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ABSTRACT

Contrastive learning, especially self-supervised contrastive learning (SSCL), has
achieved great success in extracting powerful features from unlabeled data. In this
work, we contribute to the theoretical understanding of SSCL and uncover its connec-
tion to the classic data visualization method, stochastic neighbor embedding (SNE)
(Hinton & Roweis, 2002), whose goal is preserving pairwise distances. In the per-
spective of preserving neighboring information, SSCL can be viewed as a special case
of SNE with the input space pairwise similarities specified by data augmentation. The
established correspondence facilitates deeper theoretical understanding of learned
features of SSCL, as well as methodological guidelines for practical improvement.
Specifically, through the lens of SNE, we provide novel analysis on domain-agnostic
augmentations, implicit bias and robustness of learned features. To illustrate the prac-
tical advantage, we demonstrate that the modifications from SNE to t-SNE (Van der
Maaten & Hinton, 2008) can also be adopted in the SSCL setting, achieving signif-
icant improvement in both in-distribution and out-of-distribution generalization.

1 INTRODUCTION

Recently, contrastive learning, especially self-supervised contrastive learning (SSCL) has drawn
massive attention, with many state-of-the-art models following this paradigm in both computer vision
(He et al., 2020a; Chen et al., 2020a;b; Grill et al., 2020; Chen & He, 2021; Zbontar et al., 2021)
and natural language processing (Fang et al., 2020; Wu et al., 2020; Giorgi et al., 2020; Gao et al.,
2021; Yan et al., 2021). In contrast to supervised learning, SSCL learns the representation through
a large number of unlabeled data and artificially defined self-supervision signals, i.e., regarding the
augmented views of a data sample as positive pairs and randomly sampled data as negative pairs. By
enforcing the features of positive pairs to align and those of negative pairs to be distant, SSCL produces
discriminative features with the state-of-the-art performance for various downstream tasks.

Despite the empirical success, the theoretical understanding is under-explored as to how the learned fea-
tures depend on the data and augmentation, how different components in SSCL work and what are the
implicit biases when there exist multiple empirical loss minimizers. Without proper understanding, prac-
tical applications might be inefficient and unreliable. For instance, SSCL methods are widely adopted
for pretraining, whose feature mappings are to be utilized for various downstream tasks which are usu-
ally out-of-distribution (OOD). The distribution shift poses great challenges for the feature learning pro-
cess with extra requirement for robustness and OOD generalization (Arjovsky et al., 2019; Krueger et al.,
2021; Bai et al., 2021; He et al., 2020b), which demands deeper understanding of the SSCL methods.

The goal of SSCL is to learn the feature representations from data. For this problem, one classic
method is SNE (Hinton et al., 2006) and its various extensions. Specially, t-SNE (Van der Maaten
& Hinton, 2008) has become the go-to choice for low-dimensional data visualization. Comparing
to SSCL, SNE is far better explored in terms of theoretical understanding (Arora et al., 2018;
Linderman & Steinerberger, 2019; Cai & Ma, 2021). However, its empirical performance is not
satisfactory, especially in modern era where data are overly complicated. Both trying to learn feature
representations, are there any deep connections between SSCL and SNE? Can SSCL take the advantage
of the theoretical soundness of SNE? Can SNE be revived in the modern era by incorporating SSCL?

In this work, we give affirmative answers to the above questions and demonstrate how the connections
to SNE can benefit the theoretical understandings of SSCL, as well as provide methodological
guidelines for practical improvement. The main contributions are summarized below.
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• We propose a novel perspective that interprets SSCL methods as a type of SNE methods with the
aim of preserving pairwise similarities specified by the data augmentation.

• The discovered connection enables deeper understanding of SSCL methods. We provide novel
theoretical insights for domain-agnostic data augmentation, implicit bias and OOD generalization.
Specifically, we show isotropic random noise augmentation induces l2 similarity while mixup noise
can potentially adapt to low-dimensional structures of data; we investigate the implicit bias from the
angle of order preserving and identified the connection between minimizing the expected Lipschitz
constant of the SSCL feature map and SNE with uniformity constraint; we identify that the popular
cosine similarity can be harmful for OOD generalization.

• Motivated by the SNE perspective, we propose several modifications to existing SSCL methods and
demonstrate practical improvements. Besides a re-weighting scheme, we advocate to lose the spherical
constraint for improved OOD performance and a t-SNE style matching for improved separation.
Through comprehensive numerical experiments, we show that the modified t-SimCLR outperforms
the baseline with 90% less feature dimensions on CIFAR-10 and t-MoCo-v2 pretrained on ImageNet
significantly outperforms in various domain transfer and OOD tasks.

2 PRELIMINARY AND RELATED WORK

Notations. For a function f :⌦!R, let kfk1=supx2⌦|f(x)| and kfkp=(
R
⌦|f(x)|

p
dx)1/p. For a

vectorx, kxkp denotes its p-norm, for 1p1. P(A) is the probability of eventA. For a random vari-
able z, we usePz and pz to denote its probability distribution and density respectively. Denote Gaussian
distribution byN(µ,⌃) and let Id be thed⇥d identity matrix. Let the dataset beDn={x1,···,xn}⇢Rd

where eachxi independently follows distributionPx. The goal of unsupervised representation learning
is to find informative low-dimensional features z1,···,zn2Rdz ofDn where dz is usually much smaller
than d. We use f(x) to as the default notation for the feature mapping from Rd!Rdz , i.e., zi=f(xi).

Stochastic neighbor embedding. SNE (Hinton & Roweis, 2002) is a powerful representation
learning framework designed for visualizing high-dimensional data in low dimensions by preserving
neighboring information. The training process can be conceptually decomposed into the following two
steps: (1) calculate the pairwise similarity matrix P 2Rn⇥n for Dn; (2) optimize features z1,···,zn
such that their pairwise similarity matrix Q2Rn⇥n matches P .

Under the general guidelines lie plentiful details. In Hinton & Roweis (2002), the pairwise similarity
is modeled as conditional probabilities of xj being the neighbor of xi, which is specified by a Gaussian
distribution centered at xi, i.e., when i 6=j,

Pj|i=
exp(�kxi�xjk22/2�2

i )P
k 6=iexp(�kxi�xkk22/2�2

i )
, (2.1)

where �i is the variance of the Gaussian that is centered at xi. Similar conditional probabilities
Qj|i’s can be defined on the feature space. When matching Q to P , the measurement chosen is the
KL-divergence between two conditional probabilities. The overall training objective for SNE is

inf
z1,···,zn

nX

i=1

nX

j=1

Pj|ilog
Pj|i

Qj|i
. (2.2)

Significant improvements have been made to the classic SNE. Im et al. (2018) generalized the
KL-divergence to f -divergence and found that different divergences favors different types of structure.
Lu et al. (2019) proposed to make P doubly stochastic so that features are less crowded. Most
notably, t-SNE (Van der Maaten & Hinton, 2008) modified the pairwise similarity by considering joint
distribution rather than conditional, and utilizes t-distribution instead of Gaussian in the feature space
modeling. It is worth noting that SNE belongs to a large class of methods called manifold learning (Li
et al., 2022). In this work, we specifically consider SNE. If no confusion arises, we use SNE to denote
the specific work of Hinton & Roweis (2002) and this type of methods in general interchangeably.

Self-supervised contrastive learning. The key part of SSCL is the construction of positive pairs,
or usually referred to as different views of the same sample. For each xi in the training data, denote
its two augmented views to be x0

i and x00
i . Let D0

n={x0
1,···,x0

n}, D00
n={x00

1 ,···,x00
n} and define

l(x0
i,x

00
i )=�log

exp(sim(f(x0
i),f(x

00
i ))/⌧)P

x2D0
n[D00

n\{x0
i}
exp(sim(f(x0

i),f(x))/⌧)
,
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where sim(z1, z2) = h z1
kz1k2

,
z2

kz2k2
i denotes the cosine similarity and ⌧ is a tempera-

ture parameter. The training objective of the popular SimCLR (Chen et al., 2020a) is
LInfoNCE :=

1
2n

Pn
i=1(l(x

00
i ,x

0
i)+l(x0

i,x
00
i )).

Recently, various algorithms are proposed to improve the above contrastive learning. In order to
eliminate the need for the large batch size, MoCo (He et al., 2020a; Chen et al., 2020b) utilizes a
moving-averaged encoder and a dynamic memory bank to store negative representations, making
it more device-friendly. Grill et al. (2020); Chen & He (2021); Zbontar et al. (2021) radically
discard negative samples in SSCL but still achieve satisfactory transfer performance. Another line
of works (Caron et al., 2020; Li et al., 2021) mines the hierarchy information in data to derive more
semantically compact representations. Radford et al. (2021); Yao et al. (2021) even extend the
contrastive methods to the multi-modality data structure to achieve significant zero-shot results.

Theoretical understanding of SSCL. In contrast of the empirical success, theoretical understanding
of SSCL is still limited. While most of theoretical works (Arora et al., 2019; Tosh et al., 2020; HaoChen
et al., 2021; 2022; Wang et al., 2022; Wen & Li, 2021; Wei et al., 2020; Huang et al., 2021; Ji et al., 2021)
focus on its generalization ability on downstream tasks, there are some works studying specifically
the InfoNCE loss. One line of works (Oord et al., 2018; Bachman et al., 2019; Hjelm et al., 2018; Tian
et al., 2019; 2020) understand the InfoNCE loss from mutual information perspective, showing that
the negative InfoNCE is a lower bound of mutual information between positive samples. Other works
(Wang & Isola, 2020; Huang et al., 2021; Jing et al., 2021) are from the perspective of geometry of
embedding space, showing that InfoNCE can be divided into two parts: one controls alignment and the
other prevents representation collapse. In this paper, we study SSCL from the SNE perspective, which,
to the best of the authors’ knowledge, has no discussion in existing literature. The closest work to ours is
Balestriero & LeCun (2022), which proposed a unifying framework under the helm of spectral manifold
learning. In comparison, our work focus specifically on the connection between SSCL and SNE.

3 SNE PERSPECTIVE OF SSCL

A closer look at the training objectives of SNE and SimCLR reveals great resemblance — SimCLR
can be seen as a special SNE model. To see this, denote eD2n =D00

n[D0
n as the augmented dataset

with index ex2i�1 =x00
i and ex2i =x0

i. If we change the l2 distance to the negative cosine similarity
and let �2

i ⌘⌧ . Admitting similar conditional probability formulation as in (2.2) yields that for i 6=j,

eQj|i=
exp(sim(f(exi),f(exj))/⌧)P
k 6=iexp(sim(f(exi),f(exk))/⌧)

.

By taking

ePj|i=

⇢
1, if exi and exj are positive pairs
0, otherwise,

(3.1)

the SNE objective (2.2) can be written as
2nX

i=1

2nX

j=1

ePj|ilog
ePj|i
eQj|i

=
nX

k=1

 
eP2k�1|2klog

eP2k�1|2k
eQ2k�1|2k

+ eP2k|2k�1log
eP2k|2k�1

eQ2k|2k�1

!

=
nX

k=1

⇣
�log( eQ2k�1|2k)�log( eQ2k|2k�1)

⌘
,

which reduces to the SimCLR objective LInfoNCE, up to a constant scaling term only depending on n.

Now that we have established the correspondence between SNE and SimCLR, it’s clear that the feature
learning process of SSCL also follows the two steps of SNE.

(S1) The positive pair construction specifies the similarity matrix P .
(S2) The training process then matches Q to P by minimizing some divergence between the two

specified by the training objective, e.g., KL divergence in SimCLR.

The main difference between SNE and SSCL is the first part, where the P in SNE is usually densely
filled by lp distance, ignoring the semantic information within rich data like images and texts. In
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Figure 1: Gaussian mixture model with 5 components. (a) illustration of data with 250 samples. (b)
learned features by standard SimCLR with normalization (cosine similarity) to 1-sphere. (c) learned
features by modified SimCLR without normalization (l2 similarity). (d, e) feature mapping of the two
methods in case of OOD mean shift. The linear classification accuracy is 48.4% in (d) and 100% in (e).

contrast, SSCL omits all traditional distances in Rd and only specifies semantic similarity through data
augmentation, and the resulting P is sparsely filled only by positive pairs as in (3.1). For structurally
rich data such as image or text, the semantic information is invariant to a wide range of transformations.
Human’s prior knowledge of such invariance guides the construction of positive pairs in SSCL, which
is then learned by the feature mapping.

Remark 3.1 (SNE vs SSCL). We would like to clarify on the main difference between SNE and SSCL
that we focus in this work. Although standard SNE (Hinton et al., 2006) is non-parametric without
explicit feature maps, and is optimized for the whole dataset, these are not the defining properties
of SNE. SNE can also utilize explicit feature maps and mini-batch training (Van Der Maaten, 2009).
On the other hand, SSCL can also benefit from larger/full batches (Chen et al., 2020a) and can also
be modified to directly optimize the features zi’s. In this work, we omit these subtleties1 and focus
on the (S1) perspective, which we view as the most significant difference between SNE and SSCL.

3.1 ANALYSIS

In this section, to showcase the utility of the SNE perspective, we demonstrate how the feature learning
process of SSCL methods, e.g., SimCLR, can become more intuitive and transparent. Specifically,
we re-derive the alignment and uniformity principle (Wang & Isola, 2020) as well as provide novel
analysis on domain-agnostic augmentations, the implicit bias and robustness of learned features. To
aid the illustration, we device toy examples with simulated Gaussian mixture data.

Gaussian mixture setting. Let the data follow d-dimensional Gaussian mixture distribution with
m components where Px ⇠ 1

m

Pm
i=1N(µi,�

2Id). The special case with d= 2, m= 5, � = 0.1 is
illustrated in Figure 1(a) with 250 independent samples. To apply contrastive methods, consider
constructing positive pairs by direct sampling, i.e., if x is from the first component, then we sample
another x0 ⇠N(µ1,�

2Id) independently as its alternative view for contrast. The negative samples
are the same as in standard SimCLR training, i.e., in one batch, for one anchor, the negative pairs are
all samples that is not its positive pair.

It should be noted that the Gaussian mixture setting mainly serves as a proof of concept for intuitive
illustrations. Our theoretical development, e.g., Corollary 3.6, is general and not restricted to the
Gaussian mixture setting.

1All the contrastive losses are written in full batches for simplicity in this work as we focus on analyzing the
optimal solutions of SSCL methods rather than the optimization process.

4



Under review as a conference paper at ICLR 2023

3.1.1 DOMAIN-AGNOSTIC DATA AUGMENTATION

Now that we have established in (S1) that the input space pairwise distance is specified by the data
augmentation, a natural question to ask is what are the induced distances. In this section, we investigate
this problem for domain-agnostic data augmentations.

The quality of data augmentation has great impact on the performance of SSCL methods, which reflects
our prior knowledge on the data. However, when facing new data without any domain knowledge,
we have to rely on domain-agnostic data augmentations, e.g., adding random noises (Verma et al.,
2021), for contrast. We first consider using general random noise augmentation, i.e., for any x2Rd,
let x0=x+� where � follows some distribution with density �(x). Then, for any xi, the probability
density of having t2Rd as its augmented point can be characterized as Pt|xi

=P(xi and x0
i=t form

a positive pair|xi)=�(t�xi). We have the following proposition on Gaussian-induced distance.

Proposition 3.2 (Gaussian noise injection). If the noise distribution is isotropic Gaussian, the induced
distance is equivalent to the l2 distance in Rd, up to a monotone transformation.

Another popular noise injection method is the mixup (Zhang et al., 2017), where the augmented
data are comprised of convex combinations of the training data. For each xi, a positive pair can be
constructed from another xj such that x0

i = xi+�(xj �xi) and � 2 (0,1) is the hyperparameter
usually modeled with Beta distribution. For independent x1,x2⇠Px, denote the convoluted density
of �(x1�x2) as p�(x), which is symmetric around 0. Then, if employing mixup for positive pairs
in SSCL, the induced distance can be written as Px1,x2 =Px2,x1 =p�(x1�x2).

Gaussian vs. mixup. Verma et al. (2021) proposed to use mixup when domain-specific information
is unattainable and provided supportive analysis on its advantage over isotropic Gaussian noise from
the classification generalization error point of view. Through (S1) perspective, we can intuitively
explain why data-dependent mixup noises can be potentially better from the perspective of the “curse

of dimensionality”. Consider the d-dimensional Gaussian mixture setting with m < d separated
components. Notice that µ1,··· ,µm can take up at most (m� 1)-dimensional linear sub-space of
Rd. Denoted the space spanned by µi’s as Sµ. For the light-tailed Gaussian distribution, and the
majority of samples will be close to Sµ. Hence, majority of the convoluted density p�(x) will also
be supported on Sµ, so does the corresponding Px2,x1 . Thus, the induced distance from mixup will
omit irrelevant variations in the complement of Sµ and focus on the low-dimensional sub-space Sµ

where µi’s actually differ. This effectively reduces the dimension dependence from d to m�1. In
comparison, isotropic Gaussian noise induces l2 distance for positive pairs with support of Rd, which
will be much more inefficient, especially when m⌧d. Since it is well-known that the performance
of regression or classification models is strongly influenced by the intrinsic dimension of the input
space (Hamm & Steinwart, 2021), keeping the data in a low-dimensional space is preferable.

3.1.2 ALIGNMENT AND UNIFORMITY

Characterizing the learned features of SSCL is of critical importance. Wang & Isola (2020) proposed
alignment and uniformity as principles for SimCLR type contrastive learning methods. Such results
can be intuitively understood through the perspective of (S1) and (S2).

Consider the common case where the feature space is (dz�1)-sphere. First, (3.1) indicates that only
similarities (distances) between positive pairs are non-zero (finite) and all other pairwise similarities
(distances) are zero (infinity). Preserving (3.1) requires the features of positive pairs to align (cosine
similarity tends to 1) and those of negative pairs to be as distant as possible. If in the extreme case
where positive pairs match exactly, i.e., f(xi)=f(x0

i) for any i=1,···,n, we call it perfect alignment.

If perfect alignment is achieved and the features are constrained on the unit sphere, matching (3.1)
implies pushing n points on the feature space as distant as possible. Maximally separated n points
on a d-sphere has been studied in geometry, known as the Tammes problem (Tammes, 1930; Erber &
Hockney, 1991; Melisseny, 1998). We say perfect uniformity is achieved if all the pairs are maximally
separated on the sphere. There are some simple cases of the Tammes problem. If d = 2, perfect
uniformity can be achieved if the mapped points form a regular polygon. If d� n�1, the solution
can be given by the vertices of an (n�1)-simplex, inscribed in an (n�1)-sphere embedded in Rd.
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The cosine similarity between any two vertices is �1/(n�1) and in this case, LInfoNCE can attain
its lower bound2. As n!1, the point distribution converges weakly to uniform distribution.

As can be seen in Figure 1(a, b), perfect alignment and perfect uniformity are almost achieved by
standard SimCLR in the Gaussian mixture setting.

3.1.3 IMPLICIT BIAS

Existing theoretical results on SSCL provide justification of its empirical success in classification.
However, there’s more to it than just separating different classes and many phenomena are left
unexplained. Take the popular SimCLR (Chen et al., 2020a) on CIFAR-10 as an example, we can
consistently observe that the feature similarities within animals (bird, cat, deer, dog, frog, horse) and
within objects (airplane, automobile, ship, truck), are significantly higher than those between animals
and objects3. This can be viewed as an implicit bias towards preserving semantic information, which
might be surprising as we have no supervision on the label information during the training process.
However, existing literature on implicit bias is scarce. As advocated in Saunshi et al. (2022), ignoring
inductive biases cannot adequately explain the success of contrastive learning. In this section, we
provide a simple explanation from the perspective of SNE.

For a more concrete illustration, consider training SimCLR in the Gaussian mixture setting with
d=1, dz =2, m=4, µi= i, and �=0.1. Denote the 4 components in ascending order by A,B,C,D.
Perfect alignment and uniformity imply that their feature maps (a, b, c, d) on the unit-circle should
be vertices of an inscribed square. What left unsaid is their relative order. Clockwise from a, regardless
of the initialization, we can observe SimCLR to consistently produce the order a ! b! c! d.
Remark 3.3 (Relative ordering and neighbor-preserving). The order-preserving property showcased
with d= 1 is mainly for illustration, as in one-dimension, the neighboring info is simplified as the
order, which is much easier to understand. The results remain the same in high dimensions as long
as the clusters are well separated with an obvious order of clusters. For instance, some relative orders
in Figure 1(a,b) are also stable, e.g., the neighbor of blue will consistently be purple and yellow.

With great resemblance to SNE, SSCL methods also exhibit neighbor-preserving property and we
identify it as an implicit bias. Such implicit bias can be universal in SSCL and the phenomenon in
Figure A.3 is also a manifestation. In deep learning, the implicit bias is usually characterized by either
closeness to the initialization (Moroshko et al., 2020; Azulay et al., 2021), or minimizing certain
complexity (Razin & Cohen, 2020; Zhang et al., 2021). In the case of SimCLR, we hypothesize the
implicit bias as the expected Lipschitz constant, which has deep connections to SNE with uniformity
constraint. For a feature map f onto the unit-sphere, define

C(f)=Ex,x0
kf(x)�f(x0)k2

kx�x0k2
, (3.2)

where the x1,x2 are independent samples from the data distribution.
Definition 3.4 (SNE with uniformity constraint). Assume data x1,···,xn2Rd. If the corresponding
SNE features z1, ··· , zn 2 Rdz are constrained to be the maximally separated n points on the
(dz�1)-sphere, we call this problem SNE with uniformity constraint.

The key of SNE is matching the pairwise similarity matrices Q to P . When solving SNE with
uniformity constraint, the only thing to be optimized is the pairwise correspondence, or ordering of
the mapping. We have the following theorem that links the neighbor-preserving property to C(f).
Theorem 3.5. Let x1,··· ,xn 2Rd such that kxi�xjk2 > 0 for any i,j and let z1,··· ,zn 2Rdz be
maximally separated n points on the (dz�1)-sphere. Denote P =(pij)n⇥n and Q=(qij)n⇥n as the
corresponding pairwise similarity matrices of xi’s and zi’s respectively. Let ⇡ denote a permutation
on {1,···,n} and denote all such permutations as T . Let Q⇡ as the ⇡-permuted matrix Q and define

C1(P, Q
⇡)=

X

i 6=j

q⇡(i)⇡(j)

pij
and ⇡

⇤=argmin
⇡2T

C1(P, Q
⇡).

2Notice that in this case, the optimal feature mapping will contain little information of the data, mapping anchor
samples to interchangeable points with identical pairwise distances

3Figure A.3 illustrates the phenomenon. Details can be found in Appendix A.1
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Then, ⇡⇤ also minimizes kP̄ �Q
⇡kF where k · kF is the Frobenius norm and P̄ = (p̄ij)n⇥n is a

(monotonically) transformed similarity matrix with p̄ij=�1/pij .

Theorem 3.5 showcases the relationship between minimizing C(f) and structure preserving property
by considering a special SNE problem, where the pairwise similarity is not modeled by Gaussian
as standard. Although qij =�kf(xi)�f(xj)k2 is unorthodox, it is reasonable since the larger the
distance, the smaller the similarity. We have the following corollary to explain the neighbor-preserving
property of SSCL and the implicit bias associated with minimizing the complexity C(f).

Corollary 3.6 (Implicit bias of SSCL). When SSCL model achieves perfect alignment and perfect
uniformity, if the complexity C(f) is minimized, the resulting feature map preserves pairwise distance
in the input space, resembling SNE with uniformity constraint.

Corollary 3.6 links the implicit bias of SSCL to the SNE optimization with uniformity constraint. In
the case of perfect alignment and perfect uniformity, SSCL can be seen as a special SNE problem
where the feature z1,···,zn must be maximally separated on the unit-sphere. Recall the 1-dimension
Gaussian case. There are in total 3!=6 different orderings for the 4 cluster means, among which, a
! b! c! d will give the lowest SNE loss.

When the alignment or uniformity is not perfect, the resulting feature mapping can still be characterized
via SNE, with the uniformity constraint relaxed as an regularization. More details can be found in
Appendix A. In the case of Figure A.3, Wang & Isola (2020) empirically verified that positive pairs
are closed aligned and the marginal distribution of features is close to uniform on the sphere. In our
numerical experiments, we observe that C(f) monotonically decreases during the training process,
for both the Gaussian mixture case and the real data case. More details can be found in Appendix
A.2. Corollary 3.6 sheds light on the implicit semantic information preserving phenomenon, as in
the input space, images of dogs should be closer to images of cats, than airplanes.

3.1.4 TARGETING OOD: EUCLIDEAN VS SPHERICAL

Almost all SSCL methods require normalization to the unit-sphere and the similarity on the feature
space is often the cosine similarity. In comparison, standard SNE methods operate freely on the
Euclidean space. In this section, we show that the normalization can hinder structure-preserving and
there is a fundamental trade off between in-distribution classification and out-of-domain generalization.

Consider the 2-dimensional Gaussian mixture setting as illustrated in Figure 1(a). Notice that as long
as the mixing components are well separated, the learned feature mapping on the sphere will always be
the pentagon shape, regardless of the relative locations of the clusters. This is a result of the uniformity
property derived under spherical constraint. Distant clusters in the input space will be pulled closer
while close clusters will be forced to be more distant. To see the trade off, on one hand, the spherical
constraint adds to the complexity of the feature mapping, potentially hurting robustness. On the other
hand, close clusters are more separated in the feature space, potentially beneficial for classification.

In Euclidean space, pushing away negative samples (as distant as possible) will be much easier, since
the feature vector could diverge towards infinity4 and the corresponding feature map can potentially
preserve more structural information. To verify our intuition, we relax the spherical constraint and
change the cosine similarity in SimCLR to the unnormalized inner product in one-dimensional feature
space. The learned features are shown in Figure 1(c). Comparing to Figure 1(b), we can get the extra
information that the purple cluster is far away to the others. If we introduce a small mean shift to
the data, moving the distribution along each dimension by 1, the resulting feature mappings differs
significantly in robustness. As illustrated in Figure 1(d) vs. (e), the feature from standard SimCLR
are much less robust to OOD shifts and the resulting classification accuracy degrades to only 48.4%,
while that for the modified SimCLR maintains 100%. The same OOD advantage can also be verified
in the CIFAR-10 to CIFAR-100 OOD generalization case (details in Appendix B.3 Figure B.8) and
large-scale real-world scenarios with MoCo (Chen et al., 2020b) as baseline (details in Section 5).

4In practice, various regularization, e.g, weight decay, are employed and the resulting features will be bounded.
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(a) Weighted SimCLR. (b) SimCLR vs. t-SimCLR.

Figure 2: Nearest neighbor classification test accuracy on CIFAR-10 with ResNet-18 after 200 epochs
pre-training. (a) "N/A" stands for the baseline SimCLR. Thex-axis is the temperature for IoU weighting
scheme. (b) Comparison between SimCLR and t-SimCLR with different feature dimensions.

4 IMPROVING SSCL BY SNE

The proposed SNE perspective (S1,S2) can inspire various modifications to existing SSCL methods.
In this section, we choose SimCLR as our baseline and investigate three straightforward modifications.
For empirical evaluation, we report the test classification accuracy of nearest neighbor classifiers on
both simulated data and real datasets. Experiment details can be found in Appendix B.

4.1 WEIGHTED POSITIVE PAIRS

In practice, positive pairs are constructed from anchors (training data), by i.i.d. data augmentations,
e.g., random resized crop, random horizontal flip, color jitter, etc. Take random crop as an example,
pair 1 and 2 may be from 30%, 80% random crops, respectively. Their similarity should not be treated
as equal, as in typical SSCL methods. Incorporating the disparity in the data augmentation process
is straightforward in the perspective of SNE, where the InfoNCE loss can be naturally modified as

1

2n

nX

i=1

pii0 ·(l(xi,x
0
i)+l(x0

i,xi)).

The weight pii0 in P can be specified manually to reflect human’s prior knowledge. To test out the
effect of such modification, we conduct numerical experiments on CIFAR-10 using the standard
SimCLR. The weighting scheme is based on the Intersection over Union (IoU) of random resized crops.
For each positive pair, let pii0 /exp(IoU(xi,x0

i)/⌧
0), where ⌧ 0>0 is a hyperparameter (temperature)

controlling the strength of the weighting scheme, i.e., the bigger the ⌧ 0, the closer to the unweighted
state. The CIFAR-10 test performance vs. ⌧ 0 is shown in Figure 2(a). The baseline is 80.7% and can
be significantly improved to 82.1% if choosing ⌧

0=1.

4.2 T-SIMCLR: T-SNE STYLE MATCHING

Most SSCL algorithms differ mainly in (S2), i.e., defining Q and matching it to P , where fruitful
results in SNE literature can be mirrored and applied. Now that we have identified the advantage of
modeling features in Euclidean spaces in Section 3.1.4, the most promising modification that follows is
to introduce t-SNE to SimCLR. Since we are learning low-dimensional features from high-dimensional
data, preserving all pairwise similarities is impossible and the features tend to collapse. This is referred
to as the “crowding problem” in Van der Maaten & Hinton (2008) (see Section 3.2 therein). t-SNE
utilizes the heavy-tail t-distribution instead of the light-tail Gaussian, to model Q and encourage
separation in feature space. Correspondingly, the training objective LInfoNCE can be modified as

1

n

nX

i=1

�log

�
1+kf(xi)�f(x0

i)k22/(⌧ tdf )
��(tdf+1)/2

P
1j 6=k2n(1+kf(exj)�f(exk)k22/(⌧ tdf ))

�(tdf+1)/2
, (4.1)

where tdf is the degree of freedom for the t-distribution. The key modification is the modeling of
feature space similarity Q, from Gaussian to Cauchy distribution (tdf =1) as suggested by Van der
Maaten & Hinton (2008) to avoid the crowding problem and accommodate the dimension-deficiency in
the feature space. We call the modified method t-SimCLR and we expect it to work better, especially
when the feature dimension is low, or in the OOD case.
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Table 1: Domain transfer results of vanilla MoCo-v2 and t-MoCo-v2.
Method Aircraft Birdsnap Caltech101 Cars CIFAR10 CIFAR100 DTD Pets SUN397 Avg.

MoCo-v2 82.75 44.53 83.31 85.24 95.81 72.75 71.22 86.70 56.05 75.37
t-MoCo-v2 82.78 53.46 86.81 86.17 96.04 78.32 69.20 87.95 59.30 77.78

Table 2: OOD accuracies of vanilla MoCo-v2 and t-MoCo-v2 on domain generalization benchmarks.
Method PACS VLCS Office-Home Avg.

MoCo-v2 58.5 70.4 36.6 55.2
t-MoCo-v2 61.3 75.1 42.1 59.5

Figure 2(b) shows the comparison of SimCLR vs. t-SimCLR on CIFAR-10 with different feature
dimensions, where t-SimCLR has significant advantages in all cases and the smaller the dz , the larger
the gap. Without decreasing the standard dz=128, t-SimCLR improves the baseline from 80.8% to
83.9% and even beats it using only dz=8 with accuracy 81.7%.

Remark 4.1 (Degree of freedom). Standard t-SNE utilizes t-distribution with tdf = 1, to better
accommodate the extreme dz=2 case. In practice, tdf can vary and as dz increases, larger tdf might
be preferred. We recommend using tdf =5 as the default choice. The performance of tdf vs dz can
be found in Appendix B, as well as discussion on the fundamental difference between tdf and ⌧ .

Remark 4.2 (Training epochs). For the CIFAR-10 experiments, we reported the results of ResNet-18
after 200 training epochs, similar to the setting of Yeh et al. (2021). We also conducted 1000-epoch
experiments and found that our modifications provide consistent improvements throughout the training
process, not in terms of speeding up the convergence, but converging to better solutions. Details can
be found in Appendix B.1.

5 LARGE SCALE EXPERIMENTS

In this section, we apply the same modification mentioned in Section 4.2 to MoCo-v2 (Chen et al.,
2020b), as it is more device-friendly to conduct large scale experiments. We name our model
t-MoCo-v2. Both models are pre-trained for 200 epochs on ImageNet following the setting of Chen
et al. (2020b). The linear probing accuracy of t-MoCo-v2 on ImageNet is 67.0%, which is comparable
to the MoCo result 67.5%. With the same level of in-distribution classification accuracy, we conduct
extensive experiments to compare their OOD performance. The results in Table 1 and 2 suggest
that our modification significantly improves the domain transfer and the OOD generalization ability
without sacrificing in-distribution accuracy.

Domain Transfer. We first conduct experiments on the traditional self-supervision domain transfer
benchmark. We compare MoCo-v2 and t-MoCo-v2 on Aircraft, Birdsnap, Caltech101, Cars, CIFAR10,
CIFAR100, DTD, Pets, and SUN397. We follow transfer settings in Ericsson et al. (2021) to finetune the
pre-trained models. The results are reported in Table 1. Our model t-MoCo-v2 surpasses MoCo-v2 in
8 out of 9 datasets, showing a significantly stronger transfer ability. Notice that our model is pre-trained
with 200 epochs, surprisingly, compared with the original MoCo-v2 model pre-trained with 800 epochs,
the fine-tuning results of t-MoCo-v2 are still better on Birdsnap, Caltech101, CIFAR100, and SUN397.

Out-of-domain generalization. As illustrated in Section 3.1.4, standard SSCL methods, e.g.,
SimCLR, MoCo, etc., could suffer from OOD shift. To demonstrate the advantage of our modification,
we investigate the effectiveness of our method on OOD generalization benchmarks: PACS Li et al.
(2017), VLCS Fang et al. (2013), Office-Home Venkateswara et al. (2017). We follow the standard
way to conduct the experiment, i.e., choosing one domain as the test domain and using the remaining
domains as training domains, which is named the leave-one-domain-out protocol. As can be seen in
Table 2, our t-MoCo-v2 indicates significant improvement over MoCo-v2. Both experiments indicate
our modification exhibits substantial enhancement for domain transfer and OOD generalization ability.
Similar to domain transfer scenario, compared with the original MoCo-v2 model pre-trained with 800
epochs, t-MoCo-v2 is better on all of the three datasets. More experiment details, including detailed
comparisons, are in Appendix B.
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6 DISCUSSION

This work proposes a novel perspective that interprets SSCL methods as a type of SNE methods, which
facilitates both deeper theoretical understandings of SSCL, and methodological guidelines for practical
improvement. Our analysis has limitations and the insights from SNE are not universally applicable for
all SSCL methods, e.g., Zbontar et al. (2021); Yang et al. (2021) don’t fit in our framework. However,
this work is an interesting addition to existing theoretical works of SSCL and more investigations
can be made along this path.

While there are various extensions of the classic SNE, in this work, as a proof of concept, we mainly
showcased practical improvements from t-SNE and we expect more effective modifications to SSCL
training objective can be developed by borrowing advances in the SNE literature, e.g., changing to
f -divergences (Im et al., 2018) or consider optimal transport Bunne et al. (2019); Salmona et al. (2021);
Mialon et al. (2020). On the other hand, standard SNE methods can borrow existing techniques in
SSCL to improve their performance on more complicated data, e.g., incorporating data augmentations
instead of or on top of pre-defined distances. In this sense, by choosing feature dimension to be 2,
various SSCL methods can also be used as data visualization tools. Specifically on CIFAR-10, standard
t-SNE can barely reveal any clusters while our t-SimCLR with dz=2 produces much more separation
among different labels. More details can be found in Appendix B.7.
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