

Table 5: Detection accuracy in the AUC measure. The distance-based metrics, denoted by DISTANCE, are further categorized depending on whether the Euclidean distance or the cosine similarity is used. RECURVE adopts the curvature-based metric. If the inter-class embedding distance between two classes is shorter than a certain threshold, the change between the two classes is categorized as *gradual*. Here, the threshold is set so that gradual changes constitute 20% of all changes. Abrupt changes are excluded when measuring AUC-Gradual, and vice versa. In conclusion, RECURVE can support both gradual and abrupt changes, and it is more effective in handling gradual changes.

Methods	Repr.	p	AUC-Gradual \uparrow				AUC-Abrupt \uparrow			
			WISDM	HAPT	mHealth	50salads	WISDM	HAPT	mHealth	50salads
DISTANCE (Euclidean)	TPC	5	0.690 \pm 0.008	0.516 \pm 0.029	0.519 \pm 0.005	0.596 \pm 0.005	0.694 \pm 0.009	0.716 \pm 0.010	0.696 \pm 0.010	0.622 \pm 0.027
		10	0.690 \pm 0.008	0.520 \pm 0.029	0.521 \pm 0.005	0.599 \pm 0.005	0.695 \pm 0.009	0.717 \pm 0.010	0.699 \pm 0.010	0.624 \pm 0.027
		20	0.691 \pm 0.009	0.527 \pm 0.028	0.521 \pm 0.005	0.603 \pm 0.005	0.696 \pm 0.008	0.718 \pm 0.009	0.700 \pm 0.010	0.628 \pm 0.027
	TNC	5	0.715 \pm 0.012	0.692 \pm 0.022	0.706 \pm 0.017	0.556 \pm 0.057	0.720 \pm 0.008	0.846 \pm 0.007	0.839 \pm 0.028	0.630 \pm 0.011
		10	0.724 \pm 0.014	0.698 \pm 0.022	0.708 \pm 0.017	0.558 \pm 0.056	0.735 \pm 0.009	0.849 \pm 0.007	0.847 \pm 0.028	0.632 \pm 0.011
		20	0.734 \pm 0.017	0.708 \pm 0.022	0.709 \pm 0.017	0.561 \pm 0.056	0.754 \pm 0.011	0.854 \pm 0.007	0.849 \pm 0.029	0.636 \pm 0.011
DISTANCE (Cosine)	TPC	5	0.807 \pm 0.014	0.602 \pm 0.023	0.546 \pm 0.015	0.671 \pm 0.010	0.838 \pm 0.009	0.746 \pm 0.021	0.631 \pm 0.011	0.703 \pm 0.039
		10	0.811 \pm 0.014	0.606 \pm 0.023	0.548 \pm 0.014	0.674 \pm 0.010	0.845 \pm 0.010	0.747 \pm 0.021	0.636 \pm 0.011	0.706 \pm 0.035
	TNC	5	0.779 \pm 0.013	0.774 \pm 0.013	0.789 \pm 0.017	0.594 \pm 0.022	0.794 \pm 0.012	0.945\pm0.006	0.892 \pm 0.023	0.681 \pm 0.010
		10	0.787 \pm 0.012	0.783 \pm 0.012	0.803 \pm 0.015	0.594 \pm 0.032	0.808 \pm 0.011	0.946 \pm 0.004	0.901 \pm 0.022	0.685 \pm 0.010
RECURVE	TPC	5	0.888\pm0.004	0.886\pm0.009	0.939 \pm 0.003	0.712\pm0.006	0.923\pm0.003	0.945\pm0.002	0.985 \pm 0.004	0.729\pm0.055
		10	0.893\pm0.005	0.891\pm0.009	0.940 \pm 0.003	0.715\pm0.006	0.927\pm0.002	0.948 \pm 0.002	0.988 \pm 0.004	0.731\pm0.054
	TNC	5	0.867 \pm 0.007	0.773 \pm 0.038	0.975\pm0.003	0.551 \pm 0.034	0.901 \pm 0.006	0.931 \pm 0.002	0.988\pm0.006	0.600 \pm 0.016
		10	0.875 \pm 0.007	0.779 \pm 0.038	0.977\pm0.003	0.553 \pm 0.034	0.910 \pm 0.006	0.933 \pm 0.002	0.989\pm0.006	0.602 \pm 0.016
		20	0.890 \pm 0.008	0.791 \pm 0.038	0.977\pm0.004	0.558 \pm 0.033	0.927\pm0.006	0.939 \pm 0.002	0.990\pm0.006	0.606 \pm 0.015

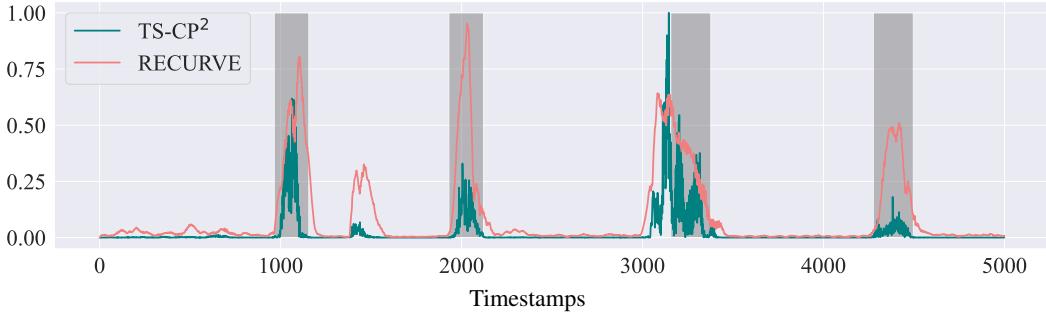


Figure 8: Change metric score from the HAPT dataset with the default configuration. A grey-shaded area represents inter-segment points between two class segments. Note that TS-CP² fluctuates rapidly during the changes and seems to have many false negatives at the rightmost boundary area. On the other hand, RECURVE indicates the inter-segment points much more clearly than TS-CP².

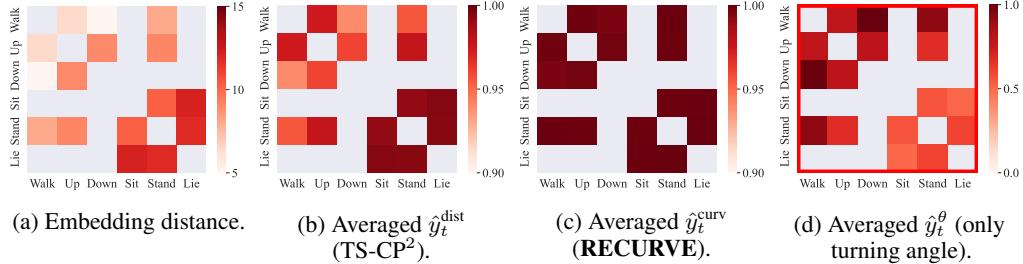


Figure 9: Heatmaps of the inter-class distances and values of the change metrics between the classes in the HAPT dataset. A grey box indicates no transition between two classes. Compared to Figure 6, Figure 9(d) is added here to investigate the *sole effect* of the turning angle θ_t . For (d), $\hat{y}_t^\theta = \text{MA}(\text{NORM}(2\pi - \theta_t))$, where θ_t is defined as Eq. (4). Interestingly, \hat{y}_t^θ is greater for the transitions with smaller inter-class embedding distances. This additional result in (d) validates the rationale behind the effectiveness of RECURVE in handling gradual changes.