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Figure A.3: Cosine similarity heat map of learned features from SimCLR on CIFAR-10 dataset. The
darker the color, the larger the similarity.

A TECHNICAL DETAILS

A.1 IMPLICIT BIAS OF SIMCLR ON CIFAR-10.

Figure A.3 plots the cosine similarity heat map of learned features from SimCLR on CIFAR-10 dataset.
To calculate the similarity of class A (figures denoted by ai) to class B (figures denoted by bi), we
first calculate the mean of bi as b̄. Then, we sum up

P
isim(ai,b̄) and plot is with colors. Hence, the

similarity matrix shown in Figure A.3 is not symmetric.

A.2 INVESTIGATIONS ON C(f).

Figures A.4 and A.5 illustrate the evolution of different complexity measurements during the training
process under the Gaussian mixture setting and the CIFAR-10 respectively.

In the Gaussian mixture setting, the feature extractor is a fully connected ReLU network. BesidesC(f),
we also evaluate the popular sum of squared weights. The observations on SimCLR are listed as below:

• The expected Lipschitz constant C(f) is small in initialization. It first increases (till around
100 iterations) and then consistently decreases. This empirically supports the implicit bias
towards minimizing C(f).

• C(f) and the sum of squared weights share very similar patterns.

• The SNE loss is non-increasing, as if we are doing stochastic neighbor embedding using
l2-distance.

In the CIFAR-10 case, the feature extractor is ResNet-18 plus a fully-connected projection layer.
The output from ResNet-18 is usually called representation (512 dimensional) and is utilized for
downstream tasks while the projection (128 dimension) is used for training. Besides C(f), we also
evaluate the l2-norm of the representation. The observations for SimCLR and t-SimCLR on CIFAR-10
are summarized as below:

• C(f) for the projection layer shares similar patterns as in the Gaussian mixture case, first
increase and then decreases. However, C(f) for the representation layer monotonically
decreases.

• C(f) for the projection layer and the l2-norm in the representation layer share almost
identical patterns.

• Comparing SimCLR, both the the calculated C(f) and l2-norm are much smaller for
t-SimCLR.
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Figure A.4: Empirical evaluation on the complexity of the learned feature mapping during training
under the Gaussian mixture setting. Two complexity measurements are considered, i.e., C(f) as in
(3.2) and the SNE loss as in (2.2). The SNE loss here only serves as in indicator for how well the
pairwise distances are preserved. The training objective is the standard InfoNCE loss. The SNE loss
decreases quickly until in the first 100 iterations and then stays flat.

In conclusion, on one hand, our empirical results demonstrate that the complexity of the feature
extractor C(f) does decrease during training and seem to be implicitly minimized. On the other hand,
its trend is shared with other more popularly used complexity measurements.

A.3 PROOF OF COROLLARY 3.6

In this section, we illustrate with rigor how the hypothesized implicit bias can give rise to structure-
preserving property of SSCL. Corollary 3.6 states that minimizing the (Lipschitz) complexity of the
feature mapping will also result in the best match between P and Q (under permutation). To provide
more theoretical insight, we present the following lemma in the simpler vector-matching case.
Lemma A.1. Let 0<x1< ···<xm and 0<y1< ···<ym be two real-valued sequences, normalized
such that
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Lemma A.1 gives a vector-version illustration of our Corollary 3.6, stating that minimizing the
expected derivative (to zero) of the mapping function f , i.e.,

P
if(xi)/x1 leads to preserving the norm

difference of the input vector and output vector.

Next, we provide the proof of Theorem 3.5.
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(a) SimCLR on CIFAR-10.

(b) t-SimCLR on CIFAR-10.

Figure A.5: Empirical evaluation on the complexity of the learned feature mapping during training
on CIFAR-10. Two complexity measurements are considered, i.e., C(f) as in (3.2) and l2-norm.
Specifically, we calculate the expected Lipschitz constant on both the representation layer (512-
dimensional) and the projection layer (128-dimensional). Figure (a) and (b) show the trends (along the
200 training epochs) for SimCLR and t-SimCLR respectively.

Proof of Theorem 3.5. Straightforwardly, we can write
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Thus, minimizing C1(P,Q⇡) also minimizes kP̄�Q
⇡kF .

Theorem 3.5 is a straightforward generalization of Lemma A.1. Next, we provide proof for Corollary
3.6, restated below.

Proof of Corollary 3.6. Recall the SimCLR loss LInfoNCE=
1
2n

Pn
i=1(l(xi,x0

i)+l(x0
i,xi)), where

l(xi,x
0
i)=�log

exp(sim(f(xi),f(x0
i))/⌧)P

x2Dn[D0
n\{xi}exp(sim(f(xi),f(x))/⌧)

.
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Without loss of generality, let ⌧ = 1. Notice that l(xi, x0
i) is monotonically decreasing as

sim(f(xi),f(x0
i)) increases, due to the monotonicity of function x

x+c with respect to x> 0 for any
c>0. Hence, in order for LInfoNCE to be minimized, perfect alignment is required, i.e., f(xi)=f(x0

i)
for any i=1,...,n.

With perfect alignment achieved, LInfoNCE only concerns the pairwise similarity between negative
samples f(xi)’s, which can be simplified as LInfoNCE�Luniform where
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Luniform can be minimized by mapping xi’s as distant as possible, hence the connection to Tammas
problem and the uniformity principle.

With sufficient capacity of the feature mapping f , the SimCLR loss can be minimized to its (empirical)
global minima. However, such f is not unique since LInfoNCE is invariant to permutations of mapping
relationships from xi to f(xi). If f⇤

n further minimizes C(f) on the sample level, i.e.,

f
⇤
n :=argmin

f
Cn(f)=argmin

f

X

1i 6=jn

kf(xi)�f(xj)k2
kxi�xjk2

,

Then, f⇤
n also solves a type of SNE problem with uniformity constraint (3.4) as stated in Theorem 3.5.

To see this, if we define qij =�kf(xi)�f(xj)k2 and pij =�kxi�xjk2, which is reasonable since
the larger the distance, the smaller the similarity, we can directly apply the results in Theorem 3.5.

Remark A.2. As can be seen from Theorem 3.5 and the proof of Corollary 3.6, we showcase the
relationship between minimizing C(f) and structure preserving property by considering a special
SNE problem, where the pairwise similarity is not modeled by Gaussian as standard, hence the word
“resembling" in Corollary 3.6. Although qij=�kf(xi)�f(xj)k2 is unorthodox, it is reasonable since
the larger the distance, the smaller the similarity. If we consider the SNE method as in Hinton et al.
(2006), our proof does not go through directly and demands more complicated analysis. However, our
results are still valid in connecting the complexity of the feature map to the pairwise similarity matching.

Our statement in Corollary 3.6 requires perfect alignment or perfect uniformity. When the assumptions
are not perfectly met, we can still obtain insights for the resulting feature mapping. Alignment and
uniformity (Wang & Isola, 2020) is not the whole story of contrastive learning, and our identified
structure-preserving property implicitly induced by complexity minimization provides an other angle of
the learning process. From this perspective, contrastive learning can be thought of as a combination of
alignment and SNE with uniformity constraint. In Figure A.3, while obtaining approximate alignment
and uniformity, the feature mapping also preserves the relative relationships of the clusters (labels).

A.4 ALIGNMENT AND UNIFORMITY OF T-SIMCLR

Due to the change of training objective, we may want to reevaluate the properties of the learned feature
from t-SimCLR. We will show that alignment still hold while uniformity is changed (to infinity).

Let us consider a compact region ⌦ ⇢ Rd and xi 2 ⌦. Let t be the transformation such that the
augmented data point x0

i= t(xi) is still in ⌦. Wang & Isola (2020) showed that the contrastive loss
can be decomposed into the alignment loss and the uniformity loss. Zimmermann et al. (2021) further
showed that the contrastive loss converges to the cross-entropy between latent distributions, where
the underlying latent space is assumed to be uniform, and the positive pairs are specified to be an
exponential distribution. In this section, we show a parallel result, which states that in the population
level, the t-SNE loss is the cross-entropy between two distributions of generating positive pairs.
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Theorem A.3. Let H(·,·) be the cross entropy between distributions. Let p(x) be the density of x,
p(·|x) be the conditional density of generating a positive pair, and define

qf (x
0|x)=Cf (x)

�1 p(x0)

1+kf(x)�f(x0)k22
, with Cf (x)=

Z
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1+kf(x)�f(x0)k22
dx0

.

Then, we have

Ex⇠p(x)(H(p(·|x),qf (·|x))=La(f)+Lu(f), (A.1)

which corresponds to the population-level t-SimCLR loss where
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Lu=Ex⇠p(x)logEex⇠p(ex)(1+kf(x)�f(ex)k22)�1

.

Proof. Note that
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Taking expectation with respect to x leads to
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In Theorem A.3,La is the alignment loss andLu is the uniformity loss. The decomposition is much more
natural for t-SimCLR as opposed to that inLInfoNCE, mainly due to the change from conditional to joint
distribution when modeling the pairwise similarity. Furthermore, if the t-SimCLR loss is minimized,
we must have p(·|x)=qf (·|x), provided f has sufficient capacity. Note that if p(·|x)=qf (·|x), then
Pj|i and Qj|i are perfectly matched, which indicates that we obtain a perfect neighbor embedding.
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Figure B.6: Nearest neighbor test accuracy vs. training epochs. SimCLR and t-SimCLR share similar
trends and convergence speed.

Theorem A.3 implies that the optimal feature mapping f
⇤ satisfies

p(·|x)=qf⇤(·|x),
which further implies that for any x2⌦,

Cf⇤(x)�1 p(x0)

1+kf⇤(x)�f⇤(x0)k22
/C(x)�1

p(x0|x)

,Cf⇤(x)�1 1

1+kf⇤(x)�f⇤(x0)k22
/C(x)�1 p(x,x0)

p(x)p(x0)
, (A.2)

where C(x) =
R
p(x0|x)dx0. Unlike the usual normalized SimCLR, t-SNE does not assume any

special structure on f (e.g., kfk2 = 1), thus f can go to infinity. Comparing to the finite sample
t-SimCLR loss, the population version is trickier to analyze. This is because for a given point x0, it
can be an augmented sample of some x (with probability p(x0|x)), or a negative sample of x (when
we treat x0 as another sample point). This reflects the essential difficulty between population and finite
samples in contrastive learning, not only for t-SimCLR.

For clustered data, (A.2) provides two important messages, provided that the augmentation is not too
extreme and the augmented sample x0 stays in the same cluster as the original x. On one hand, when
x1 and x2 belongs to different clusters, the joint density p(x=x1,x0=x2) will be very small, close
to zero, which indicates that kf⇤(x1)�f

⇤(x2)k2 is very large, tending to infinity. On the other hand,
for x1 and x2 belonging to the same cluster, p(x=x1,x0=x2) will be relatively large. Hence, the
features of the same cluster will stay close. Overall, we will observe similar clustered structure in
the feature space. This is confirmed in the Gaussian mixture setting in Figure 1(c), in which case, the
problem can be oversimplified as mapping 5 points in R2 to the unit-circle.

B EXPERIMENT DETAILS

B.1 CIFAR-10 SETTINGS

CIFAR-10 (Krizhevsky, 2009) is a colorful image dataset with 50000 training samples and 10000
test samples from 10 categories. We use ResNet-18 (He et al., 2016) as the feature extractor, and
the other settings such as projection head all follow the original settings of SimCLR (Chen et al.,
2020a). To evaluate the quality of the features, we follow the KNN evaluation protocol (Wu et al.,
2018). which computes the cosine similarities in the embedding space between the test image and
its nearest neighbors, and make the prediction via weighted voting. We train each model with batch
size of 256 and 200 epochs for quicker evaluation. For t-SimCLR, without specifying otherwise, we
grid search the tdf and ⌧ with range {1, 2, 5, 10} and {1, 2, 5, 10} respectively.

Ablation of training epochs We also run the SimCLR and t-SimCLR experiments in the more
standard 1000 epochs setting. For SimCLR, we use batch size of 512, learning rate of 0.3, temperature
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Figure B.7: The histogram of IoUs for 1000 constructed positive pairs in CIFAR-10. The empirical
distribution is almost symmetric around 0.5.

of 0.7, and weight dacay of 0.0001. For t-SimCLR, we use batch size of 512, learning rate of 0.8,
temperature of 10, weight dacay of 0.0002, and tdf =5. The nearest neighbor accuracy for SimCLR
is 87.2% vs. that for t-SimCLR is 88.8%.

B.2 IMAGE AUGMENTATION

When processing images, several popular augmentations are usually adopted (following the setting in
SimCLR Chen et al. (2020a)), e.g., random resized crop (crops a random portion of image and resize it
to the original size), horizontal flip, color jitter (randomly change the brightness, contrast, saturation and
hue of an image). To illustrate the natural weighting scheme in Section 4.1, we considered random re-
sized crop and specifies the weights by the IoU (intersection over union) of the positive pair. In particular,
two augmented images are created from an anchor image. Each augmentation crops a rectangular region
of the image, denoted by r1,r2 respectively, and their IoU is defined by the area of intersection r1\r2
divided by the area of the union r1[r2. The IoU is always between 0 and 1. In our experiment, we chose
the default settings and Figure B.7 illustrates the IoU histogram of 1000 constructed positive pairs.

B.3 DEGREE OF FREEDOM IN t-SIMCLR

Feature dimension efficiency in OOD case. To further investigate the generalization ability of
SSCL methods, we devise a challenging setting where the model is trained on CIFAR-10 and tested
on CIFAR-100 classification. In this case, we evaluate the effect of increasing feature dimensions
in the projection layer, as an extension on the CIFAR-10 in-distribution case. The results are shown
in Figure B.8, where there are two things to note:

• The gain of extra dimensions in the OOD case does vanish later than that in the in-distribution
case.

• The advantage of SimCLR vs. t-SimCLR is very significant with around 10% improvement
when d= 128 using nearest neighbor5 classification, indicating that t-SimCLR produces
better separated clusters.

Relationship between tdf and dz . The larger the degree of freedom tdf , the less heavy-tail the
t-distribution. As dz decreases, the crowding problem becomes more severe and as recommended
by (Van der Maaten & Hinton, 2008), a smaller tdf tends to work better. We evaluate the sensitivity
of tdf (1, 5, 10) under different choices of dz (1, 2, 4, 8, 16, 32, 64, 128) in CIFAR-10 and the results
are reported in Figure B.9. As can be seen, when dz is small (1,2,4,8), tdf =1 outperforms. Comparing

5When evaluating by training linear classifiers for 100 epochs, the accuracy for SimCLR is 46.4% and that for
t-SimCLR is 48.14% (averaged over 3 replications).
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Figure B.8: Extension on Figure 2(b). Nearest neighbor classification accuracy for SimCLR vs.
t-SimCLR on both CIFAR-10 (in-distribution) and CIFAR-100 (out-of-distribution) using different
feature dimensions.

Figure B.9: Nearest neighbor classification accuracy on CIFAR-10 for t-SimCLR using different
feature dimensions and different degrees of freedom (t_df).

tdf =5 and tdf =10, the two perform similarly when dz is large (16,32,64,128) but the smaller tdf =5
yields better accuracy when dz=1,2,4.

Tuning temperature vs. tuning tdf . As illustrated in Section 4.2, when the feature space dimension
is low, the heavy-tailed t-distribution is a better choice than Gaussian to alleviate the crowding problem.
Even though tuning the temperature of LInfoNCE, i.e., making ⌧ larger, can also have the effect of
making the distribution less concentrated (⌧ can be seen as the standard deviation), tuning temperature
and tuning tdf are fundamentally different. The former is controlling how fast does the similarity
Qi,j decays as the distance between zi and zj increases, while the latter serves as a scaling factor,
offering constant level modification of the scheme. In our experiments with SimCLR vs t-SimCLR
on CIFAR-10, temperature is tuned as a hyperparameter. The difference in ⌧ can never make up to the
difference between the baseline SimCLR and t-SimCLR. We found ⌧=0.5 to work better for the base
SimCLR while larger ⌧ works better with our t-SimCLR. We recommend ⌧=5 as the default choice.

B.4 IMAGENET PRE-TRAINING

To show the ability for large scale domain transfer and OOD generalization, we conduct experiments
on ImageNet pre-training based on MoCo-v2 with its official implementation6. We follow most of
their settings, e.g, data augmentation, 200 epochs pre-training, and optimization strategy, etc. The loss

6https://github.com/facebookresearch/moco
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Table B.3: Domain transfer results of vanilla MoCo-v2 and t-MoCo-v2.
Method Aircraft Birdsnap Caltech101 Cars CIFAR10 CIFAR100 DTD Pets SUN397 Avg.

MoCo-v2 (800 epochs) 83.80 45.51 83.01 86.18 96.42 71.69 71.70 89.11 55.61 75.89
MoCo-v2 (200 epochs) 82.75 44.53 83.31 85.24 95.81 72.75 71.22 86.70 56.05 75.37
t-MoCo-v2 (200 epochs) 82.78 53.46 86.81 86.17 96.04 78.32 69.20 87.95 59.30 77.78

Table B.4: OOD accuracies of vanilla MoCo-v2 and t-MoCo-v2 on domain generalization benchmarks.
Method PACS VLCS Office-Home Avg.

MoCo-v2 (800 epochs) 58.9 69.8 41.6 56.8
MoCo-v2 (200 epochs) 58.5 70.4 36.6 55.2
t-MoCo-v2 (200 epochs) 61.3 75.1 42.1 59.5

is modified according to Section 4.2 and batch normalization is applied along every dimension. We
grid search the tdf and ⌧ with range {2, 5, 10, 15} and {0.2, 2, 5, 10} respectively. Finally we choose
tdf =10 and ⌧ =5 to be the optimal hyperparameters. We use this pre-train model as initialization
for domain transfer and OOD experiments.

B.5 DOMAIN TRANSFER

We compare MoCo-v2 pre-trained with 800 / 200 epochs and t-MoCo-v2 on Aircraft, Birdsnap,
Caltech101, Cars, CIFAR10, CIFAR100, DTD, Pets, and SUN397 in Table B.3. We follow the transfer
settings in Ericsson et al. (2021) to finetune the pre-trained models. For datasets Birdsnap, Cars,
CIFAR10, CIFAR100, DTD, and SUN397, we report the top-1 accuracy metric, while for Aircraft,
Caltech101, and Pets, we report the mean per-class accuracy metric. We also follow Ericsson et al.
(2021) to split each dataset into training, validation, and test sets. On each dataset, we perform a
hyperparameter search as follows. (1) We choose the initial learning rate according to a grid of 4 log-
arithmically spaced values between 1⇥10�4 and 1⇥10�1; (2) We choose the weight decay parameter
according to a grid of 4 logarithmically spaced values between 1⇥10�6 and 1⇥10�3, plus no weight
decay; (3) The weight decay values are divided by the learning rate; (4) For each pair of learning rate
and weight decay, we finetune the pre-trained model for 5000 steps by SGD with Nesterov momentum
0.9, batch size of 64, and cosine annealing learning rate schedule without restarts. As can be seen in
Table B.3, our t-MoCo-v2 with 200 epochs even outperform the baseline with 800 epochs on average.

B.6 OOD GENERALIZATION

To demonstrate the advantage of our modification, we also compare MoCo-v2 pre-trained with 800
/ 200 epochs and t-MoCo-v2 on OOD generalization benchmarks: PACS Li et al. (2017), VLCS Fang
et al. (2013), Office-Home Venkateswara et al. (2017). We follow the standard way to conduct the
experiments, i.e., choosing one domain as the test domain and using the remaining domains as training
domains, which is named the leave-one-domain-out protocol. The top linear classifier is trained on the
training domains and tested on the test domain. Each domain rotates as the test domain and the average
accuracy is reported for each dataset in Table B.4. On each dataset, we perform a hyperparameter
search following DomainBed Gulrajani & Lopez-Paz (2021). We adopt the leave-one-domain-out
cross-validation setup in DomainBed with 10 experiments for hyperparameter selection and run 3
trials. As can be seen in Table B.4, our t-MoCo-v2 with 200 epochs even significantly outperform
the baseline with 800 epochs for all of the three datasets.

B.7 SSCL INSPIRED DATA VISUALIZATION

t-SNE (Van der Maaten & Hinton, 2008) and its variants are designed for data visualization. However,
for more complicated data, such as colored images, the results are not satisfactory. Using standard
t-SNE, the 2D visualization of the 50K training images of CIFAR-10 (labels denoted as 0, 1,...,9) can
be seen in Figure B.10, where different labels are hardly separated. The poor performance of t-SNE
on CIFAR-10 can be traced back to the poor distance choice on images, i.e., l2-norm. Inspired by
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Figure B.10: 50K CIFAR-10 training images visualization in 2D with t-SNE.

Figure B.11: 50K CIFAR-10 training images visualization in 2D with the default t-SimCLR.

the success of SSCL for natural images, t-SNE can potentially be improved by incorporating data
augmentations.

In light of our perspective (S1), t-SNE can take advantage of the distance specified with (3.1) and
the resulting model is essentially our t-SimCLR with feature dimension 2. The visualization from
t-SimCLR is shown in Figure B.11, which is much more separated (the nearest neighbor classification
accuracy on CIFAR-10 test data is 56.6%). By choosing the feature dimension to be 2, various SSCL
methods can also be made into data visualizing tools. In Figure B.12, we visualize the outcome from
SimCLR (the nearest neighbor classification accuracy on CIFAR-10 test data is 24.8%).
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Figure B.12: 50K CIFAR-10 training images visualization in 2D with the SimCLR.
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