A Proof of theorems

Proposition 1. Given a Poincaré hyperplane $H_{\mathbf{c}}$ where $\mathbf{c} \neq \mathbf{0}$, there exists an n-ball $\mathbb{B}_{\mathbf{c}}(\mathbf{o}_{\mathbf{c}}, r_{\mathbf{c}})$ such that $H_{\mathbf{c}} \subset \mathbb{B}_{\mathbf{c}}(\mathbf{o}_{\mathbf{c}}, r_{\mathbf{c}})$, i.e., $H_{\mathbf{c}}$ is a subset of $\mathbb{B}_{\mathbf{c}}(\mathbf{o}_{\mathbf{c}}, r_{\mathbf{c}})$. $\mathbb{B}_{\mathbf{c}}$ is uniquely given by

$$\mathbb{B}^{n}_{\mathbf{c}} = \mathbb{B}^{n} \left(\frac{\left(1 + \|\mathbf{c}\|^{2}\right)}{2\|\mathbf{c}\|} \mathbf{c}, \frac{1 - \|\mathbf{c}\|^{2}}{2\|\mathbf{c}\|} \right)$$
(9)

Proof. Since c is the center point of the Poincaré hyperplane, the vector \overrightarrow{c} must be a normal vector of the tangent space $T_c \mathbb{B}^n$ of \mathbb{B}^n at c. Let q be one of the point that the Poincaré hyperplane and the Poincaré ball intersect at. Then, the radius of \mathbb{B}_c (\mathbf{o}_c, r_c), the radius of \mathbb{D}^n , and the distance from the centers of \mathbb{D}^n to the center of \mathbb{B}_c (\mathbf{o}_c, r_c) must satisfy the Pythagorean theorem [27], i.e., the three Euclidean distances $d(\mathbf{0}, q), d(q, \mathbf{o}_c)$ and $d(\mathbf{o}_c, \mathbf{0})$ must satisfy

$$d(\mathbf{0}, \mathbf{q})^{2} + d(\mathbf{q}, \mathbf{o_{c}})^{2} = d(\mathbf{o_{c}}, \mathbf{0})^{2} = (d(\mathbf{0}, \mathbf{c}) + d(\mathbf{c}, \mathbf{o_{c}}))^{2}.$$
 (10)

Since we have $d(\mathbf{c}, \mathbf{o_c}) = d(\mathbf{q}, \mathbf{o_c}) = r_{\mathbf{c}}$, by solving this quadratic equation, we have $r_{\mathbf{c}} = \frac{1 - \|\mathbf{c}\|^2}{2\|\mathbf{c}\|}$. Since $\mathbf{o_c} = \mathbf{c}(1 + \frac{r_{\mathbf{c}}}{d(\mathbf{0}, \mathbf{c})})$, we have $\mathbf{o_c} = \mathbf{c}\frac{(1 + \|\mathbf{c}\|^2)}{2\|\mathbf{c}\|}$. Thus, $\mathbb{B}_{\mathbf{c}} = \mathbb{B}\left(\mathbf{o_c} = \mathbf{c}\frac{(1 + \|\mathbf{c}\|^2)}{2\|\mathbf{c}\|}, r_{\mathbf{c}} = \frac{1 - \|\mathbf{c}\|^2}{2\|\mathbf{c}\|}\right)$.

Proposition 2 (HEX-property). *The classification function f has the HEX property with respect to G if and only if for any constraint in G, the corresponding loss term is* 0.

Proof. Note that the loss term of the constraint being 0 implies that the corresponding constraint is respected. Our loss terms clearly connect the HEX property. That is, for any point $\mathbf{p} \in D^n$ and a pair of enclosing *n*-balls $(\mathbb{B}_w, \mathbb{B}_u)$, $\mathcal{L}_{\text{membership}}(p, \mathbb{B}_w) \ge \mathcal{L}_{\text{membership}}(p, \mathbb{B}_u)$ for all $(\mathbb{B}_w, \mathbb{B}_u)$ where $\mathcal{L}_{\text{inside}}(\mathbb{B}_w, \mathbb{B}_u) = 0$ and $\neg \mathcal{L}_{\text{membership}}(p, \mathbb{B}_w) \lor \neg \mathcal{L}_{\text{membership}}(p, \mathbb{B}_u)$ for all $(\mathbb{B}_w, \mathbb{B}_u)$ where $\mathcal{L}_{\text{disjoint}}(\mathbb{B}_u, \mathbb{B}_w) = 0$. According to the definition of HEX-property, *f* has the HEX property with respect to *G* if and only if the corresponding loss term of the corresponding constraint is 0.

Corollary 1. *Given a HEX graph G of labels and if the loss of the embeddings is* 0*, then the learned prediction function is logically consistent with respect to G.*

Proof. Note that the loss terms \mathcal{L}_{inside} , $\mathcal{L}_{disjoint}$, $\mathcal{L}_{membership}$, $\mathcal{L}_{non-membership}$ in Eq.7 are all non-negative. Hence, the loss being 0 implies that all losses are zeros (all constraints are satisfied). According to the definition of consistency, the prediction function is consistent.

B Supplementary experiments and details

Datasets and pre-processing The functional genomic datasets (Expr, Spo, Derisi, Cellcycle) are available at 7. The image datasets (Imclef07a, Imclef07d, Diatoms) and text dataset (Enron) are all available at 8. All licenses of the datasets can be found in the corresponding links and references. The number of labels, types of features, the number of instances vary significantly. The diversity of these datasets makes them suitable for evaluating the multi-label classification task. The input features are pre-processed in the same way as described in 1. In particular, all categorical features were transformed using one-hot encoding. The missing values were replaced by the mean value (for numeric features) or zero-valued vector (for categorical features). All continuous features were standardized before feeding into the encoder. The labels of the root nodes are removed from training and evaluation.

⁷https://dtai.cs.kuleuven.be/clus/hmcdatasets/

⁸http://kt.ijs.si/DragiKocev/PhD/resources/doku.php?id=hmc_classification

-	Dataset	Domain	Feature	Label	#Label	#Train	#Val	#Test
-	ExprFUN	Genomics	Continuous	Forest	500	1636	849	1288
	CellcycleFUN	Genomics	Continuous	Forest	500	1628	848	1281
	DerisiFUN	Genomics	Continuous	Forest	500	1608	842	1275
	SpoFUN	Genomics	Continuous	Forest	500	1600	837	1266
	ExprGO	Genomics	Continuous	DAG	4132	1636	849	1288
	CellcycleGO	Genomics	Continuous	DAG	4126	1625	848	1278
	DerisiGO	Genomics	Continuous	DAG	4120	1605	842	1272
	SpoGO	Genomics	Continuous	DAG	4120	1597	837	1263
	Diatoms	Image	Continuous	Tree	399	1500	565	1054
	Imclef07a	Image	Continuous	Tree	97	7000	3000	1006
	Imclef07d	Image	Continuous	Tree	47	7000	3000	1006
_	Enron	Text	Binary	Tree	57	650	338	600

Table 6: Statistical information of the datasets used in experiments. Number of features (F), number of classes (L), and number of instances for each dataset split.

Table 7: The number of exclusion edges derived from the label taxonomy (A) and the label co-occurrence (B).

Dataset	А	В	
ExprFun	110958	110941	
CellcycleFUN	110959	110942	
DerisiFUN	111009	110992	
SpoFUN	111008	110991	
ExprGO	8305590	8310506	
CellcycleGO	8305590	8310506	
SpoGO	8257458	8262341	
Diatoms	78793	78799	
Enron	965	965	
ImCLEF07A	4417	4425	
ImCLEF07D	979	985	

Deriving mutual exclusion In real-world applications, exclusion relations could be annotated by human experts by exploiting domain knowledge. In this paper, we explore various strategies to generate possible exclusion relations: 1) Deriving exclusion from the label taxonomy. Following the "exclusive whenever possible" assumption [1], we add mutual exclusion edges between two nodes whenever they do not share any descendant nodes (i.e., it does not create a contradiction). 2) Deriving exclusion from the label co-occurrence. We add mutual exclusion edges between two labels whenever there is no instance in the training set simultaneously belonging to them. Clearly, strategy 1 generates all possible exclusion edges entailed by the label taxonomy, while strategy 2 generates exclusion edges that are reflected by the dataset itself. Strategy 1 might create false positive exclusions (i.e., exclusions that violate the label co-occurrence in the datasets), while strategy 2 might suffer from the noisy labeled data (e.g., an instance might be incorrectly or incompletely labeled). However, Table 7 shows that there is no statistical difference between the generated exclusions from these two methods. Hence, we may conclude that the "exclusive whenever possible" assumption almost holds. One common problem of these two methods is that there are many redundant edges generated. To efficiently exploit the constraints, we only generate exclusions between sibling nodes whenever it does not create contradiction [15].