
A Preliminaries on the KKT conditions

Below we review the definition of the KKT conditions for non-smooth optimization problems (cf.
Lyu and Li [2019], Dutta et al. [2013]).

Let f : Rd → R be a locally Lipschitz function. The Clarke subdifferential [Clarke et al., 2008] at
x ∈ Rd is the convex set

∂◦f(x) := conv
{

lim
i→∞

∇f(xi)
∣∣∣ lim
i→∞

xi = x, f is differentiable at xi
}
.

If f is continuously differentiable at x then ∂◦f(x) = {∇f(x)}. For the Clarke subdifferential the
chain rule holds as an inclusion rather than an equation. That is, for locally Lipschitz functions
z1, . . . , zn : Rd → R and f : Rn → R, we have

∂◦(f ◦ z)(x) ⊆ conv

{
n∑
i=1

αihi : α ∈ ∂◦f(z1(x), . . . , zn(x)),hi ∈ ∂◦zi(x)

}
.

Consider the following optimization problem

min f(x) s.t. ∀n ∈ [N ] gn(x) ≤ 0 , (5)

where f, g1, . . . , gn : Rd → R are locally Lipschitz functions. We say that x ∈ Rd is a feasible point
of Problem (5) if x satisfies gn(x) ≤ 0 for all n ∈ [N ]. We say that a feasible point x is a KKT point
if there exists λ1, . . . , λN ≥ 0 such that

1. 0 ∈ ∂◦f(x) +
∑
n∈[N ] λn∂

◦gn(x);

2. For all n ∈ [N ] we have λngn(x) = 0.

B Proof of Lemma 3.1

Let x,x′ ∼ U(Sd−1) be i.i.d. random variables. Since x and x′ are independent and uniformly
distributed on the sphere, then the distribution of x>x′ equals to the distribution of 〈x, (1, 0, . . . , 0)〉
(i.e., we can assume w.l.o.g. that x′ = (1, 0, . . . , 0)>), which equals to the marginal distribution of
the first component of x. Let z be the first component of x. By standard results (cf. Fang [2018]), the
distribution of z2 is Beta( 1

2 ,
d−1

2 ), namely, a Beta distribution with parameters 1
2 ,

d−1
2 . Thus, the

density of z2 is

fz2(y) =
1

B
(

1
2 ,

d−1
2

)y− 1
2 (1− y)

d−3
2 ,

where B(α, β) = Γ(α)Γ(β)
Γ(α+β) is the Beta function, and y ∈ (0, 1). Performing a variable change, we

obtain the density of |z|, which equals to the density of |x>x′|.

f|x>x′|(y) = f|z|(y) = fz2(y2) ·2y =
1

B
(

1
2 ,

d−1
2

)y−1(1−y2)
d−3
2 ·2y =

2

B
(

1
2 ,

d−1
2

) (1−y2)
d−3
2 ,

(6)
where y ∈ (0, 1). Note that

B

(
1

2
,
d− 1

2

)
=

Γ( 1
2 )Γ(d−1

2 )

Γ(d2 )
≥

Γ( 1
2 )Γ(d2 − 1)

Γ(d2 )
=

Γ( 1
2 )

d
2 − 1

≥
2Γ( 1

2 )

d
=

2
√
π

d
≥ 2

d
.

Combining the above with (6), we obtain

f|x>x′|(y) ≤ d(1− y2)
d−3
2 .

Therefore, for every 1
2 ≤ y < 1 we have f|x>x′|(y) ≤ d

(
3
4

) d−3
2 . Hence, we conclude that

Pr
[
|〈x,x′〉| > 1

2

]
≤ d

(
3
4

) d−3
2 · 1. By the union bound, the probability that there are i 6= j such that

|〈xi,xj〉| > 1
2 is at most

m2 · d ·
(

3

4

) d−3
2

≤ d2k+1

(
3

4

) d−3
2

= od(1) .
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Moreover, for every log(d)√
d
≤ y < 1 we have (for d ≥ 6)

f|x>x′|(y) ≤ d(1− y2)
d−3
2 ≤ d exp

(
−y2 · d− 3

2

)
≤ d exp

(
− log2(d)

d
· d− 3

2

)
≤ d exp

(
− ln2(d)

d
· d

4

)
= d · d− ln(d)/4 .

Hence, Pr
[
|〈x,x′〉| > log(d)√

d

]
≤ d · d− ln(d)/4 · 1. By the union bound, the probability that there are

i 6= j such that |〈xi,xj〉| > log(d)√
d

is at most

m2 · d · d− ln(d)/4 ≤ d2k+1−ln(d)/4 = od(1) .

C Additional details on the proof sketch for Theorem 4.1

C.1 Part I: The examples in the dataset attain margin 1

We show that all examples in the dataset attain margin 1. The main idea can be described informally
as follows (see Lemma D.1 for the details). Assume that there is i ∈ I such that yiNθ(xi) > 1.
Hence, λi = 0. Suppose w.l.o.g. that i ∈ I+. Using (3) and (4) we prove that in order to achieve
Nθ(xi) > 1 when λi = 0, there must be some r ∈ I+ such that

∑
j∈J+

λrσ
′
r,j = max

l∈I

∑
j∈J+

λlσ
′
l,j

 >
3

d+ 1
.

Recall that by (3), for j ∈ J+ the term λrσ
′
r,j = λrvjσ

′
r,j is the coefficient of yrxr = xr in the

expression for wj . Hence,
∑
j∈J+ λrσ

′
r,j corresponds to the total sum of coefficients of xr over all

neurons in J+. Thus, our lower bound on
∑
j∈J+ λrσ

′
r,j implies intuitively that the total sum of

coefficients of xr is large. We use this fact in order to show that xr attains margin strictly larger than
1, which implies λr = 0 in contradiction to our lower bound on

∑
j∈J+ λrσ

′
r,j .

C.2 Part II: The contribution of the neurons J+ to the output does not increase

For i ∈ I+ and x′i = xi − z = xi − η
∑
l∈I ylxl we show that for every j ∈ J+ we have

w>j x
′
i + bj ≤ w>j xi + bj . Using (3) we have

w>j
∑
l∈I

ylxl =
∑
q∈I

λqyqvjσ
′
q,jx

>
q

∑
l∈I

ylxl =
∑
q∈I

λqσ
′
q,j

y2
qx
>
q xq +

∑
l∈I, l 6=q

yqylx
>
q xl


≥
∑
q∈I

λqσ
′
q,j

d+
∑

l∈I, l 6=q

(−p)

 ≥∑
q∈I

λqσ
′
q,j (d−mp) .

Therefore,

w>j x
′
i + bj = w>j xi + bj − ηw>j

∑
l∈I

ylxl ≤ w>j xi + bj − η
∑
q∈I

λqσ
′
q,j (d−mp) .

By our assumption on m it follows easily that d−mp > 0, and hence we conclude that w>j x
′
i+ bj ≤

w>j xi + bj .

C.3 Part III: The contribution of the neurons J− to the output decreases

We show that for i ∈ I+ and x′i = xi − z = xi − η
∑
l∈I ylxl, when moving from xi to x′i the total

contribution of the neurons in J− to the output decreases by at least 2. Since for every j ∈ J− we
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have vj = −1 then we need to show that the sum of the outputs of the neurons J− increases by at
least 2.

By a similar calculation to the one given in Subsection C.2 we obtain that for every j ∈ J− and
η′ > 0 we have

w>j

(
xi − η′

∑
l∈I

ylxl

)
+ bj ≥ w>j xi + bj + η′

∑
q∈I

λqσ
′
q,j (d−mp) . (7)

Recall that d − mp > 0. Hence, for every j ∈ J− the input to neuron j increases by at least
η
∑
q∈I λqσ

′
q,j (d−mp) when moving from xi to x′i. However, if w>j xi + bj < 0, namely, at xi

the input to neuron j is negative, then increasing the input may not affect the output of the network.
Indeed, by moving from xi to x′i we might increase the input to neuron j but if it is still negative then
the output of neuron j remains 0.

In order to circumvent this issue we analyze the perturbation z = η
∑
l∈I ylxl in two stages as

follows. We define η = η1 + η2 for some η1, η2 to be chosen later. Let x̃i = x1 − η1

∑
l∈I ylxl.

We prove that for every j ∈ J− we have w>j xi + bj ≥ −(p + 1)
∑
q∈I λqσ

′
q,j , namely, the input

to neuron j might be negative but it can be lower bounded. Hence, (7) implies that by choosing
η1 = p+1

d−mp we have w>j x̃i + bj ≥ 0 for all j ∈ J−. That is, in the first stage we move from xi to x̃i
and increase the inputs to all neurons in J− such that at x̃i they are least 0. In the second stage we
move from x̃i to x′i (using the perturbation η2

∑
l∈I ylxl). Note that when we move from x̃i to x′i,

every increase in the inputs to the neurons in J− results in a decrease in the output of the network.

Since we need the output of the network to decrease by at least 2, and since for every j ∈ J− we
have vj = −1, then when moving from x̃i to x′i we need the sum of the inputs to the neurons J− to
increase by at least 2. Similarly to (7), we obtain that when moving from x̃i to x′i we increase the
sum of the inputs to the neurons J− by at least

η2

∑
j∈J−

∑
q∈I

λqσ
′
q,j (d−mp) . (8)

Then, we prove a lower bound for
∑
j∈J−

∑
q∈I λqσ

′
q,j . We show that such a lower bound can be

achieved, since if
∑
j∈J−

∑
q∈I λqσ

′
q,j is too small then it is impossible to have margin 1 for all

examples in I−. This lower bound allows us to choose η2 such that the expression in (8) is at least 2.
Finally, it remains to analyze ‖z‖ = (η1 + η2)

∥∥∑
l∈I ylxl

∥∥ and show that it satisfies the required
upper bound.

D Proof of Theorem 4.1

We start with some required definitions. Some of the definitions are also given in Section 5 and
we repeat them here for convenience. We denote Nθ(x) =

∑
j∈[k] vjσ(w>j x + bj). Thus, Nθ is a

network of width k, where the weights in the first layer are w1, . . . ,wk, the bias terms are b1, . . . , bk,
and the weights in the second layer are v1, . . . , vk. We denote J := [k], J+ := {j ∈ J : vj ≥ 0},
and J− := {j ∈ J : vj < 0}. Note that since the dataset contains both examples with label 1 and
examples with label −1 then J+ and J− are non-empty. We also denote p := maxi6=j |〈xi,xj〉|.
Since m ≤ d+1

3(p+1) , we let c′ ≤ 1
3 be such that m = c′ · d+1

p+1 . Since θ satisfies the KKT conditions of
Problem (2), then there are λ1, . . . , λm such that for every j ∈ J we have

wj =
∑
i∈I

λi∇wj (yiNθ(xi)) =
∑
i∈I

λiyivjσ
′
i,jxi , (9)

where σ′i,j is a subgradient of σ at w>j xi + bj , i.e., if w>j xi + bj 6= 0 then σ′i,j = sign(w>j xi + bj),
and otherwise σ′i,j is some value in [0, 1]. Also we have λi ≥ 0 for all i, and λi = 0 if yiNθ(xi) 6= 1.
Likewise, we have

bj =
∑
i∈I

λi∇bj (yiNθ(xi)) =
∑
i∈I

λiyivjσ
′
i,j . (10)

Lemma D.1. For all i ∈ I we have yiNθ(xi) = 1.
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Proof. Assume that there is i ∈ I such that yiNθ(xi) > 1. Hence, λi = 0. If i ∈ I+ , then we have

1 < yiNθ(xi) = 1 ·
∑
j∈J

vjσ(w>j xi + bj) ≤
∑
j∈J+

vjσ(w>j xi + bj) ≤
∑
j∈J+

vj
∣∣w>j xi + bj

∣∣ .
By (9) and (10) the above equals∑

j∈J+

vj

∣∣∣∣∣∑
l∈I

λlylvjσ
′
l,jx
>
l xi +

∑
l∈I

λlylvjσ
′
l,j

∣∣∣∣∣ ≤ ∑
j∈J+

vj
∑

l∈I\{i}

∣∣λlylvjσ′l,j(x>l xi + 1)
∣∣

≤
∑
j∈J+

vj
∑

l∈I\{i}

λl|ylvj |σ′l,j(p+ 1)

=
∑
j∈J+

∑
l∈I\{i}

v2
jλlσ

′
l,j(p+ 1)

= (p+ 1)
∑

l∈I\{i}

∑
j∈J+

v2
jλlσ

′
l,j

≤ (p+ 1) · |I| ·max
l∈I

∑
j∈J+

v2
jλlσ

′
l,j

 ,

where the first inequality uses λi = 0. Therefore, we have

α+ := max
l∈I

∑
j∈J+

v2
jλlσ

′
l,j

 >
1

m(p+ 1)
.

From similar arguments, if i ∈ I−, then we have

α− := max
l∈I

∑
j∈J−

v2
jλlσ

′
l,j

 >
1

m(p+ 1)
.

Thus, we must have max{α+, α−} > 1
m(p+1) . Assume w.l.o.g. that α+ ≥ α− (the proof for the

case α+ < α− is similar). Let α := α+ and r := argmaxl∈I

(∑
j∈J+ v2

jλlσ
′
l,j

)
. Thus, for every

l ∈ I we have α ≥
∑
j∈J+ v2

jλlσ
′
l,j , α ≥

∑
j∈J− v

2
jλlσ

′
l,j , and we have α > 1

m(p+1) . Moreover,
we have λr > 0, since otherwise α = 0 in contradiction to α > 1

m(p+1) > 0. Hence, yrNθ(xr) = 1.

By (9) and (10) we have

w>j xr + bj =
∑
i∈I

λiyivjσ
′
i,jx
>
i xr +

∑
i∈I

λiyivjσ
′
i,j

=
∑
i∈I

λiyivjσ
′
i,j(x

>
i xr + 1)

=

 ∑
i∈I, i6=r

λiyivjσ
′
i,j(x

>
i xr + 1)

+ λryrvjσ
′
r,j(x

>
r xr + 1) . (11)

We consider two cases:

Case 1: Assume that r ∈ I−. Let j ∈ J+. Note that by the definition of σ′r,j , if σ′r,j 6= 0 then
w>j xr + bj ≥ 0. Hence, if σ′r,j 6= 0 then by (11) we have

0 ≤ w>j xr + bj

=

 ∑
i∈I, i6=r

λiyivjσ
′
i,j(x

>
i xr + 1)

+ λryrvjσ
′
r,j(x

>
r xr + 1)

≤

 ∑
i∈I, i6=r

λivjσ
′
i,j(p+ 1)

− λrvjσ′r,j(d+ 1) .
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Thus
λrvjσ

′
r,j(d+ 1) ≤

∑
i∈I, i6=r

λivjσ
′
i,j(p+ 1) .

Since the above holds for all j ∈ J+ then∑
j∈J+

v2
jλrσ

′
r,j ≤

∑
j∈J+

vj ·
1

d+ 1
·
∑

i∈I, i6=r

λivjσ
′
i,j(p+ 1)

=
p+ 1

d+ 1
·
∑

i∈I, i6=r

∑
j∈J+

v2
jλiσ

′
i,j

≤ p+ 1

d+ 1
·m ·max

i∈I

∑
j∈J+

v2
jλiσ

′
i,j


=
p+ 1

d+ 1
· c
′(d+ 1)

p+ 1
·max
i∈I

∑
j∈J+

v2
jλiσ

′
i,j


≤ 1

3
·max
i∈I

∑
j∈J+

v2
jλiσ

′
i,j

 ,

in contradiction to the choice of r.

Case 2: Assume that r ∈ I+. We have
1 = yrNθ(xr) = 1 ·

∑
j∈J

vjσ(w>j xr + bj)

≥
∑
j∈J+

vj · (w>j xr + bj) +
∑
j∈J−

vjσ(w>j xr + bj) . (12)

Note that by (11) we have∑
j∈J+

vj · (w>j xr + bj) =
∑
j∈J+

 ∑
i∈I, i6=r

λiyiv
2
jσ
′
i,j(x

>
i xr + 1)

+ λryrv
2
jσ
′
r,j(x

>
r xr + 1)


≥
∑
j∈J+

− ∑
i∈I, i6=r

λiv
2
jσ
′
i,j(p+ 1)

+ λrv
2
jσ
′
r,j(d+ 1)


=

−(p+ 1)
∑

i∈I, i6=r

∑
j∈J+

λiv
2
jσ
′
i,j

+
∑
j∈J+

λrv
2
jσ
′
r,j(d+ 1)

≥ −(p+ 1)mα+ (d+ 1)α . (13)
Moreover, using (11) again we have∑
j∈J−

vjσ
(
w>j xr + bj

)
=
∑
j∈J−

vjσ

 ∑
i∈I, i6=r

λiyivjσ
′
i,j(x

>
i xr + 1)

+ λryrvjσ
′
r,j(x

>
r xr + 1)


≥
∑
j∈J−

vjσ

 ∑
i∈I, i6=r

λiyivjσ
′
i,j(x

>
i xr + 1)


≥
∑
j∈J−

vj

 ∑
i∈I, i6=r

λi|vj |σ′i,j(p+ 1)


= −(p+ 1)

 ∑
i∈I, i6=r

∑
j∈J−

λiv
2
jσ
′
i,j


≥ −(p+ 1)mα . (14)
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Combining (12), (13) and (14), we obtain

1 = yrNθ(xr)

≥ −(p+ 1)mα+ (d+ 1)α− (p+ 1)mα

= α (d+ 1− 2(p+ 1)m)

= α

(
d+ 1− 2(p+ 1) · c

′(d+ 1)

p+ 1

)
= α(d+ 1)(1− 2c′)

>
1

m(p+ 1)
· (d+ 1)(1− 2c′)

=
p+ 1

c′(d+ 1)(p+ 1)
· (d+ 1)(1− 2c′)

=
1− 2c′

c′
≥ 1 .

Thus, we reach a contradiction.

Lemma D.2. We have ∑
i∈I

∑
j∈J+

v2
jλiσ

′
i,j ≥

mc

(cc′ + 1)(d+ 1)
,

and ∑
i∈I

∑
j∈J−

v2
jλiσ

′
i,j ≥

mc

(cc′ + 1)(d+ 1)
.

Proof. We prove here the first claim. The proof of the second claim is similar. For every i ∈ I+ we
have

1 ≤ Nθ(xi) ≤
∑
j∈J+

vjσ(w>j xi + bj) .

By plugging-in (9) and (10), the above equals to∑
j∈J+

vjσ

(∑
l∈I

λlylvjσ
′
l,jx
>
l xi +

∑
l∈I

λlylvjσ
′
l,j

)

=
∑
j∈J+

vjσ

 ∑
l∈I, l 6=i

λlylvjσ
′
l,j(x

>
l xi + 1)

+ λiyivjσ
′
i,j(x

>
i xi + 1)


≤
∑
j∈J+

vjσ

 ∑
l∈I, l 6=i

σ
(
λlylvjσ

′
l,j(x

>
l xi + 1)

)+ σ
(
λiyivjσ

′
i,j(x

>
i xi + 1)

)
=
∑
j∈J+

vj

 ∑
l∈I, l 6=i

σ
(
λlylvjσ

′
l,j(x

>
l xi + 1)

)+ λivjσ
′
i,j(d+ 1)


≤
∑
j∈J+

vj

 ∑
l∈I, l 6=i

λlvjσ
′
l,j(p+ 1)

+ λivjσ
′
i,j(d+ 1)


=

 ∑
l∈I, l 6=i

∑
j∈J+

λlv
2
jσ
′
l,j(p+ 1)

+
∑
j∈J+

λiv
2
jσ
′
i,j(d+ 1) .

Let γ = 1
cc′+1 . By the above equation, for every i ∈ I+ we either have

(p+ 1)
∑

l∈I, l 6=i

∑
j∈J+

λlv
2
jσ
′
l,j ≥ 1− γ , (15)
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or
(d+ 1)

∑
j∈J+

λiv
2
jσ
′
i,j ≥ γ . (16)

If there exists i ∈ I+ such that (15) holds, then we have

(p+ 1)
∑
l∈I

∑
j∈J+

λlv
2
jσ
′
l,j ≥ (p+ 1)

∑
l∈I, l 6=i

∑
j∈J+

λlv
2
jσ
′
l,j ≥ 1− γ =

cc′

cc′ + 1
,

and hence∑
l∈I

∑
j∈J+

λlv
2
jσ
′
l,j ≥

cc′

(cc′ + 1)(p+ 1)
=

m

d+ 1
· c

cc′ + 1
=

mc

(cc′ + 1)(d+ 1)

as required. Otherwise, namely, if for every i ∈ I+ (15) does not hold, then for every i ∈ I+ (16)
holds, and therefore∑

i∈I

∑
j∈J+

λiv
2
jσ
′
i,j ≥

∑
i∈I+

∑
j∈J+

λiv
2
jσ
′
i,j ≥ |I+| · γ

d+ 1
≥ mc

(cc′ + 1)(d+ 1)
.

Lemma D.3. Let i ∈ I and j ∈ J . Then,

w>j xi + bj ≥ −(p+ 1)
∑
l∈I

|vj |λlσ′l,j .

Proof. If w>j xi + bj ≥ 0 then the claim follows immediately. Otherwise, σ′i,j = 0. Hence, by (9)
and (10) we have

w>j xi + bj =
∑
l∈I

λlylvjσ
′
l,jx
>
l xi +

∑
l∈I

λlylvjσ
′
l,j

=
∑

l∈I, l 6=i

λlylvjσ
′
l,j(x

>
l xi + 1)

≥ −(p+ 1)
∑

l∈I, l 6=i

λl|vj |σ′l,j

= −(p+ 1)
∑
l∈I

λl|vj |σ′l,j .

Lemma D.4. Let u =
∑
l∈I ylxl. For every j ∈ J+ we have w>j u ≥

∑
i∈I vjλiσ

′
i,j(d−mp). For

every j ∈ J− we have w>j u ≤
∑
i∈I vjλiσ

′
i,j(d−mp).

Proof. For j ∈ J+, using (9) we have

w>j
∑
l∈I

ylxl =
∑
i∈I

λiyivjσ
′
i,jx
>
i

∑
l∈I

ylxl

=
∑
i∈I

λivjσ
′
i,j

y2
i x
>
i xi +

∑
l∈I, l 6=i

yiylx
>
i xl


≥
∑
i∈I

λivjσ
′
i,j

d+
∑

l∈I, l 6=i

(−p)


≥
∑
i∈I

λivjσ
′
i,j (d−mp) .
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Likewise, for j ∈ J− we have

w>j
∑
l∈I

ylxl =
∑
i∈I

λivjσ
′
i,j

y2
i x
>
i xi +

∑
l∈I, l 6=i

yiylx
>
i xl


≤
∑
i∈I

λivjσ
′
i,j

d+
∑

l∈I, l 6=i

(−p)


≤
∑
i∈I

λivjσ
′
i,j (d−mp) .

Lemma D.5. We have d−mp > 0.

Proof. By our assumption on m we have

d−mp = d− c′(d+ 1)p

p+ 1
≥ d− 1

3
· 2dp

p
= d− 2d

3
> 0 .

Lemma D.6. Let z = η
∑
l∈I ylxl for some η ≥ p+1

d−mp . Let i ∈ I . For all j ∈ J− we have
w>j (xi − z) + bj ≥ 0, and for all j ∈ J+ we have w>j (xi + z) + bj ≥ 0.

Proof. Let j ∈ J−. By Lemma D.3 we have w>j xi + bj ≥ (p+ 1)
∑
l∈I vjλlσ

′
l,j . By Lemma D.4

we have −w>j z ≥ −η
∑
l∈I vjλlσ

′
l,j(d−mp). By combining these results we obtain

w>j (xi − z) + bj = w>j xi + bj −w>j z

≥ (p+ 1)
∑
l∈I

vjλlσ
′
l,j − η

∑
l∈I

vjλlσ
′
l,j(d−mp)

=
∑
l∈I

vjλlσ
′
l,j (p+ 1− η(d−mp)) .

Note that by Lemma D.5 we have d−mp > 0. Hence, for η ≥ p+1
d−mp we have w>j (xi− z) + bj ≥ 0.

Let j ∈ J+. By Lemma D.3 we have w>j xi + bj ≥ −(p + 1)
∑
l∈I vjλlσ

′
l,j . By Lemma D.4 we

have w>j z ≥ η
∑
l∈I vjλlσ

′
l,j(d−mp). By combining these results we obtain

w>j (xi + z) + bj = w>j xi + bj + w>j z

≥ −(p+ 1)
∑
l∈I

vjλlσ
′
l,j + η

∑
l∈I

vjλlσ
′
l,j(d−mp)

=
∑
l∈I

vjλlσ
′
l,j (−(p+ 1) + η(d−mp)) .

Hence, for η ≥ p+1
d−mp we have w>j (xi + z) + bj ≥ 0.

Let η1 = p+1
d−mp and η2 = 2(cc′+1)(d+1)

mc(d−mp) . Note that by Lemma D.5 both η1 and η2 are positive. We
denote z = (η1 + η2)

∑
l∈I ylxl.

Lemma D.7. Let i ∈ I+, and let x′i = xi − z. Then, Nθ(x′i) ≤ −1.

Proof. By Lemma D.4, for every j ∈ J+ we have

w>j x
′
i+ bj = w>j xi+ bj −w>j (η1 +η2)

∑
l∈I

ylxl ≤ w>j xi+ bj − (η1 +η2)
∑
l∈I

vjλlσ
′
l,j(d−mp) .
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By Lemma D.5 the above is at most w>j xi + bj .

Consider now j ∈ J−. Let x̃i = xi − η1

∑
l∈I ylxl. By Lemma D.6 we have w>j x̃i + bj ≥ 0. Also,

by Lemma D.4 we have

w>j x̃i + bj = w>j xi + bj −w>j η1

∑
l∈I

ylxl ≥ w>j xi + bj − η1

∑
l∈I

vjλlσ
′
l,j(d−mp) ,

and by Lemma D.5 the above is at least w>j xi + bj . Hence,

w>j x
′
i + bj = w>j x̃i + bj −w>j η2

∑
l∈I

ylxl ≥ max
{

0,w>j xi + bj
}
− η2 ·w>j

∑
l∈I

ylxl .

By Lemma D.4, the above is at least

max
{

0,w>j xi + bj
}
− η2

∑
l∈I

vjλlσ
′
l,j(d−mp) .

Overall, we have

Nθ(x′i) =
∑
j∈J+

vjσ(w>j x
′
i + bj) +

∑
j∈J−

vjσ(w>j x
′
i + bj)

≤
∑
j∈J+

vjσ(w>j xi + bj) +
∑
j∈J−

vj

(
max

{
0,w>j xi + bj

}
− η2

∑
l∈I

vjλlσ
′
l,j(d−mp)

)
=
∑
j∈J

vjσ(w>j xi + bj)−
∑
j∈J−

vjη2

∑
l∈I

vjλlσ
′
l,j(d−mp)

= Nθ(xi)− η2(d−mp)
∑
j∈J−

∑
l∈I

v2
jλlσ

′
l,j .

By Lemmas D.1, D.2 and D.5 the above is at most

1− η2(d−mp) · mc

(cc′ + 1)(d+ 1)
.

For η2 = 2(cc′+1)(d+1)
mc(d−mp) we conclude that Nθ(x′i) is at most −1.

Lemma D.8. Let i ∈ I−, and let x′i = xi + z. Then, Nθ(x′i) ≥ 1.

Proof. The proof follows similar arguments to the proof of Lemma D.7. We give it here for com-
pleteness.

By Lemma D.4, for every j ∈ J− we have

w>j x
′
i+ bj = w>j xi+ bj +w>j (η1 +η2)

∑
l∈I

ylxl ≤ w>j xi+ bj + (η1 +η2)
∑
l∈I

vjλlσ
′
l,j(d−mp) .

By Lemma D.5 the above is at most w>j xi + bj .

Consider now j ∈ J+. Let x̃i = xi + η1

∑
l∈I ylxl. By Lemma D.6 we have w>j x̃i + bj ≥ 0. Also,

by Lemma D.4 we have

w>j x̃i + bj = w>j xi + bj + w>j η1

∑
l∈I

ylxl ≥ w>j xi + bj + η1

∑
l∈I

vjλlσ
′
l,j(d−mp) ,

and by Lemma D.5 the above is at least w>j xi + bj . Hence,

w>j x
′
i + bj = w>j x̃i + bj + w>j η2

∑
l∈I

ylxl ≥ max
{

0,w>j xi + bj
}

+ η2 ·w>j
∑
l∈I

ylxl .

By Lemma D.4, the above is at least

max
{

0,w>j xi + bj
}

+ η2

∑
l∈I

vjλlσ
′
l,j(d−mp) .

21



Overall, we have
Nθ(x′i) =

∑
j∈J+

vjσ(w>j x
′
i + bj) +

∑
j∈J−

vjσ(w>j x
′
i + bj)

≥
∑
j∈J+

vj

(
max

{
0,w>j xi + bj

}
+ η2

∑
l∈I

vjλlσ
′
l,j(d−mp)

)
+
∑
j∈J−

vjσ(w>j xi + bj)

=
∑
j∈J

vjσ(w>j xi + bj) +
∑
j∈J+

vjη2

∑
l∈I

vjλlσ
′
l,j(d−mp)

= Nθ(xi) + η2(d−mp)
∑
j∈J+

∑
l∈I

v2
jλlσ

′
l,j .

By Lemmas D.1, D.2 and D.5 the above is at least

−1 + η2(d−mp) · mc

(cc′ + 1)(d+ 1)
.

For η2 = 2(cc′+1)(d+1)
mc(d−mp) we conclude that Nθ(x′i) is at least 1.

Lemma D.9. We have ‖z‖ = O
(√

d
c2m

)
.

Proof. We have

‖z‖2 = (η1 + η2)2

∥∥∥∥∥∑
l∈I

ylxl

∥∥∥∥∥
2

= (η1 + η2)2
∑
l∈I

∑
l′∈I

ylyl′〈xl,xl′〉

≤
(

p+ 1

d−mp
+

2(cc′ + 1)(d+ 1)

mc(d−mp)

)2 (
md+m2p

)
≤
(

p+ 1

d−m(p+ 1)
+

2(cc′ + 1)(d+ 1)

mc(d−m(p+ 1))

)2 (
md+m2(p+ 1)

)
=

(
p+ 1

d− c′(d+ 1)
+

2(cc′ + 1)(d+ 1)

mc(d− c′(d+ 1))

)2

(md+mc′(d+ 1))

≤

(
p+ 1

d+1
2 −

1
3 · (d+ 1)

+
2(cc′ + 1)(d+ 1)

mc
(
d+1

2 −
1
3 · (d+ 1)

))2(
md+m · 1

3
· 2d
)

≤

(
p+ 1
d+1

6

+
2(cc′ + 1)(d+ 1)

mc
(
d+1

6

) )2

(2md) =

(
6c′

m
+

12(cc′ + 1)

mc

)2

(2md)

=

(
(18cc′ + 12)

√
2md

mc

)2

≤

(
(6 + 12)

√
2d

c
√
m

)2

,

where in the last inequality we used both c′ ≤ 1
3 and c ≤ 1. Hence, ‖z‖ = O

(√
d
c2m

)
.

The theorem now follows immediately form Lemmas D.7, D.8 and D.9.

E Proof of Corollary 4.1

The expressions for wj and bj given in (9) and (10) depend only on the examples (xi, yi) where
yiNθ(x) = 1. Indeed, if yiNθ(x) 6= 1 then λi = 0. Thus, all examples in the dataset that do not
attain margin 1 in Nθ do not affect the expressions that describe the network Nθ. All arguments
in the proof of Theorem 4.1 require only the examples (xi, yi) that appear in (9) and (10). As a
consequence, all parts in the proof of Theorem 4.1 hold also here w.r.t. the set I . That is, the fact that
the dataset includes additional points that do not appear (9) and (10) does not affect the proof. The
only part of the proof of Theorem 4.1 that is not required here is Lemma D.1, since we assume that
all points in I satisfy yiNθ(xi) = 1.
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