
A Proof of theorems

Proposition 1. Given a Poincaré hyperplane Hc where c 6= 0, there exists an n-ball Bc (oc, rc)

such that Hc ⇢ Bc (oc, rc), i.e., Hc is a subset of Bc (oc, rc). Bc is uniquely given by
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Proof. Since c is the center point of the Poincaré hyperplane, the vector �!c must be a normal vector
of the tangent space TcBn of Bn at c. Let q be one of the point that the Poincaré hyperplane and the
Poincaré ball intersect at. Then, the radius of Bc (oc, rc), the radius of Dn, and the distance from the
centers of Dn to the center of Bc (oc, rc) must satisfy the Pythagorean theorem [27], i.e., the three
Euclidean distances d(0, q), d(q,oc) and d(oc,0) must satisfy
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Since we have d (c,oc) = d(q,oc) = rc, by solving this quadratic equation, we have
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Proposition 2 (HEX-property). The classification function f has the HEX property with respect to

G if and only if for any constraint in G, the corresponding loss term is 0.

Proof. Note that the loss term of the constraint being 0 implies that the corresponding constraint
is respected. Our loss terms clearly connect the HEX property. That is, for any point p 2 D

n

and a pair of enclosing n-balls (Bw,Bu), Lmembership (p,Bw) � Lmembership (p,Bu) for all (Bw,Bu)

where Linside(Bw,Bu) = 0 and ¬Lmembership (p,Bw) _ ¬Lmembership (p,Bu) for all (Bw,Bu) where
Ldisjoint(Bu,Bw) = 0. According to the definition of HEX-property, f has the HEX property with
respect to G if and only if the corresponding loss term of the corresponding constraint is 0.

Corollary 1. Given a HEX graph G of labels and if the loss of the embeddings is 0, then the learned

prediction function is logically consistent with respect to G.

Proof. Note that the loss terms Linside,Ldisjoint,Lmembership,Lnon-membership in Eq.7 are all non-negative.
Hence, the loss being 0 implies that all losses are zeros (all constraints are satisfied). According to
the definition of consistency, the prediction function is consistent.

B Supplementary experiments and details

Datasets and pre-processing The functional genomic datasets (Expr, Spo, Derisi, Cellcycle) are
available at 7. The image datasets (Imclef07a, Imclef07d, Diatoms) and text dataset (Enron) are all
available at 8. All licenses of the datasets can be found in the corresponding links and references.
The number of labels, types of features, the number of instances vary significantly. The diversity
of these datasets makes them suitable for evaluating the multi-label classification task. The input
features are pre-processed in the same way as described in [11, 8, 10]. In particular, all categorical
features were transformed using one-hot encoding. The missing values were replaced by the mean
value (for numeric features) or zero-valued vector (for categorical features). All continuous features
were standardized before feeding into the encoder. The labels of the root nodes are removed from
training and evaluation.

7https://dtai.cs.kuleuven.be/clus/hmcdatasets/
8http://kt.ijs.si/DragiKocev/PhD/resources/doku.php?id=hmc_classification
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Table 6: Statistical information of the datasets used in experiments. Number of features (F), number of classes
(L), and number of instances for each dataset split.

Dataset Domain Feature Label #Label #Train #Val #Test
ExprFUN Genomics Continuous Forest 500 1636 849 1288

CellcycleFUN Genomics Continuous Forest 500 1628 848 1281
DerisiFUN Genomics Continuous Forest 500 1608 842 1275
SpoFUN Genomics Continuous Forest 500 1600 837 1266
ExprGO Genomics Continuous DAG 4132 1636 849 1288

CellcycleGO Genomics Continuous DAG 4126 1625 848 1278
DerisiGO Genomics Continuous DAG 4120 1605 842 1272
SpoGO Genomics Continuous DAG 4120 1597 837 1263
Diatoms Image Continuous Tree 399 1500 565 1054

Imclef07a Image Continuous Tree 97 7000 3000 1006
Imclef07d Image Continuous Tree 47 7000 3000 1006

Enron Text Binary Tree 57 650 338 600

Table 7: The number of exclusion edges derived from the label taxonomy (A) and the label co-occurrence (B).
Dataset A B

ExprFun 110958 110941
CellcycleFUN 110959 110942

DerisiFUN 111009 110992
SpoFUN 111008 110991
ExprGO 8305590 8310506

CellcycleGO 8305590 8310506
SpoGO 8257458 8262341
Diatoms 78793 78799

Enron 965 965
ImCLEF07A 4417 4425
ImCLEF07D 979 985

Deriving mutual exclusion In real-world applications, exclusion relations could be annotated
by human experts by exploiting domain knowledge. In this paper, we explore various strategies to
generate possible exclusion relations: 1) Deriving exclusion from the label taxonomy. Following the
"exclusive whenever possible" assumption [1], we add mutual exclusion edges between two nodes
whenever they do not share any descendant nodes (i.e., it does not create a contradiction). 2) Deriving

exclusion from the label co-occurrence. We add mutual exclusion edges between two labels whenever
there is no instance in the training set simultaneously belonging to them. Clearly, strategy 1 generates
all possible exclusion edges entailed by the label taxonomy, while strategy 2 generates exclusion
edges that are reflected by the dataset itself. Strategy 1 might create false positive exclusions (i.e.,
exclusions that violate the label co-occurrence in the datasets), while strategy 2 might suffer from
the noisy labeled data (e.g., an instance might be incorrectly or incompletely labeled). However,
Table 7 shows that there is no statistical difference between the generated exclusions from these two
methods. Hence, we may conclude that the "exclusive whenever possible" assumption almost holds.
One common problem of these two methods is that there are many redundant edges generated. To
efficiently exploit the constraints, we only generate exclusions between sibling nodes whenever it
does not create contradiction [15].
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