
DATT: Deep Adaptive Trajectory Tracking for
Quadrotor Control

Anonymous Author(s)
Affiliation
Address
email

Abstract: Precise arbitrary trajectory tracking for quadrotors is challenging due1

to unknown nonlinear dynamics, trajectory infeasibility, and actuation limits. To2

tackle these challenges, we present DATT, a learning-based approach that can3

precisely track arbitrary, potentially infeasible trajectories in the presence of large4

disturbances in the real world. DATT builds on a novel feedforward-feedback-5

adaptive control structure trained in simulation using reinforcement learning.6

When deployed on real hardware, DATT is augmented with a disturbance esti-7

mator using L1 adaptive control in closed-loop, without any fine-tuning. DATT8

significantly outperforms competitive adaptive nonlinear and model predictive9

controllers for both feasible smooth and infeasible trajectories in unsteady wind10

fields, including challenging scenarios where baselines completely fail. Moreover,11

DATT can efficiently run online with an inference time less than 3.2ms, less than12

1/4 of the adaptive nonlinear model predictive control baseline1.13

Keywords: Quadrotor, Reinforcement Learning, Adaptive Control14

1 Introduction15

Executing precise and agile flight maneuvers is important for the ongoing commoditization of unin-16

habited aerial vehicles (UAVs), in applications such as drone delivery, rescue and search, and urban17

air mobility. In particular, accurately following arbitrary trajectories with quadrotors is among the18

most notable challenges to precise flight control for the following reasons. First, the quadrotor dy-19

namics are highly nonlinear and underactuated. Moreover, such nonlinearity is often hard to model20

due to unknown system parameters (e.g., motor characteristics) and uncertain environments (e.g.,21

complex aerodynamics from unknown wind gusts). Second, aggressive trajectories demand oper-22

ating at the limits of system performance, requiring awareness and proper handling of actuation23

constraints, especially for quadrotors with small thrust-to-weight ratios. Finally, the arbitrary de-24

sired trajectory might not be dynamically feasible (i.e., it is impossible to stay on such a trajectory),25

which necessities long-horizon reasoning and optimization in real-time. For instance, to stay close26

to the five-star trajectory in Fig. 1, which is infeasible due to the sharp changes of direction, the27

quadrotor must predict, plan, and react online before the sharp turns.28

Traditionally, there are two commonly deployed control strategies for accurate trajectory follow-29

ing with quadrotors: nonlinear control based on differential flatness and model predictive control30

(MPC). However, nonlinear control methods, despite their proven stability and efficiency, are con-31

strained to differentially flat trajectories (i.e., smooth trajectories with bounded velocity, accelera-32

tion, jerk, and snap) satisfying actuation constraints [1, 2, 3]. On the other hand, MPC approaches33

can potentially incorporate constraints and non-smooth arbitrary trajectories [4, 5], but their perfor-34

mances heavily rely on the accuracy of the model and the optimality of the solver for the underlying35

nonconvex optimization problems, which could also be expensive to run online.36

Reinforcement learning (RL) has shown its potential flexibility and efficiency in trajectory tracking37

problems [6, 7, 8]. However, most existing works focus on tracking smooth trajectories in stationary38

1Videos and demonstrations in https://sites.google.com/view/deep-adaptive-traj-tracking
and code for experiments and analysis will be released upon acceptance.

Submitted to the 7th Conference on Robot Learning (CoRL 2023). Do not distribute.

https://sites.google.com/view/deep-adaptive-traj-tracking

Figure 1: Trajectory visualizations for example infeasible trajectories. (a-c) Long-exposure photos
of different methods for an equilateral triangle reference trajectory. (d) Long-exposure photo of
our method for a five-pointed star reference trajectory. (e) Quantitative comparisons between our
approach and baselines for the five-pointed star. Numbers indicate the tracking error in meters.

environments. In this work, we aim to design an RL-based flight controller that can (1) follow feasi-39

ble trajectories as accurately as traditional nonlinear controllers and MPC approaches; (2) accurately40

follow arbitrary infeasible and dynamic trajectories to the limits of the hardware platform; and (3)41

adapt to unknown system parameters and uncertain environments online. Our contributions are:42

• We propose DATT, a novel feedforward-feedback-adaptive policy architecture and training43

pipeline for RL-based controllers to track arbitrary trajectories. In training, this policy is condi-44

tioned on ground-truth translational disturbance in a simulator, and such a disturbance is estimated45

in real using L1 adaptive control in closed-loop;46

• On a real, commercially available, lightweight, and open-sourced quadrotor platform (Crazyflie47

2.1 with upgraded motors), we show that our approach can track feasible smooth trajectories48

with 27%-38% smaller errors than adaptive nonlinear or adaptive MPC baselines. Moreover, our49

approach can effectively track infeasible trajectories where the nonlinear baseline completely fails,50

with a 39% smaller error than MPC and 1/4th the computational time;51

• On the real quadrotor platform, we show that our approach can adapt zero-shot to unseen turbulent52

wind fields with an extra cardboard drag plate for both smooth desired trajectories and infeasible53

trajectories. Specifically, for smooth trajectories, our method achieves up to 22% smaller errors54

than the state-of-the-art adaptive nonlinear control method. In the most challenging scenario (in-55

feasible trajectories with wind and drag plate), our method significantly outperforms the adaptive56

MPC approach with 15% less error and 1/4th of the computation time.57

2 Problem Statement and Related Work58

2.1 Problem Statement59

In this paper, we let ẋ denote the derivative of a continuous variable x regarding time. We consider60

the following quadrotor dynamics:61

ṗ = v, mv̇ = mg +Re3fΣ + d (1a)

Ṙ = RS(ω), Jω̇ = Jω × ω + τ , (1b)

2

where p,v, g ∈ R3 are position, velocity, and gravity vectors in the world frame, R ∈ SO(3) is the62

attitude rotation matrix, ω ∈ R3 is the angular velocity in the body frame, m,J are mass and inertia63

matrix, e3 = [0; 0; 1], and S(·) : R3 → so(3) maps a vector to its skew-symmetric matrix form.64

Moreover, d is the time-variant translational disturbance, which includes parameter mismatch (e.g.,65

mass error) and environmental perturbation (e.g., wind perturbation) [9, 10, 11, 12]. The control66

input is the total thrust fΣ and the torque τ in the body frame. For quadrotors, there is a linear67

invertible actuation matrix between [fΣ; τ] and four motor speeds.68

We let xt denote the temporal discretization of x at time step t ∈ Z+. In this work, we focus on the69

3-D trajectory tracking problem with the desired trajectory pd
1,p

d
2, · · · ,pd

T , with average tracking70

error as the performance metric: 1
T

∑T
t=1 ∥pt−pd

t ∥. We do not have any assumptions on the desired71

trajectory pd. In particular, pd is not necessarily differentiable or smooth.72

2.2 Differential Flatness73

The differential flatness property of quadrotors allows efficient generation of control inputs to follow74

smooth trajectories [1, 5]. Differential flatness has been extended to account for unknown linear dis-75

turbances [3], learned nonlinear disturbances [13], and also to deal with the singularities associated76

with pitching and rolling past 90 degrees [14]. While differential-flatness-based methods can show77

impressive performance for smooth and aggressive trajectories, they struggle with nondifferentiable78

trajectories or trajectories that require reasoning about actuation constraints.79

2.3 Model Predictive Control (MPC)80

Optimal control is a powerful methodology for achieving precise trajectory tracking in robotics by81

minimizing a cost function that quantifies the deviation from the desired path. MPC is a widely used82

optimal control approach that online optimizes control inputs over a finite time horizon, considering83

system dynamics and constraints [15].84

Model Predictive Path Integral Control (MPPI) [4, 16] is a sampling-based MPC incorporating path85

integral control formulation and stochastic sampling. Unlike deterministic optimization, MPPI em-86

ploys a stochastic optimization approach where control sequences are sampled from a distribution.87

These samples are then evaluated based on a cost function, and the distribution is iteratively updated88

to improve control performance. Recently MPPI has been applied to quadrotor control [17, 18].89

Gradient-based nonlinear MPC techniques have been widely used for rotary-winged-based flying90

robots or drones. Hanover et al. [12] and Sun et al. [5] have shown good performance of nonlinear91

MPC in agile trajectory tracking of drones and adaptation to external perturbations. Moreover, these92

techniques are being used for vision-based agile maneuvers of drones [19, 7].93

However, for either sampling-based or gradient-based MPC, the control performance heavily relies94

on the optimality of the optimizer for the underlying nonconvex problems. Generally speaking,95

MPC-based approaches require much more computing than differential-flatness-based methods [5].96

Moreover, MPC’s robustness and adaptability for infeasible trajectories remain unclear since exist-97

ing works consider smooth trajectory tracking. In this paper, we implemented MPPI [4] and L198

augmented MPPI [17] for our baselines.99

2.4 Adaptive Control and Disturbance Estimation100

Adaptive controllers aim to improve control performance through online estimation of unknown101

system parameters in closed-loop. For quadrotors, adaptive controllers typically estimate a three-102

dimensional force disturbance d [20, 10, 21, 22, 17]. Most recently, L1 adaptive control for quadro-103

tors [11] has been shown to improve trajectory tracking performance in the presence of complex and104

time-varying disturbances such as sloshing payloads and mismatched propellers. Recently, deep-105

learning-based adaptive flight controllers have also emerged [10, 23].106

Learning dynamical models is a common technique to improve quadrotor trajectory tracking per-107

formance [9, 10, 24, 25] and can provide more accurate disturbance estimates than purely reactive108

adaptive control, due to the model of the disturbance over the state and control space. In this work,109

we use the disturbance estimation from L1 adaptive control, but we notice that our method can110

leverage any disturbance estimation or model learning techniques.111

3

state

feedback error
in body frame

ref trajectory
 feedforward

encoder

feedforward

embedding

disturbance

estimation

nominal model adaptive
control

policy net

ground truth

(only in sim)

only in real

Figure 2: Algorithm Overview. Blue, yellow, and green blocks represent feedforward, feedback, and
adaptation modules respectively. In training the policy has access to the true disturbance d whereas
in real we use L1 adaptive control to get the disturbance estimation d̂ in closed-loop.

In particular, Rapid Motor Adaptation (RMA) is a supervised learning-based approach that aims to112

predict environmental parameters using a history of state-action pairs, which are then inputted to the113

controller [26]. This approach has been shown to work for real legged-robots, but can be susceptible114

to domain shift during sim2real transfer on drones.115

2.5 Reinforcement Learning for Quadrotor Control116

Reinforcement learning for quadrotor stabilization is studied in [6, 27, 23]. Molchanov et al. [27]117

uses domain randomization to show policy transfer between multiple quadrotors. Kaufmann et al.118

[28] compares three different policy formulations for quadrotor trajectory tracking and finds that119

outputting body thrust and body rates outperforms outputting desired linear velocities and individual120

rotor thrusts. [28] only focuses on feasible trajectories while in this work, we aim to track infeasible121

trajectories as accurately as possible. Simulation-based learning with imitation learning to an expert122

MPC controller is used to generate acrobatic maneuvers in [7]. In this work, we focus on trajectories123

and environments for which obtaining an accurate expert even in simulation is difficult or expensive124

and thus use reinforcement learning to learn the controller.125

3 Methods126

3.1 Algorithm Overview127

A high-level overview of DATT is given in Fig. 2. Using model-free RL, DATT learn a neural net-128

work quadrotor controller π capable of tracking arbitrary reference trajectories, including infeasible129

trajectories, while being able to adapt to various environmental disturbances, even those unseen dur-130

ing training. We condition our policy on a learned feedforward embedding h, which encodes the131

desired reference trajectory, in the body frame, over a fixed time horizon, as well as the force distur-132

bance d in Eq. (1). We also input the position feedback error in the body frame to our controller.133

The state xt consists of the position p, the velocity v, and the orientation R, represented as a134

quaternion q. We convert p,v to the body frame and input them to π. Our policy controller outputs135

u which includes the desired total thrust fΣ,des, and the desired body rates ωdes. In summary, our136

controller functions as follows:137

ht = ϕ(R⊤
t (pt − pd

t)), . . . ,R
⊤
t (pt − pd

t+H)) (2a)

ut = π(R⊤
t pt,R

⊤
t vt, qt,ht,R

⊤
t (pt − pd

t),dt) (2b)

We define the expected reward for our policy conditioned on the reference trajectory as follows:138

4

J(π|pd
t:t+H) = E(x,u)∼π

[∞∑
t=0

r(xt,ut|pd
t:t+H)

]
(3a)

r(xt,ut|pd
t:t+H) = ∥pt − pd

t ∥+ 0.5∥ψt∥+ 0.1∥vt∥ (3b)

ψt denotes the yaw of the drone. The reward function optimizes for accurate position and yaw139

tracking, with a small velocity regularization penalty. π and ϕ are jointly optimized with respect to140

J using the Proximal Policy Optimization (PPO) algorithm [29].141

3.2 Arbitrary Trajectory Tracking142

Classical controllers, such as differential-flatness controllers, rely on higher-order position deriva-143

tives of the reference trajectory for accurate tracking (velocity, acceleration, jerk, and snap), which144

are needed for incorporating future information about the reference, i.e., feedforward control. How-145

ever, arbitrary trajectories can have undefined higher order derivatives, and exact tracking may not146

be feasible. With RL, a controller can be learned to optimally track an arbitrary reference trajectory,147

given just the desired future positions pd
t . Thus, we input just the desired positions into a feed-148

forward encoder ϕ, which learns the feedforward embedding that contains the information of the149

desired future reference positions. For simplicity, we assume the desired yaw for all trajectories is150

zero. The reference positions are provided evenly spaced from the current time t to the feedfoward151

horizon t+H , and are transformed into the body frame.152

3.3 Adaptation to Disturbance153

During training in simulation, we add a constant force perturbation d to the environment, which is154

randomized at the start of each episode. The policy is conditioned on the ground truth value of d155

during training. During inference in the real world, we use L1 adaptive control [11] to estimate d,156

which is directly passed into our policy network. The adaptation law is given by:157

˙̂v = g +Re3fΣ/m+ d̂/m+As(v̂ − v) (4a)

d̂new = −(eAsdt − I)−1Ase
Asdt(v̂ − v) (4b)

d̂← low pass filter(d̂, d̂new) (4c)

where As is a Hurwitz matrix, dt is the discretization step length and v̂ is the velocity prediction.158

Generally speaking, (4a) is a velocity predictor using the estimated disturbance d̂, and (4b) and (4c)159

update and filter d̂. Compared to other sim-to-real techniques such as domain randomization [27]160

and student-teacher adaptation [23], the adaptive-control-based disturbance adaptation method in161

DATT tends to be more reactive and robust, thanks to the closed-loop nature and provable stability162

and convergence of L1 adaptive control.163

4 Experiments164

4.1 Simulation and Training165

Training is done in a custom quadrotor simulator that implements (1) using on-manifold integration,166

with body thrust and angular velocity as the inputs to the system. In order to convert the desired167

body thrust fΣ,des and body rate ωdes output from the controller to the actual thrust and body rate for168

the drone in simulation, we use a first-order time delay model:169

ωt = ωt−1 + k(ωdes − ωt−1) (5a)
fΣ,t = fΣ,t−1 + k(fΣ,des − fΣ,t−1) (5b)

We set k to a fixed value of 0.4, which we found worked well on the real drone. In practice, the170

algorithm generalizes well to a large range of k, even when training on fixed k. Our simulator171

effectively runs at 50Hz, with dt = 0.02 for each simulation step.172

5

We train across a series of xy-planar smooth and infeasible reference trajectories. The smooth173

trajectories are randomized degree-five polynomials and series of degree-five polynomials chained174

together. The infeasible trajectories are we refer to as zigzag trajectories, which are trajectories that175

linearly connect a series of random waypoints, and have either zero or undefined acceleration. The176

average speed of the infeasible trajectories is approximately 2m/s. See Appendix C for more details177

on the reference trajectories.178

During each episode, we apply a constant force perturbation d with randomized direction and179

strength in the range of [−3.5m/s2, 3.5m/s2], representing translational disturbances. Random-180

ization occurs only at the start of each episode. We run each episode for a total of 500 steps,181

corresponding to 10 seconds. By default, we set H to 0.6 s with 10 feedforward reference terms. In182

Appendix A, we show ablation results for various different horizons.183

We also note that stable training and best performance require fixing an initial trajectory for the first184

2.5M steps of training (see Appendix A for more details). Only after that initial time period do we185

begin randomizing the trajectory. We train the policy using PPO for a total of 20M steps. Training186

takes slightly over 3 hours on an NVIDIA 3080 GPU.187

4.2 Hardware Setup and the Low-level Attitude Rate Controller188

We conduct hardware experiments with the Bitcraze Crazyflie 2.1 equipped with the longer 20mm189

motors from the thrust upgrade bundle for more agility. The quadrotor as tested weighs 40 g and has190

a thrust-to-weight ratio of slightly under 2.191

Position and velocity state estimation feedback is provided by the OptiTrack motion capture system192

at 50Hz to an offboard computer that runs the controller. The Crazyflie quadrotor provides orien-193

tation estimates via a 2.4GHz radio and control commands are sent to the quadrotor over the same194

radio at 50Hz. Communication with the drone is handled using the Crazyswarm API [30]. Body195

rate commands ωdes received by the drone are converted to torque commands τ using a custom low-196

level PI attitude rate controller on the firmware: τ = −Kω
P (ω − ωdes)−Kω

I

∫
(ω − ωdes). Finally,197

this torque command and the desired total thrust fΣ,des from the RL policy are converted to motor198

thrusts using the invertible actuation matrix.199

4.3 Baselines200

We compare our reinforcement learning approach against two nonlinear baselines: differential201

flatness-based feedback control and sampling-based Model Predictive Control (MPC) [4].202

Nonlinear Tracking Controller and L1 Adaptive Control The differential flatness-based con-203

troller baseline consists of a PID position controller, which computes a desired acceleration vector,204

and a tilt-prioritized nonlinear attitude controller, which computes the body thrust fΣ and desired205

body angular velocity ωdes.206

afb = −KP (p− pd)−KD(v − vd)−KI

∫
(p− pd) + ad − g − d̂/m, (6a)

zfb =
afb

||afb||
, z = Re3, fΣ = a⊤

fbz (6b)

ωdes = −KRzfb × z + ψfbz, ψfb = −Kyaw(ψ ⊖ ψref) (6c)

where d̂ is the disturbance estimation. For the nonlinear baseline, we set d̂ = 0, and for L1207

adaptive control [11] we use (4) to compute d̂ in real time [11]. For our experiments, we set208

KP = diag([6 6 6]), KI = diag([1.5 1.5 1.5]), KD = diag([4 4 4]), KR = diag([120 120 0]),209

and Kyaw = 13.75. PID gains were empirically tuned on the hardware platform to track both210

smooth and infeasible trajectories while minimizing crashes.211

Nonlinear MPC and Adaptive Nonlinear MPC We use Model Predictive Path Integral (MPPI)212

[4] control as our second nonlinear baseline. MPPI is a sampling-based nonlinear optimal control213

technique that computes the optimal control sequence w.r.t. a known dynamics model and specified214

cost function. In our implementation, we use (1) (d = 0) as the dynamics model with the body215

thrust fΣ and angular velocity ω as the control input. The cost function is the sum of the position216

6

Figure 3: Left: Crazyflie 2.1 with a swinging cardboard drag plate in an unsteady wind field. Right:
Comparison between our methods with and without adaptation with the drag plate on a zigzag
trajectory. With wind added, adaptation is needed, otherwise the drone crashes.

error norms along k = 40 horizon steps. We use 8192 samples, dt = 0.02, and a temperature of217

0.05 for the softmax. For adaptive MPC, similar to prior works [17, 12], we augment the standard218

MPPI with the disturbance estimation d̂ from L1 adaptive control, which we refer to as L1-MPC.219

4.4 Arbitrary Trajectory Tracking220

We first evaluate the trajectory tracking performance of DATT compared to the baselines in the221

absence of disturbances. We test on both infeasible zigzag trajectories and smooth polynomial222

trajectories. Each controller is run 2 times on the same bank of 10 random zigzag trajectories and223

10 random polynomials.224

Results are shown in Table 1. For completeness, we also compare with the tracking performance of225

adaptive controllers in the absence of any distrubances. We also compare our method to a version226

without adaptation, meaning that we enforce d̂ = 0.227

Arbitrary trajectory tracking without external disturbances
Method Smooth trajectory Infeasible trajectory Inference time (ms)

Nonlinear tracking control 0.098± 0.012 crash 0.21
L1 adaptive control 0.091± 0.009 crash 0.93

MPC 0.104± 0.009 0.183± 0.027 12.62
L1-MPC 0.088± 0.010 0.181± 0.031 13.10

DATT (w/ d̂ = 0) 0.065± 0.014 0.110± 0.024 2.41
DATT 0.064± 0.015 0.112± 0.028 3.17

Table 1: Tracking error (in m) of DATT vs. baselines, without any environmental disturbances (no
wind or plate). crash indicates a crash for all ten trajectory seeds.

We see that DATT achieves the most accurate tracking, with a fraction of the compute cost of MPC.228

As expected, the addition of adaptive control does little in this setting, as there are no environmental229

disturbances introduced. With our current gains, the nonlinear and L1 adaptive control baselines are230

unable to track the infeasible trajectory. With reduced controller gains, it is possible these controllers231

would not crash when tracking the infeasible trajectories, but doing so would greatly decrease their232

performance for smooth trajectories. In contrast, our method works well across all trajectories, with233

no fine tuning required.234

4.5 Adaptation Performance in Unknown Wind Fields with a Drag Plate235

To evaluate the ability of DATT to compensate for unknown disturbances, we test the Crazyflie in a236

high wind scenario with three fans and an attached soft cardboard plate hanging below the vehicle237

body. Figure 3 shows this experimental setup. We note that this setup differs significantly from238

simulation — the placement of the fans and the soft cardboard plate creates highly dynamic and239

state dependent force disturbances, as well as torque disturbances, yet in simulation we only model240

a constant force disturbance. However, our policy is able to generalize well zero-shot to this domain,241

as shown in Table 2.242

7

Arbitrary trajectory tracking with external disturbances

Method Smooth traj.
w/ plate

Smooth traj.
w/ plate & wind

Infeasible traj.
w/ plate

Infeasible traj.
w/ plate & wind

L1 adaptive control 0.163± 0.013 0.184± 0.020 crash crash
L1-MPC 0.121± 0.010 0.181± 0.04 0.216± 0.028 0.243± 0.026

DATT (w/ d̂ = 0) 0.161± 0.021 0.173± 0.026 0.194± 0.037 crash
DATT 0.127± 0.039 0.146± 0.083 0.171± 0.052 0.206± 0.011

Table 2: Tracking error (in m) of DATT vs. baselines, with an attached plate and/or wind. Results
are effectively for zero-shot generalization, as we do not model a plate, non-constant force distur-
bances, or torque disturbances in simulation.

In Table 2, we see that the baseline nonlinear adaptive controller is unable to track infeasible tra-243

jectories, similar to the experiment without adaptation. While setting d̂ = 0 still allows our policy244

controller to track some trajectories with disturbances, it crashes for infeasible trajectories with both245

the plate and wind, where the disturbances are the highest. However, our method with adaptation246

enabled is able to track all the trajectories tested, with the lowest tracking error. Figure 3 shows247

the difference in tracking performance between our method using adaptive control and our method248

without, on an example zigzag trajectory with a drag plate. We see that our approach of integrating249

L1 adaptive control with our policy controller is effective in correcting the error introduced by the250

presence of the turbulent wind field and plate. Our method performs better than L1-MPC without251

any knowledge of the target domain, and with a fraction of the compute cost. Figures 5 and 6 in252

the Appendix visualizes the tracking performance of DATT vs. L1-MPC on a infeasible and smooth253

trajectory, respectively.254

5 Limitations and Future Work255

Our choice of hardware presents some inherent limitations. The relatively low thrust-to-weight ratio256

of the Crazyflie (less than 2) means that we are unable to fly very agile or aggressive trajectories on257

the real drone or perform complex maneuvers such as a drone flip mid-trajectory. For this reason,258

we focused on xy-planar trajectories in this paper, and did not vary the z direction, although our259

method also improves the performance in the z direction (Fig. 1). However, our method provides260

the framework for performing accurate tracking for any trajectory, as we note we are able to perform261

a much larger range of agile maneuvers in simulation, including flips.262

Our simulator is only an approximation of the true dynamics. For example, we model the lower-263

level angular velocity controller with a simplified first-order time delay model, which limits sim2real264

generalization for very agile tasks. Furthermore, we only model a constant force disturbance in sim,265

which does not model the highly time- and state-dependent force and torque disturbances the drone266

can encounter in reality. With better modeling, we could likely greatly improve our performance on267

the plate and wind task. However, we show that we can already achieve good zero-shot generaliza-268

tion to a highly dynamic environment and challenging tasks.269

Reinforcement learning also has drawbacks compared to classical methods. We note that our train-270

ing process has fairly high variance and can be sensitive to the hyperparameters of the PPO algo-271

rithm. As seen in Appendix A, we use a few tricks for stable learning, including fixing the reference272

trajectory for the first 2.5M training steps. Future work is needed to understand the role of these273

architectural and training features and help inform the best algorithm design and training setup.274

Finally, for disturbance estimation, more sophisticated modeling techniques can be used that better275

predict the acceleration disturbance as a function of state and action. For adaptive control, end-to-276

end learning methods that optimize a learned adaptation model for trajectory tracking performance277

can perhaps do better than the L1 baseline we use here.278

8

References279

[1] D. Mellinger and V. Kumar. Minimum snap trajectory generation and control for quadrotors. In280

2011 IEEE International Conference on Robotics and Automation (ICRA), pages 2520–2525.281

IEEE, 2011. URL http://ieeexplore.ieee.org/abstract/document/5980409/.282

[2] T. Lee, M. Leok, and N. H. McClamroch. Geometric tracking control of a quadrotor uav on se283

(3). In 49th IEEE conference on decision and control (CDC), pages 5420–5425. IEEE, 2010.284

[3] M. Faessler, A. Franchi, and D. Scaramuzza. Differential Flatness of Quadrotor Dynamics285

Subject to Rotor Drag for Accurate Tracking of High-Speed Trajectories. IEEE Robotics and286

Automation Letters, 3(2):620–626, Apr. 2018. ISSN 2377-3766, 2377-3774. doi:10.1109/287

LRA.2017.2776353. URL http://arxiv.org/abs/1712.02402. arXiv: 1712.02402.288

[4] G. Williams, N. Wagener, B. Goldfain, P. Drews, J. M. Rehg, B. Boots, and E. A. Theodorou.289

Information theoretic mpc for model-based reinforcement learning. In 2017 IEEE Interna-290

tional Conference on Robotics and Automation (ICRA), pages 1714–1721. IEEE, 2017.291

[5] S. Sun, A. Romero, P. Foehn, E. Kaufmann, and D. Scaramuzza. A comparative study of non-292

linear mpc and differential-flatness-based control for quadrotor agile flight. IEEE Transactions293

on Robotics, 38(6):3357–3373, 2022. doi:10.1109/TRO.2022.3177279.294

[6] J. Hwangbo, I. Sa, R. Siegwart, and M. Hutter. Control of a Quadrotor with Reinforcement295

Learning. IEEE Robotics and Automation Letters, 2(4):2096–2103, Oct. 2017. ISSN 2377-296

3766, 2377-3774. doi:10.1109/LRA.2017.2720851. URL http://arxiv.org/abs/1707.297

05110. arXiv:1707.05110 [cs].298

[7] E. Kaufmann, A. Loquercio, R. Ranftl, M. Müller, V. Koltun, and D. Scaramuzza. Deep299

Drone Acrobatics. In Robotics: Science and Systems XVI. Robotics: Science and Systems300

Foundation, July 2020. ISBN 978-0-9923747-6-1. doi:10.15607/RSS.2020.XVI.040. URL301

http://www.roboticsproceedings.org/rss16/p040.pdf.302

[8] B. Kiumarsi, K. G. Vamvoudakis, H. Modares, and F. L. Lewis. Optimal and autonomous303

control using reinforcement learning: A survey. IEEE transactions on neural networks and304

learning systems, 29(6):2042–2062, 2017.305

[9] G. Shi, X. Shi, M. O’Connell, R. Yu, K. Azizzadenesheli, A. Anandkumar, Y. Yue, and S.-J.306

Chung. Neural Lander: Stable Drone Landing Control using Learned Dynamics. 2019 In-307

ternational Conference on Robotics and Automation (ICRA), pages 9784–9790, May 2019.308

doi:10.1109/ICRA.2019.8794351. URL http://arxiv.org/abs/1811.08027. arXiv:309

1811.08027.310

[10] M. O’Connell, G. Shi, X. Shi, K. Azizzadenesheli, A. Anandkumar, Y. Yue, and S.-J. Chung.311

Neural-fly enables rapid learning for agile flight in strong winds. Science Robotics, 7(66):312

eabm6597, 2022.313

[11] Z. Wu, S. Cheng, P. Zhao, A. Gahlawat, K. A. Ackerman, A. Lakshmanan, C. Yang, J. Yu, and314

N. Hovakimyan. L1 quad: L1 adaptive augmentation of geometric control for agile quadrotors315

with performance guarantees. arXiv preprint arXiv:2302.07208, 2023.316

[12] D. Hanover, P. Foehn, S. Sun, E. Kaufmann, and D. Scaramuzza. Performance, precision, and317

payloads: Adaptive nonlinear mpc for quadrotors. IEEE Robotics and Automation Letters, 7318

(2):690–697, 2022. doi:10.1109/LRA.2021.3131690.319

[13] A. Spitzer and N. Michael. Inverting Learned Dynamics Models for Aggressive Multirotor320

Control. In Robotics: Science and Systems XV. Robotics: Science and Systems Foundation,321

June 2019. ISBN 978-0-9923747-5-4. doi:10.15607/RSS.2019.XV.065. URL http://www.322

roboticsproceedings.org/rss15/p65.pdf. arXiv: 1905.13441.323

9

http://ieeexplore.ieee.org/abstract/document/5980409/
http://dx.doi.org/10.1109/LRA.2017.2776353
http://dx.doi.org/10.1109/LRA.2017.2776353
http://dx.doi.org/10.1109/LRA.2017.2776353
http://arxiv.org/abs/1712.02402
http://dx.doi.org/10.1109/TRO.2022.3177279
http://dx.doi.org/10.1109/LRA.2017.2720851
http://arxiv.org/abs/1707.05110
http://arxiv.org/abs/1707.05110
http://arxiv.org/abs/1707.05110
http://dx.doi.org/10.15607/RSS.2020.XVI.040
http://www.roboticsproceedings.org/rss16/p040.pdf
http://dx.doi.org/10.1109/ICRA.2019.8794351
http://arxiv.org/abs/1811.08027
http://dx.doi.org/10.1109/LRA.2021.3131690
http://dx.doi.org/10.15607/RSS.2019.XV.065
http://www.roboticsproceedings.org/rss15/p65.pdf
http://www.roboticsproceedings.org/rss15/p65.pdf
http://www.roboticsproceedings.org/rss15/p65.pdf

[14] B. Morrell, M. Rigter, G. Merewether, R. Reid, R. Thakker, T. Tzanetos, V. Rajur, and324

G. Chamitoff. Differential Flatness Transformations for Aggressive Quadrotor Flight. In 2018325

IEEE International Conference on Robotics and Automation (ICRA), pages 5204–5210, Bris-326

bane, QLD, May 2018. IEEE. ISBN 978-1-5386-3081-5. doi:10.1109/ICRA.2018.8460838.327

URL https://ieeexplore.ieee.org/document/8460838/.328

[15] E. F. Camacho and C. B. Alba. Model predictive control. Springer science & business media,329

2013.330

[16] G. Williams, P. Drews, B. Goldfain, J. M. Rehg, and E. A. Theodorou. Aggressive driving with331

model predictive path integral control. In 2016 IEEE International Conference on Robotics and332

Automation (ICRA), pages 1433–1440. IEEE, 2016.333

[17] J. Pravitra, K. A. Ackerman, C. Cao, N. Hovakimyan, and E. A. Theodorou. L1-adaptive334

mppi architecture for robust and agile control of multirotors. In 2020 IEEE/RSJ International335

Conference on Intelligent Robots and Systems (IROS), pages 7661–7666, 2020. doi:10.1109/336

IROS45743.2020.9341154.337

[18] K. Lee, J. Gibson, and E. A. Theodorou. Aggressive perception-aware navigation using deep338

optical flow dynamics and pixelmpc. IEEE Robotics and Automation Letters, 5(2):1207–1214,339

2020. doi:10.1109/LRA.2020.2965911.340

[19] Y. Zhang, W. Wang, P. Huang, and Z. Jiang. Monocular vision-based sense and avoid of uav341

using nonlinear model predictive control. Robotica, 37(9):1582–1594, 2019. doi:10.1017/342

S0263574719000158.343

[20] B. Michini and J. How. L1 Adaptive Control for Indoor Autonomous Vehicles: Design Pro-344

cess and Flight Testing. In Proceeding of AIAA Guidance, Navigation, and Control Con-345

ference, pages 5754–5768, 2009. URL https://arc.aiaa.org/doi/pdf/10.2514/6.346

2009-5754.347

[21] C. D. McKinnon and A. P. Schoellig. Unscented external force and torque estimation for348

quadrotors. In 2016 IEEE/RSJ International Conference on Intelligent Robots and Systems349

(IROS), pages 5651–5657, Daejeon, South Korea, Oct. 2016. IEEE. ISBN 978-1-5090-3762-350

9. doi:10.1109/IROS.2016.7759831. URL http://ieeexplore.ieee.org/document/351

7759831/.352

[22] E. Tal and S. Karaman. Accurate Tracking of Aggressive Quadrotor Trajectories using Incre-353

mental Nonlinear Dynamic Inversion and Differential Flatness. In 2018 IEEE Conference354

on Decision and Control (CDC), pages 4282–4288, Miami Beach, FL, Dec. 2018. IEEE.355

ISBN 978-1-5386-1395-5. doi:10.1109/CDC.2018.8619621. URL https://arxiv.org/356

abs/1809.04048. ISSN: 0743-1546.357

[23] D. Zhang, A. Loquercio, X. Wu, A. Kumar, J. Malik, and M. W. Mueller. A zero-shot adaptive358

quadcopter controller. arXiv preprint arXiv:2209.09232, 2022.359

[24] G. Torrente, E. Kaufmann, P. Foehn, and D. Scaramuzza. Data-Driven MPC for Quadrotors.360

IEEE Robotics and Automation Letters, 2021. ISSN 2377-3766, 2377-3774. doi:10.1109/361

LRA.2021.3061307. URL http://arxiv.org/abs/2102.05773. arXiv: 2102.05773.362

[25] A. Spitzer and N. Michael. Feedback Linearization for Quadrotors with a Learned Accel-363

eration Error Model. In 2021 IEEE International Conference on Robotics and Automa-364

tion (ICRA), pages 6042–6048, May 2021. doi:10.1109/ICRA48506.2021.9561708. URL365

https://ieeexplore.ieee.org/document/9561708. ISSN: 2577-087X.366

[26] A. Kumar, Z. Fu, D. Pathak, and J. Malik. RMA: Rapid Motor Adaptation for Legged Robots,367

July 2021. URL http://arxiv.org/abs/2107.04034. arXiv:2107.04034 [cs].368

10

http://dx.doi.org/10.1109/ICRA.2018.8460838
https://ieeexplore.ieee.org/document/8460838/
http://dx.doi.org/10.1109/IROS45743.2020.9341154
http://dx.doi.org/10.1109/IROS45743.2020.9341154
http://dx.doi.org/10.1109/IROS45743.2020.9341154
http://dx.doi.org/10.1109/LRA.2020.2965911
http://dx.doi.org/10.1017/S0263574719000158
http://dx.doi.org/10.1017/S0263574719000158
http://dx.doi.org/10.1017/S0263574719000158
https://arc.aiaa.org/doi/pdf/10.2514/6.2009-5754
https://arc.aiaa.org/doi/pdf/10.2514/6.2009-5754
https://arc.aiaa.org/doi/pdf/10.2514/6.2009-5754
http://dx.doi.org/10.1109/IROS.2016.7759831
http://ieeexplore.ieee.org/document/7759831/
http://ieeexplore.ieee.org/document/7759831/
http://ieeexplore.ieee.org/document/7759831/
http://dx.doi.org/10.1109/CDC.2018.8619621
https://arxiv.org/abs/1809.04048
https://arxiv.org/abs/1809.04048
https://arxiv.org/abs/1809.04048
http://dx.doi.org/10.1109/LRA.2021.3061307
http://dx.doi.org/10.1109/LRA.2021.3061307
http://dx.doi.org/10.1109/LRA.2021.3061307
http://arxiv.org/abs/2102.05773
http://dx.doi.org/10.1109/ICRA48506.2021.9561708
https://ieeexplore.ieee.org/document/9561708
http://arxiv.org/abs/2107.04034

[27] A. Molchanov, T. Chen, W. Hönig, J. A. Preiss, N. Ayanian, and G. S. Sukhatme. Sim-369

to-(Multi)-Real: Transfer of Low-Level Robust Control Policies to Multiple Quadrotors.370

arXiv:1903.04628 [cs], Apr. 2019. URL http://arxiv.org/abs/1903.04628. arXiv:371

1903.04628.372

[28] E. Kaufmann, L. Bauersfeld, and D. Scaramuzza. A Benchmark Comparison of Learned Con-373

trol Policies for Agile Quadrotor Flight, Feb. 2022. URL http://arxiv.org/abs/2202.374

10796. arXiv:2202.10796 [cs].375

[29] J. Schulman, F. Wolski, P. Dhariwal, A. Radford, and O. Klimov. Proximal policy optimization376

algorithms. CoRR, abs/1707.06347, 2017. URL http://arxiv.org/abs/1707.06347.377

[30] J. A. Preiss, W. Honig, G. S. Sukhatme, and N. Ayanian. Crazyswarm: A large nano-378

quadcopter swarm. In 2017 IEEE International Conference on Robotics and Automation379

(ICRA), pages 3299–3304, 2017. doi:10.1109/ICRA.2017.7989376.380

[31] A. Raffin, A. Hill, A. Gleave, A. Kanervisto, M. Ernestus, and N. Dormann. Stable-baselines3:381

Reliable reinforcement learning implementations. Journal of Machine Learning Research, 22382

(268):1–8, 2021. URL http://jmlr.org/papers/v22/20-1364.html.383

11

http://arxiv.org/abs/1903.04628
http://arxiv.org/abs/2202.10796
http://arxiv.org/abs/2202.10796
http://arxiv.org/abs/2202.10796
http://arxiv.org/abs/1707.06347
http://dx.doi.org/10.1109/ICRA.2017.7989376
http://jmlr.org/papers/v22/20-1364.html

A Ablations384

Ablation Tracking error (sim) (m)

No body frame failed
No fixed intial reference 0.437± 0.08

No feedback term 0.077± 0.011
Feedforward horizon 1 (H = 0.02s) failed
Feedforward horizon 5 (H = 0.3s) 0.240± 0.008

Feedforward horizon 10 (H = 0.6s) (used in main experiments) 0.055± 0.007
Feedforward horizon 15 (H = 0.9s) 0.073± 0.010
Feedforward horizon 20 (H = 1.2s) 0.101± 0.018

Base policy (no ablation) 0.046

Table 3: Tracking error (in m), in simulation, of various ablations after 15M training steps. Failed
indicates the drone diverges from the reference trajectory. Tracking error is with respect to infeasible
zigzag trajectories. The ablations are done without adaptation, and with no disturbances in the
environment. 5 runs were attempted for each ablation.

We test various ablations of our primary method, with results shown in Table 3. In particular, we385

test386

• No body frame: With our training setup, we found that transforming all state inputs (except387

for the orientation) into the body frame was necessary for accurate trajectory tracking. This388

ablation tests our method, but with the position p, velocity v, and reference positions in the389

world frame instead of the body frame.390

• No fixed initial reference This ablation removes the initial 2.5M training steps where we391

do not randomize the reference trajectory. We see that PPO converges to a much worse392

tracking performance. We note that the choice of the initial fixed reference does not have393

much impact on the variance of training, only the existence of the fixed reference.394

• No feedback term We remove the feedback term R⊤(pt − pd
t) from our controller in-395

puts. This term might appear redundant with the reference trajectory, but we find explicitly396

conditioning on the feedback error consistently results in slightly more accurate tracking.397

• Feedforward horizon We test varying sizes of our feedforward horizon. In Table 3, Feed-398

forward horizon N refers to passing in N future reference positions. As described in Sec-399

tion 3.2, we linearly space the N reference positions across time from t to t+H .400

• Base policy For comparison, we list the tracking error in sim of the main policy that we401

use in our experiments section.402

B Training Details and Network Architecture403

Training is done with the PPO implementation in the Stable Baselines3 library [31]. All PPO pa-404

rameters are left as default.405

The feedforward encoder architecture consists of 3 1-D convolution layers with ReLU activations406

that project the reference positions into a 32-dim representation for input to the main policy. Each407

1-D convolution has 16 filters with a kernel size of 3. The main policy network is a 3-layer MLP408

with 64 neurons per layer and ReLU activations, and the value network shares this structure.409

C Reference Trajectory Details410

C.1 Smooth Trajectory411

For smooth trajectories, we include a mix of degree 5 polynomials and chained polynomials. Poly-412

nomials start at x = 0 and y = 0, and return to the origin after 10 s, corresponding to our episode413

length. They are randomly generated by randomly selecting initial and end conditions. Chained414

12

0.5

0.0

0.5

X
(m

)

0.0 2.5 5.0 7.5 10.0
Time (s)

0.5

0.0

0.5

1.0

Y
(m

)
0.2

0.0

0.2

0.0 2.5 5.0 7.5 10.0
Time (s)

0.2

0.0

0.2

0.4

Figure 4: Left: Example of a random zigzag trajectory (infeasible). Right: Example of a random
chained polynomial trajectory (smooth).

polynomials are a series of random polynomials. We generate these trajectories by randomly se-415

lecting ”nodes” at x = 0 and y = 0 at random times between 0 s and 10 s, and fitting degree 5416

polynomials between each node, ensuring that first, second, and third order derivatives are continu-417

ous at each node. Note that these trajectories are not guaranteed to be feasible, although in practice418

they are easy to track as they are highly smooth.419

C.2 Infeasible Trajectory420

We use a class of what we refer to as zigzag trajectories. We generate these trajectories by randomly421

selecting time intervals between 0.5 and 1.5 seconds, randomly generating waypoints after each422

time interval, and linearly connecting each waypoint. The waypoints can vary from −1m to 1m in423

both the x and y directions. By training on these zigzags, we are able to generalize well to a wide424

variety of trajectories, including polygons and stars as seen in Figure 1, which are similar to random425

zigzags.426

C.3 Additional Figures of Results427

We show additional figures from our results from Table 2. Figure 7 shows the values of the predicted428

d̂ over time on an environment with wind versus one without wind. Our method is able to incorporate429

disturbance estimates of varying frequency despite only being trained with a constant disturbance430

per training episode. Figure 5 and Figure 6 show our tracking performance against L1-MPC for a431

smooth and infeasible trajectory, respectively.432

13

0.5

0.0

X
(m

)

1.0

0.5
Y

(m
)

8 10 12 14 16
Time (s)

0.6

0.7

0.8

Z
(m

)

Reference DATT L1-MPC

Figure 5: Performance of DATT against L1-MPC on a smooth trajectory with both wind and a plate
attached.

1

0

X
(m

)

1.5

1.0

0.5

Y
(m

)

6 8 10 12 14
Time (s)

0.6

0.8

Z
(m

)

Reference DATT L1-MPC

Figure 6: Performance of DATT against L1-MPC on an infeasible trajectory with both wind and a
plate attached.

14

5.0 7.5 10.0 12.5 15.0

0

10

X
(m

 /
s^

2)

5.0 7.5 10.0 12.5 15.0
time (s)

2.5

0.0

2.5

Y
(m

 /
s^

2)

without wind with wind

Figure 7: Predicted d̂ terms on two infeasible trajectories, one with wind, one without wind but with
an air drag plate.

15

	Introduction
	Problem Statement and Related Work
	Problem Statement
	Differential Flatness
	Model Predictive Control (MPC)
	Adaptive Control and Disturbance Estimation
	Reinforcement Learning for Quadrotor Control

	Methods
	Algorithm Overview
	Arbitrary Trajectory Tracking
	Adaptation to Disturbance

	Experiments
	Simulation and Training
	Hardware Setup and the Low-level Attitude Rate Controller
	Baselines
	Arbitrary Trajectory Tracking
	Adaptation Performance in Unknown Wind Fields with a Drag Plate

	Limitations and Future Work
	Ablations
	Training Details and Network Architecture
	Reference Trajectory Details
	Smooth Trajectory
	Infeasible Trajectory
	Additional Figures of Results

