A Preliminaries on the KKT conditions

Below we review the definition of the KKT conditions for non-smooth optimization problems (cf.
Lyu and Li| [2019], Dutta et al.|[2013]]).

Let f : R? — R be a locally Lipschitz function. The Clarke subdifferential [Clarke et al., 2008] at
x € R9 is the convex set

0° f(x) := conv { lim Vf(x;) ’ lim x; = x, f is differentiable at xi} .
1—> 00 1—> 00

If f is continuously differentiable at x then 9° f(x) = {V f(x)}. For the Clarke subdifferential the
chain rule holds as an inclusion rather than an equation. That is, for locally Lipschitz functions
21,...,2p : R4 5 Rand f : R” — R, we have

9°(f oz)(x) C conv {Z ah; € 0°f(z1(x),...,2n(x)), h; € 6021-()()} )

i=1

Consider the following optimization problem
min f(x) st Vn €[N] gn(x) <0, )

where f, g1,...,gn : RY — R are locally Lipschitz functions. We say that x € R? is a feasible point
of Problem (5) if x satisfies g,,(x) < 0 for all n € [N]. We say that a feasible point x is a KKT point
if there exists A1,..., Ay > 0 such that

L. 0 €0°f(x) + 3 ,c v An0°gn(x);
2. For all n € [N] we have A, g, (x) = 0.

B Proof of Lemma[3.1]

Let x,x’ ~ U(S?!) be i.i.d. random variables. Since x and x’ are independent and uniformly
distributed on the sphere, then the distribution of x " x’ equals to the distribution of (x, (1,0, ...,0))
(i.e., we can assume w.l.o.g. that x’ = (1,0,...,0) "), which equals to the marginal distribution of
the first component of x. Let 2z be the first component of x. By standard results (cf. [Fang|[2018])), the

distribution of 2 is Beta(%, 4=1) 'namely, a Beta distribution with parameters %, %. Thus, the

2
density of 22 is
1 1 a-3
f2W)= 5y 2(1-y) 7,
B (3. %)

where B(a, ) = Fl“(?a)i(ﬁﬁ)) is the Beta function, and y € (0, 1). Performing a variable change, we

obtain the density of |z|, which equals to the density of |x " x

famx| (W) = fis)(y) = fo2(y®) -2y =

'

1 -1 2453 2 2453
ey (=) T 2y = s (L-y) T
B (3. %) B (3. %) ©

N

where y € (0, 1). Note that

B (1 d— 1) _ TN L TENGE -1 _ TG 20(G) _2vr 2
2" 2 INC) I N ) d-17 d d ~—d
Combining the above with @, we obtain
d—3
f|xTx/|(y) < d(l - y2)T :
d—3
2

Therefore, for every % < y < 1 we have fixrx((y) < d (%) . Hence, we conclude that

d—3

Pr[|(x,x/)| > 1] <d(2) * - 1. By the union bound, the probability that there are i 7 j such that

|(x;,%;)| > 1 is at most
N N
m2.d- (4) < d2k+1 (4) =o04(1) .

13



Moreover, for every % < y < 1 we have (for d > 6)

_ _ log2 _
Fxrxi(y) < d(1—4?)F < dexp (—zf A 3) < dexp (— Ogd<d) - “)

2
< dexp <1nd(d) . Z) g g/

Hence, Pr [\ (x,x")]| > %} < d-d~'m(d/4 .1, By the union bound, the probability that there are
i # j such that |(x;,x;)| > % is at most

m2 - d-d- A/ < g2hr1-Ind)/4 0a(1) .

C Additional details on the proof sketch for Theorem {4.1|

C.1 PartI: The examples in the dataset attain margin 1

We show that all examples in the dataset attain margin 1. The main idea can be described informally
as follows (see Lemma for the details). Assume that there is 4 € I such that y;Ng(x;) > 1.
Hence, \; = 0. Suppose w.l.o.g. that i € I*. Using (3) and (4) we prove that in order to achieve
No(x;) > 1 when \; = 0, there must be some r € I such that

3
} : r 2 : /
)\TJT,j = I{lealx )\lo-l,j > ﬁ .

jeJt jeJt

Recall that by (3)), for j € J* the term )‘TU’T, ;= )\ijoa ; is the coefficient of y,x, = %, in the
expression for w;. Hence, ), ;+ Ar0;. ; corresponds to the total sum of coefficients of x,. over all
neurons in J*. Thus, our lower bound on > jeg+ )\TJ;) ; implies intuitively that the total sum of
coefficients of x,. is large. We use this fact in order to show that x,. attains margin strictly larger than
1, which implies A, = 0 in contradiction to our lower bound on jeg+ /\,«a;, -

C.2 Part II: The contribution of the neurons .J* to the output does not increase

Fori € IT and x; = x;, —z = x; — N> cr yiXi we show that for every j € Jt we have
w X} +b; < w/x; +b;. Using (3) we have

T _ LT _ / 2T T
w; Zylxl = Z)‘quvﬁaquq Zylxl = Z/\qaqd YgXq Xg + Z YqUiXg Xi

lel qel lel qel lel, l#q
> Aoy ld+ Do (p) | 2D Aoy (d—mp) .
qel €1, l#q qel
Therefore,

W;—X; +bj = W;Xi + 05 — WWI Z yx < W;Xi +0b;—n Z Aoy i (d—mp) .
lel qel

By our assumption on m it follows easily that d —mp > 0, and hence we conclude that w;r X, +b; <
W;rxi +bj.

C.3 Part III: The contribution of the neurons J~ to the output decreases

We show that fori € It andx, =x; —z=x; — 7 > ic1 YiX1, when moving from x; to x; the total

contribution of the neurons in J~ to the output decreases by at least 2. Since for every j € J~ we
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have v; = —1 then we need to show that the sum of the outputs of the neurons .J~ increases by at
least 2.

By a similar calculation to the one given in Subsection we obtain that for every j € J~ and
n’ > 0 we have

WjT (Xi -7 Z ylxl> +b; > ijxq; +b;+1 Z /\qU;J (d —mp) . @)

lel qel

Recall that d — mp > 0. Hence, for every j € J~ the input to neuron j increases by at least
n qu )\qa(’m (d — mp) when moving from x; to x;. However, if ijxi + b; < 0, namely, at x;
the input to neuron j is negative, then increasing the input may not affect the output of the network.
Indeed, by moving from x; to x; we might increase the input to neuron j but if it is still negative then

the output of neuron j remains 0.

In order to circumvent this issue we analyze the perturbation z = 7}, y1X; in two stages as
follows. We define 7 = 1y + 72 for some 7,72 to be chosen later. Let X; = X1 — 01 ) ;07 VX1
We prove that for every j € J~ we have ijxi +b; > —(p+1) qul Aq0yq. j» namely, the input
to neuron j might be negative but it can be lower bounded. Hence, (/) implies that by choosing

n = d”_‘tip we have ij)"(i +b; > 0forall j € J~. Thatis, in the first stage we move from x; to X;

and increase the inputs to all neurons in J~ such that at X; they are least 0. In the second stage we
move from X; to x; (using the perturbation 72 » 7, ; ¥:%;). Note that when we move from X; to x,
every increase in the inputs to the neurons in J~ results in a decrease in the output of the network.

Since we need the output of the network to decrease by at least 2, and since for every j € J~ we
have v; = —1, then when moving from X; to x} we need the sum of the inputs to the neurons J~ to

increase by at least 2. Similarly to (7)), we obtain that when moving from X; to x; we increase the
sum of the inputs to the neurons J~ by at least

M YD Aoy (d—mp) . (®)

jeJ— qel

Then, we prove a lower bound for >, ;- > 7 Aqoy ;. We show that such a lower bound can be
achieved, since if } . ;- >° c; Agoy ; is too small then it is impossible to have margin 1 for all

examples in I~ . This lower bound allows us to choose 72 such that the expression in (8] is at least 2.
Finally, it remains to analyze ||z|| = (91 + n2) | >, vixi|| and show that it satisfies the required
upper bound.

D Proof of Theorem 4.1]

We start with some required definitions. Some of the definitions are also glven in Section [5] and
we repeat them here for convenience. We denote Np(x) =3[ vj0 o(w; x+bj). Thus, N is a

network of width k, where the weights in the first layer are w1, . . . , Wy, the bias terms are by, . . ., bg,
and the weights in the second layer are vy, ..., v;. We denote J := [k], J* := {j € J : v; > 0},
and J~ := {j € J : v; < 0}. Note that since the dataset contains both examples with label 1 and
examples With label —1 then J *and J~ are non- empty We also denote p := max;+; |(X;, X;)|.
Since m < 3 ( +1)’ weletd < 1 be such that m = ¢/ d+1 . Since @ satisfies the KKT conditions of
Problem (2)), then there are /\17 ...y A such that for every j € J we have

Z/\ va yzNO X’L Z)\ Yiv; U; 7Xza (9)

el el

where o} ; is a subgradlent of o at WJ x; + b, i.e., 1fw] X; +b; #0theno; ;, = bign(wj x; +b;),

and otherwise o7 ; is some value in [0, 1]. Also we have A; > 0 for all 4, and A\; = 0 if y;Ng(x;) # 1.

Likewise, we have
bj = ANV, (iNe(x:)) = Y Nivivjos ;- (10)
el el

Lemma D.1. For alli € I we have y;Ng(x;) = 1.
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Proof. Assume that there is i € I such that y;Ng(x;) > 1. Hence, A; = 0. If i € I, then we have
1 <yNo(x;)=1- Zvja(w;xi +0b;) < Z vjo(w;rxi +0b;) < Z v ’w;rxi +b;] -

jeJ jegt jeJt
By (9) and (TI0) the above equals

Z vj Z)\lylijLleTXi JFZ)‘llele/,j < Z vj Z |)\lylvjal’7j(xlTxi +1)]

jeg+ lier lel jeJt len\{i}

< > v > Muwslor;(p+1)

jeJt lel\{i}

Z Z viNo] ;(p+1)

jeJt lel\{i}

=(p+1) Z Z UJQ./\ZUEJ

lel\{i} jeJ+

2 /
<(p+1)- | - max Z vihop ;|
jeJt

where the first inequality uses \; = 0. Therefore, we have

1
at = § 2\ o). S
= max VZA10] > .
et J J
e\ m(p+1)
From similar arguments, if + € I, then we have
a” = max E viNo, s | > o
el \ & A m(p+1)°
jes-
Thus, we must have max{a™,a~} > m. Assume w.l.o.g. that at > a~ (the proof for the

+ — . . . e + o 2 /
case " < o is similar). Let o := o™ and r := argmax;; (§ jeg+ Uj )‘laz,j) Thus, for every
2 / 2 / 1
l € Iwehavea > > jeg+ U )\lalj, a > jes-Uj )\lalj, and we have o > oD Moreover,

we have A\, > 0, since otherwise o = 0 in contradiction to o > > 0. Hence, y,Ng(x,) = 1.

By (@) and @) we have

W Xy 4+ b; = Z/\7ymjc7”><z X, + Z)Vylv] o
el el

Z )\iyivjag,j (XZTXT + 1)

el

(p+1)

Z )\iyivjogvj (x/x.+1)| + )\Tyrvjaiyj (x, %, +1). (11)
i€l, i#r
We consider two cases:

Case 1: Assume that 7 € I~. Let j € J". Note that by the definition of o7, ;, if o7 ; # 0 then
w/ X, +b; > 0. Hence, if o, ; # 0 then by (TT) we have

-
OSWjXr+bj

Z )\iyivjagvj (x/x.+1)| + )\ry,«vjafnyj (x,) %, +1)
iel, ir

IA

S Aol 1) | — Aol (d+ 1)
i€l, i#r

16



Thus

Arvjoy i (d+1) Z Aivjo; (p+1) .
i€l i#r
Since the above holds for all j € JT then

Z 2/\UTJ—ZUJ Z AU] z]p+1)

jeJt+ jeJt i€, itr

+1
:Zi_’_l' Z va)‘iaz{,j

i€l, iF#r jeJ+t

p+1 2

< —— .m-max Ev)\a
d+1 i€l Pyt

p+1 d(d+1) 5
a1 e | 2 vihe

in contradiction to the choice of r.
Case 2: Assume that r € IT. We have
1=yNo(x,)=1"+ Zvja(wgrxT +b;)
jeJ
> Z v - (w;rxr +0b;)+ Z vja(ijxr +b;). (12)
jeJt jeEJ—
Note that by we have

Zvj~(w;rxr+bj): Z Z iy v vio; (x; Ix, +1) —&-)\Tyrj Tj(x xr+ 1)

jeJt jedt | \i€l, i#r

ZZ Z Aivioli(p+1) | + Awio) (d+1)
jedJ+ L i€l i#r
=[-+1 > D kel |+ Y Aol (d+1)
i€l, i#r jeJ+ jeJt
> (p+ Dma + (d+ Da. (13)

Moreover, using (TT)) again we have

Z vjo (WJ-TX,. + bj) = Z vjo Z )\iy,'vjaaj(xjx,« +1) | + \yrvjo (x x, + 1)

jeEJ~ jeJ— i€1, iFr

> Z vjo Z /\iyivja;j(xjx,. +1)
jeJ- iel, i#r
>SS Advilel 4+ 1)
jeJ- iel, i#r
==+ | > D Ao,
i€l, iF#r jeJ—
> —(p+ 1)ma. (14)
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Combining (12), (T3) and (14), we obtain
1:er9(Xr)

> —(p+1ma+ (d+1)a—(p+ 1)ma

=a(d+1-2(p+1)m)

d(d+1)

= 1-2 1) ———=

o (41201 D)

a(d+1)(1 —2d)

1
> —— . (d+1)(1-2¢
T -2
p+1 /
=— . (d+1)(1-2¢
J@r ey I
9.
_ 1-—2c >1
cd
Thus, we reach a contradiction. O
Lemma D.2. We have
2
> D v
i =
eyt (e +1)(d+1)

and

2. QMJ— (cc +1)(d+1)

i€l jeJ—

Proof. We prove here the first claim. The proof of the second claim is similar. For every i € I we

have
1 < Np(x;) < Z vja(ijxi + b)) .
jeg+

By plugging-in (9) and (I0), the above equals to

Z vjo (Z )\lylvjallijl—rxi + Z )\lylvja{’j>

jeT+ lel lel
= Z vjo Z Ayivso] () x; + 1) | + Nysvjol (%] x; + 1)
JjeJt lel, I#i
< Z vjo Z o ()\lylvjal’,j(xlTxi +1)) | + o (Niyivjoi, (x x; + 1))
je+ lET, I
= Z vj Z o ()\gylvjal’7j(xlTxi +1)) | + \ivjo id+1)
jeEJ T lel, 1#i
<N > wjor o+ 1) | + Nivjol (d+ 1)
jeJ+ leT, I#i
N S ST RIS S SR
lel, l#ijeJ+ jeJt
Lety = we either have
(p+1) > D Avio;>1-7, (15)

lel, l#ijeJ+
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or
d+1) > Avio); > 7. (16)

jeJ+

If there exists ¢ € I such that (TI3) holds, then we have

cc
DY Y el ) Y Y ey 21—

lel jeJ+ lel, l#ijed+t

and hence

Z Z )\11}20_/ > cc - m C o mc
iYLy = / - C - ’
o (cd+1)(p+1) d+1 c+1 (e +1)(d+1)

as required. Otherwise, namely, if for every ¢ € I (T5) does not hold, then for every i € I (16)
holds, and therefore

Aol > Aol > I > me .
ZZ ’UJU%J—Z Z v30-h7—| ‘ d+1—(ccl+1)(d+1)

i€l jeJ+ ielt jeJt

Lemma D.3. Leti € I and j € J. Then,

wixi+b; > —(p+1)Y_ |vj|ho] ;.
lel

Proof. If w;rxi -+ b; > 0 then the claim follows immediately. Otherwise, 027 = 0. Hence, by (]E)
and (I0) we have

T / T /
w; x; +b; = E Aoy X X + E Ayiv;oy
lel lel

D Awivsor (i + 1)
I€T, i

>—(p+1) D Mllor,
lel, 1#£i

=—(+1)>_ Mlvjlo; .

lel

O
Lemma D.4. Letu =Y, , yix;. Forevery j € J* we have w]u> 3", vj\io] ;(d — mp). For

every j € J~ we have w}ru <3

iel vj)\iag,j(d —mp).

Proof. For j € J*, using (9) we have

T rLT
W E szzZE AiYivjo; ;X E Yixi

ler iel lel
iel lel, 1#i
>3 nvgol; [d+ S0 (-p)
iel lel, I#i
> Z Aivjog ; (d—mp) .
iel
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Likewise, for j € J~ we have

T / 2T T
W E Z/leZE Aiviog i | yix; xi + E YiYiX; Xi

lel icl lel, 1#i
<D Awery (d+ Yo (-p)
il lel, 1#i
< Z Aivjoy ; (d —mp) .
icl
O
Lemma D.5. We have d — mp > 0.
Proof. By our assumption on m we have
"(d+1 1 2dp 2d
demp—q- e, 1 2dp 2,
p+1 3 p 3
O

Lemma D.6. Letz = 0, ; yix; for some n > dp";;p Leti € I. Forall j € J~ we have

w]—r(xl—z)—kb >0, andforallj€J+wehavew (x; +2z) +b; >0.

Proof. Letj € J~. By Lemmawe have ijxi +b; > (p+1) > v5M0 ;. By Lemma
we have ijTz > =1 ey vjNiop ;(d —mp). By combining these results we obtain

W]-T(Xi —z)+b; = W]-Txi +b; — Wsz
> (p+1) Zvj)‘laf,j - nzv.j)‘lgll,j(d —mp)
lel lel
=> " wihof; (p+1—n(d—mp)) .
ler
Note that by Lemmawe have d — mp > 0. Hence, for n > ”tip we have W;'—( z)+b; > 0.

Letj € J*. By Lemmawe have wj xi+b; > —(p+1) > vjN07 ;- By Lemmawe
have w;rz > 1Y er viNioy ;(d —mp). By combining these results we obtain

ij(xi +z)+b; = ijx,- +0b; + W;FZ
—(p+1)Y vt +n)_vihog;(d—mp)

lel lel
= vl (= +1) +u(d—mp)) .
lel
Hence, for n > 2t wehavew (xi+2)+b; >0. O

_ 2(ec’+1)(d+1)
mp mc(d—mp)

denote z = (771 +12) D e YiXi-
Lemma D.7. Leti € I't, and let X = x; — z. Then, Np(x}) < —1.

Let m =

and 7o = . Note that by Lemmaboth 71 and 12 are positive. We

Proof. By Lemma|D.4} for every j € J* we have

Tx by =W kit b —w] () Y wix S WX by — (i +n2) Y vho] j(d—mp) .
lel lel
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By Lemma D.5|the above is at most w. x; + b..
y 7 J

Consider now j € J~. Let X; = X; — 11 ) _;c; ¥iX1- By Lemma we have ijfci +b; > 0. Also,
by Lemma|[D.4] we have

W;rfil —+ bj = WIX, + bj — W;r?’]l Zylxl Z W;Xi —+ bj — M Z ’Uj)\lO'l/,j(d — mp) y
lerl el
and by Lemmathe above is at least ijxi + b;. Hence,
Wij; +b; = Wijq +b; — Wang Zylxl > max {0, Wiji + bj} —1ng - ij Z YIX] .
lerl el
By Lemma|[D.4] the above is at least

max {0, w; x; + b; } — 2 Z viNay ;(d —mp) .
lel

Overall, we have

No(x}) = > wjo(w]xj+b;)+ > vjo(w] xj+b))

jeJt JEJ~
< Z vjo(w;rxi +0b;)+ Z vj (max {O,W;—Xi +b;} —ne Zvj/\lal”j(d - mp)>
jeJt jeJ~ lerl
= Zvja(w;rxi +b;) — Z V12 Zvj)\laf’j(d — mp)
jeJ jeEJ— lel
= Np(x;) — n2(d — mp) Z ZU?)\N;’J .
jeJ— lel
By Lemmas [D.T] [D.2] and [D.3] the above is at most
me
1= na(d—mp) - —— ¢
neld = mp) - D@ 1)
For g = % we conclude that N (x}) is at most —1. O

Lemma D.8. Leti € I~, and let X = x; + z. Then, Np(x}) > 1.

Proof. The proof follows similar arguments to the proof of Lemma|[D.7] We give it here for com-
pleteness.

By Lemma for every 7 € J~ we have
W;—Xg +b; = W;rxi +b; +W;r(771 +12) Zszz < W;Xi +bj + (m +m2) ZUjAlUf,j(d—mp) .
lel lel

By Lemma D.5|the above is at most w. x; + b..
y 7 J

Considernow j € J*. Let X; = x; +m > icr YiXi- By Lemmawe have w;rfci +b; > 0. Also,
by Lemma [D.4] we have

ijfci +b; = Wiji +0b; + ijm Zylxl > ijxi +b;+m Z vj)\lcrf,j(d —mp) ,
lel el
and by Lemmathe above is at least W;—Xi + b;. Hence,
W;rx; +b; = ijfci +b; + Wang Z Y1X; > max {O, W]-Txi + bj} + N9 - WjT Z YiX] -
lel lel
By Lemma|[D.4] the above is at least

max {0, W, x; + b; } + 2 Z viNay ;(d —mp) .
lel
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Overall, we have

No(x}) = > wjo(w] x| +b;)+ > vjo(w] x| +b))

jeJt JEJ~
> Z v (max {0,w]xi + b} +n2 Zvj)\lol”j(d - mp)) + Z vjo(w] x; + bj)
jeJt lel jeJ—
= Zuja(w;xi +b;) + Z V12 Zvj/\laf’j(d —mp)
jeJ jeJt lel
= No(x;) + n2(d — mp) Z va)\lol”j :
jeJt lel
By Lemmas [D.1] [D.2]and [D.3] the above is at least
1+ mo(d ) mc
_ —mp) s —
12 Pl v 1)+ 1)
For g = % we conclude that MVg(x}) is at least 1. O

C

Lemma D.9. We have ||z| = O ( Qdm).

Proof. We have

2
Iz]* = (m +n2)*

2
= +m)” D> vy (xi, xu)

lel l’el

) (i)

S

lel
p+1  2(ed +1)(d+1)

d— mp me(d — mp)
p+1 2(ec +1)(d+1)
d—m(p+1) me(d—m(p+1))

<
<
< p+1 n 2(ed +1)(d+1)

) (md +m?(p+ 1))

> (md +md (d+ 1))

d—cd(d+1) me(d—<d(d+1))
2
1 d+1
B 2 TSI )
—3-(d+1) - —g (d+1)) 3
p+1  2(cd +1)( 6c' 12(cd + 1)\
&l d+1 m T T e (2md)
2
(18cc’ + 12)v2md (6+12)v2d 12
B me ’
where in the last inequality we used both ¢/ < % and ¢ < 1. Hence, ||z| = O < CQdm>. O

The theorem now follows immediately form Lemmas[D.7} [D.8|and [D.9

E Proof of Corollary 4.1]

The expressions for w; and b, given in (9) and (10 . depend only on the examples (x;, y;) where
yiNg(x) = 1. Indeed, if y;Ng(x) # 1 then \; = 0. Thus, all examples in the dataset that do not
attain margin 1 in Mg do not affect the expressions that describe the network Ng. All arguments
in the proof of Theorem 4. 1| -requlre only the examples (x;,y;) that appear in (9) and . Asa
consequence, all parts in the proof of Theorem [4.T|hold also here w.r.t. the set /. That is, the fact that
the dataset includes additional points that do not appear (9) and (I0) does not affect the proof. The
only part of the proof of Theorem @.I] that is not required here is Lemma[D.T} since we assume that
all points in I satisfy y;Ng(x;) = 1.
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