/2 ≤ 2/3 and the previous inequality
is due to |Ct′+1| ≥ 2 by definition of the cluster.

Appendix E. Clusters with Small Degrees

In this section we lift the assumption that all nodes have degree at least 1
2ϵ . We start by defining the

subset of clusters of Cagrt whose nodes have low degrees:

Cst = {C ∈ Cagrt : |NGt(u)| <
1

ϵ
, ∀u ∈ C}.

Notice that for any cluster C ∈ Cagrt \ Cst , there exists a node u ∈ C such that |NGt(u)| ≥ 1
ϵ ,

therefore by Property 8, every other node v ∈ C has |NGt(v)| ≥ 1−5ϵ
ϵ ≥ 1

2ϵ and our proofs so far
hold. We complement our analysis so far by showing that the clusters of Cst do not violate any of
our results.

Lemma 19 The recourse of any node u is O
(
logn
ϵ

)
.

Proof Fix iteration T and define the first iteration when u was in a cluster of CagrT \ CsT :

tf = min{t′ ≤ T : u ∈
⋃

C∈Cagr

t′ \Cs
t′

C}.

We split the analysis into the following cases:

1. For t ∈ [tf , T] we have large degrees so our previous analysis suffices.

34

COST-FREE FAIRNESS IN ONLINE CORRELATION CLUSTERING

2. For t ∈ [1, tf − 1], we show that u can only incur O
(
1
ϵ

)
recourse.

First, for t ∈ [tf , T], node u has |NGt(u)| ≥ 1−5ϵ
ϵ because it belongs in cluster C ∈ Cagrt \ Cst .

Therefore, for any such iteration t, node u belongs in clusters C ∈ Cagrt such that any v ∈ C must

have |NGt(v)| ≥
(1−5ϵ)2

ϵ ≥ 1−10ϵ
ϵ ≥ 1

2ϵ by Property 8, so its recourse is O
(
logn
ϵ

)
by Theorem 1.

Second, for iterations t ∈ [1, tf − 1], u can only incur recourse due to one of the three subroutines
of our algorithm. We claim the following:

1. AGREEMENT can only contribute at most 2 in the recourse of u.

2. MAKECONSISTENT cannot contribute to the recourse of u.

3. MAKEFAIR can only contribute at most O
(
1
ϵ

)
to the recourse of u.

For the first point, note that due to Lemma 21 u is either singleton or belongs to a clique in Cst .
Then, any recourse incurred due to AGREEMENT is because u transitioned from one to the other.
We argue that it can only transition at most twice, once from being singleton to being added to a
clique C and a second one from a clique C to singleton. We now prove that if a node is in a clique
C ∈ Cst−1 at time t−1 and is clustered as a singleton at time t then it will be clustered as a singleton
by AGREEMENT for all times in [t, tf − 1]. Let w be the node that arrives at time t. If NGt(w) = C
or NGt(w) ∩ C = ∅ then u will be clustered in a non-singleton cluster at time t. Thus, if u is
a singleton at time t, the only remaining case is that NGt(w) ̸= C and NGt(w) ∩ C ̸= ∅. This
implies that NGt(w) ̸= NGt(u), therefore, u cannot be part of any isolated clique C ′ ∈ Cst′ for all
t′ ∈ [t, tf − 1] and it is a singleton {u} ∈ Cst′ . Overall these cases imply that the recourse of node u
due to AGREEMENT is at most 2.

For the second point, note that due to Lemma 22, if C ∈ Cst then C ∈ C̃t, so MAKECONSISTENT

contributes 0 to the recourse of u.
For the third point, assume that on iteration t, u belongs in a non-singleton clique C ∈ Cst .

Obviously, if u is a singleton, MAKEFAIR will not affect it. Otherwise, if C ∈ Cst ∩ Cst+1 ∩ Ct, then
C ∈ Ct+1 as well, because on iteration t+1, Cprev = C and the second if-statement of Algorithm 3
has its condition true. Therefore, if C ∈ Cst ∩ Ct \ Ct+1 then we can conclude that C /∈ Cst+1. This
can either happen because a new node w appeared in the input on iteration t + 1, due to which C
is no longer a clique, or because w was added to C and MAKEFAIR split the cluster. Notice that in
this second case, the degree of u increased by 1 and so did its recourse. This can only happen at
most 1

2ϵ times, until t ≥ tf .

Lemma 20 For a constant ϵ small enough we have cost(C̃t) ≤ Θ
(
1
ϵ3

)
· cost(Ot).

Proof We consider all edges that might have contributed to cost(C̃t) and proceed to complete the
analysis even for the case of nodes with low degree:

1. All edges (u, v) such that u, v ∈
⋃

C∈Cs
t
C can be charged to cost(Cagrt). First, notice that

either {u}, {v} ∈ S(Cst), or u, v ∈ C where C ∈ Cst is a clique by Lemma 21. In the first
case, (u, v) is paid by Cagrt . In the second case, we have that u, v ∈ C and by Lemma 22,
MAKECONSISTENT does not split C, so (u, v) contributes cost 0 to cost(C̃t).

35

BALKANSKI CHATZITHEODOROU MAGGIORI

2. All edges (u, v) such that u ∈
⋃

C∈Cagr
t \Cs

t
C, v ∈

⋃
C∈Cs

t
C, are paid by AGREEMENT

because v must be a singleton in Cagrt by Lemma 21 and therefore also a singleton in C̃t.

3. All other edges (u, v) can be charged to cost(Ot) due to Lemma 5, since |NGt(u)|, |NGt(v)| ≥
1
2ϵ .

Lemma 21 Let C ∈ Cst with |C| ≥ 2, then C = NGt(u) for all u ∈ C, i.e. C is an isolated clique
in Gt.

Proof Let u, v be two distinct nodes in C that are in agreement. By the agreement definition we
have:

|NGt(u)△NGt(v)| < ϵmax{|NGt(u)|, |NGt(v)|} < ϵ · 1
ϵ
= 1

where the second inequality holds due to the definition of Cst . The latter implies that all nodes in C
which are in agreement must have the same neighborhood in Gt. We continue arguing that all nodes
in C have the same neighborhood. Note that in any non-singleton cluster C there must be a node
u ∈ C which is heavy. Since, |NGt(u)| < 1

ϵ for u to be heavy it must be that it is in ϵ-agreement
with at least a (1− ϵ) fraction of its neighbors, i.e.,

(1− ϵ)|NGt(u)| = |NGt(u)| − ϵ|NGt(u)| > |NGt(u)| − 1

due to |NGt(u)| < 1
ϵ , which implies that u is in ϵ-agreement with all of its neighbors. Thus,

∀v ∈ NGt(u) we have NGt(u) = NGt(v). i.e., NGt(u) forms an isolated clique which is equal to
C.

Lemma 22 Let C ∈ Cst be a cluster such that |C| ≥ 2, then C ∈ C̃t.

Proof We define the first and last time that C ∈ Cst as follows:

tf = min{t′ ≤ t : C ∈ Cst′}, tl = max{t′ ≥ t : C ∈ Cst′}.

We proceed to show that for any |C| ≥ 2 and for all t′ ∈ [tf , tl] we have that (i) C ∈ Cst′ and (ii)
C ∈ C̃t′ .

For part (i), we show that for all t′ ∈ [tf , tl] we have that C ∈ Cst′ , i.e. AGREEMENT does not
split C between the first and the last iteration when is created. Note that C must be a clique in any
iteration t′ such that C ∈ Cst′ by Lemma 21 and we proceed by contradiction. Assume that there
exists t′ ∈ [tf , tl] such that C /∈ Cst′ and define the first such iteration ts = min{t′ ∈ [tf , tl] : C /∈
Cst′}. Then the node u that appeared in the input at ts, must have had NGts

(u) ̸= C,NGts
(u)∩C ̸=

∅, otherwise either NGts
(u) ∩ C = ∅ in which case C ∈ Csts and the contradiction is by definition

of ts, or NGts
(u) = C in which case C ∪ {u} ∈ Cagrt so ts > tl as C /∈ Cst′′ for any t′′ ≥ ts since

C is no longer a clique. But since NGts
(u) ⊂ C, there exist v, w ∈ C such that v ∈ NGts

(u) and
w /∈ NGts

(v). Then, once again we must have that ts > tl since C is not a clique anymore, which
concludes the contradiction.

36

COST-FREE FAIRNESS IN ONLINE CORRELATION CLUSTERING

For part (ii), we show that gw = 1 for all w ∈ C, at the end of any iteration t′ ∈ [tf , tl], which
suffices, by definition of the labels g. We proceed by induction on |C| = k ≥ 2. For the base
case, k = 2, C = {u, v} ∈ Cst′ which implies NGt′ (u) = NGt′ (v) = C and wlog v arrived after
u. Let tv be the iteration when v arrived. At the start of tv, we have that g(u) = 0 since it had
no edges in iteration tv − 1, therefore it was singleton. On iteration tv, |NGtv

(u)| = 2 = 2 · 1 =
2 · |NGtv−1(u)| > (1 + 20ϵ)|NGtv−1(u)|, therefore we have an important event for C and g(u) is
set to 1. Overall tf = tv and for all t′ ∈ [tf , tv], at the start of iteration t′, g(u) = g(v) = 1, so none
of the two if statements of MAKECONSISTENT are true and C is not split. For the inductive step,
assume we have the statement for k ≤ k0 and consider k = k0 + 1. As before, let v ∈ C be the
node that arrives last in the input, among the nodes of C, on iteration tv. Since C is a clique, then
C \{v}must also be a clique of size k0. Then by inductive hypothesis g(u) = 1 for all u ∈ C \{v}
and v ∈ C ∈ Cst therefore at the start of MAKECONSISTENT on tv, g(v) = 1. Once again, since all
nodes u ∈ C have g(u) = 1, the cluster is not split.

37

	Introduction
	Problem Statement and Preliminaries
	The Algorithm
	The Agreement Algorithm
	The Algorithm Skeleton
	The Subroutines

	Analysis of the Recourse
	Analysis of the Competitive Ratio
	Structural Properties of the Agreement Decomposition
	Additional Lemmas for Bounding the Recourse
	Cluster id Assignment
	Deferred Proofs

	Bound the Competitive Ratio
	Dynamic Analysis of the Clustering Sequence Cagr1, Cagr2, …
	Clusters with Small Degrees

