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ABSTRACT

Diffusion models (DMs) are a class of generative models that allow sampling
from a distribution learned over a training set. When applied to solving inverse
imaging problems (IPs), the reverse sampling steps of DMs are typically modi-
fied to approximately sample from a measurement-conditioned distribution in the
image space. However, these modifications may be unsuitable for certain settings
(such as in the presence of measurement noise) and non-linear tasks, as they of-
ten struggle to correct errors from earlier sampling steps and generally require
a large number of optimization and/or sampling steps. To address these chal-
lenges, we state three conditions for achieving measurement-consistent diffusion
trajectories. Building on these conditions, we propose a new optimization-based
sampling method that not only enforces the standard data manifold measurement
consistency and forward diffusion consistency, as seen in previous studies, but
also incorporates step-wise and network-regularized backward diffusion consis-
tency that maintains a diffusion trajectory by optimizing over the input of the pre-
trained model at every sampling step. By enforcing these conditions, either im-
plicitly or explicitly, our sampler requires significantly fewer reverse steps. There-
fore, we refer to our accelerated method as Step-wise Triple-Consistent Sampling
(SITCOM). Compared to existing state-of-the-art baseline methods, under dif-
ferent levels of measurement noise, our extensive experiments across five linear
and three non-linear image restoration tasks demonstrate that SITCOM achieves
competitive or superior results in terms of standard image similarity metrics while
requiring a reduced run-time across all considered tasks.

1 INTRODUCTION

Inverse problems (IPs) arise in a wide range of science and engineering applications, including
computer vision (Li et al., 2024), signal processing (Byrne, 2003), medical imaging (Alkhouri et al.,
2024), remote sensing (Levis et al., 2022), and geophysics (BniLam and Al-Khoury, 2020). In these
applications, the primary goal is to recover an unknown image or signal x ∈ Rn from measurements
or degraded image y ∈ Rm, which are often corrupted by noise. Mathematically, the unknown
signal and the measurements are related as

y = A(x) + n , (1)

where A(·) : Rn → Rm (with m ≤ n) represents the linear or non-linear forward operator that
models the measurement process, and n ∈ Rm denotes the noise in the measurement domain, e.g.,
assumed sampled from a Gaussian distribution N (0, σ2

yI), where σy > 0 denotes the noise level.
Exactly solving these inverse problems is challenging due to their ill-posedness in many settings,
requiring advanced techniques to achieve accurate solutions.

Deep learning techniques have recently been utilized as a prior to aid in solving these problems
(Ravishankar et al., 2019; Lempitsky et al., 2018). One framework that has shown significant poten-
tial is the use of generative models, particularly diffusion models (DMs) (Ho et al., 2020). Given a
training dataset, DMs are trained to learn the underlying distribution p(x). During inference, DMs
enable sampling from this learned distribution through an iterative procedure (Song et al., 2021b).
When employed to solving inverse problems, DM-based IP solvers often modify the reverse sam-
pling steps to allow sampling from the measurements-conditioned distribution p(x|y) (Chung et al.,
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PSNR = 24.66
LPIPIS = 0.251

PSNR = 30.22
LPIPIS = 0.172

PSNR = 32.39
LPIPIS = 0.156

Motion Deblurring
Ground Truth Measurements DPS DAPS

PSNR = 22.98
LPIPIS = 0.289

PSNR = 31.46
LPIPIS = 0.131

PSNR = 33.26
LPIPIS = 0.097

Non-linear Deblurring 
Ground Truth Measurements DPS DAPS

PSNR = 23.12
LPIPIS = 0.267

PSNR = 27.65
LPIPIS = 0.167

PSNR = 29.22
LPIPIS = 0.145

Phase Retrieval 
Ground Truth Measurements DPS DAPS

PSNR = 17.88
LPIPIS = 0.401

PSNR = 30.89
LPIPIS = 0.118

PSNR = 32.67
LPIPIS = 0.112

SITCOM (ours)

SITCOM (ours)SITCOM (ours)

Figure 1: Qualitative results on the FFHQ dataset on two linear tasks (top) and two non-linear tasks (bot-
tom) under measurement noise of σy = 0.05. The PSNR and LPIPS values are given below each restored
image. Zoomed-in regions show how SITCOM captures greater image details when compared to two general
(non)linear DM-based methods (DPS (Chung et al., 2023b) and DAPS (Zhang et al., 2024)).

2023b; 2022). These modifications typically rely on approximations that may not be suitable for all
tasks and settings, and in addition to generally requiring many sampling iterations, often suffer from
errors accumulated during early diffusion sampling steps (Zhang et al., 2024). In most DM-based
IP solvers, these approximations are designed to enforce standard measurement consistency on the
estimated image (or posterior mean) at every reverse sampling iteration, as in (Chung et al., 2023b),
and may also include resampling using the forward diffusion process (which we refer to as forward
diffusion consistency), such as in (Lugmayr et al., 2022; Song et al., 2023a).

A key bottleneck in DMs is their computational speed, as they are slower than other generative
models due to the large number of sampling steps. Although various methods have been proposed
to reduce sampling frequency (e.g., (Song et al., 2023b)), these improvements have yet to be fully re-
alized for DMs applied to IPs. Most existing methods still require dense sampling, which continues
to pose speed challenges.

Contributions: In this paper, we: (i) identify key issues in accelerating DMs for IPs, (ii) propose
three conditions that could fully leverage the information from the measurements and the implicit
bias of the pre-trained DM to effectively address these issues, and (iii) present a new optimization-
based sampler that satisfies these conditions. We refer to our accelerated sampling method as Step-
wise Triple-Consistent Sampling (SITCOM). We evaluate our method on several image restoration
tasks. Compared to leading baselines, our approach consistently achieves either state-of-the-art
or highly competitive quantitative results, while also reducing the number of sampling steps and,
consequently, the computational time. See Figure 1 for examples.

2 BACKGROUND: DIFFUSION MODELS & THEIR USAGE IN SOLVING IPS

Pre-trained Diffusion Models (DMs) generate images by applying a pre-defined iterative denoising
process (Ho et al., 2020). In the Variance-Preserving Stochastic Differentiable Equations (SDEs)
setting (Song et al., 2021b;a), DMs are formulated using the forward and reverse processes

dxt = −βt

2
xtdt+

√
βtdw , dxt = −βt

[1
2
xt +∇xt log pt(xt)

]
dt+

√
βtdw̄ , (2)

where β : {0, . . . , T} → (0, 1) is a pre-defined function that controls the amount of additive per-
turbations at time t, w (resp. w̄) is the forward (resp. reverse) Weiner process (Anderson, 1982),
pt(xt) is the distribution of xt at t, and ∇xt

log pt(xt) is the score function that is replaced by a neu-
ral network (typically a time-encoded U-Net (Ronneberger et al., 2015)) s : Rn×{0, . . . , T} → Rn,
parameterized by θ. In practice, given the score function sθ, the SDEs in Equation (2) can be dis-
cretized as in Equation (3) where ηt,ηt−1 ∼ N (0, I).

xt =
√

1− βtxt−1 +
√
βtηt−1 , xt−1 =

1√
1− βt

[
xt + βtsθ(xt, t)

]
+

√
βtηt . (3)
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When employed to solve inverse problems, the score function in Equation (2) is replaced by
a conditional score function which, by Bayes’ rule, is ∇xt

log pt(xt|y) = ∇xt
log pt(xt) +

∇xt
log pt(y|xt). Solving the SDE in Equation (2) with the conditional score is referred to as

posterior sampling (Chung et al., 2023b). As there doesn’t exist a closed-form expression for the
term ∇xt

log pt(y|xt) (which is termed as the measurements matching term in (Daras et al., 2024)),
previous works have explored different approaches, which we will briefly discuss below. We refer
the reader to the recent survey in (Daras et al., 2024) for an overview on DM-based methods for
solving IPs.

A well-known method is Diffusion Posterior Sampling (DPS) (Chung et al., 2023b), which uses the
approximation p(y|xt) ≈ p(y|x̂0) where x̂0(xt) (or simply x̂0) is the estimated image at time t as
a function of the pre-trained model and xt (Tweedie’s formula (Vincent, 2011)), given as

x̂0(xt) =
1√
ᾱt

[
xt −

√
1− ᾱtϵθ(xt, t)

]
=: f(xt; t, ϵθ) , (4)

where ᾱt =
∏t

j=1 αj and αt = 1 − βt. We call the function f , defined in Equation (4), as
‘Tweedie-network denoiser’ (also termed as ‘posterior mean predictor’ in (Chen et al., 2024)).
Here, ϵθ(xt, t) = −

√
1− ᾱtsθ(xt, t) (Luo, 2022) outputs the noise in xt. Tweedie’s formula is

also adopted in other DM-based IP solvers such as (Rout et al., 2023; Chung et al., 2023c; Wang
et al., 2022). The drawback of these methods is that they require a large number of sampling steps.

The work in ReSample (Song et al., 2023a), solves an optimization problem on the estimated pos-
terior mean in the latent space to enforce a step-wise measurement consistency, requiring many
sampling and optimization steps.

The work in (Mardani et al., 2023) introduced RED-Diff, a variational Bayesian method that fits
a Gaussian distribution to the posterior distribution of the clean image given the measurements.
This approach involves solving an optimization problem using stochastic gradient descent (SGD) to
minimize a data-fitting term while maximizing the likelihood of the reconstructed image under the
denoising diffusion prior (as a regularizer). However, the SGD process requires multiple iterations,
each involving evaluations of the pre-trained DM on a different noisy image at some randomly
selected time. While RED-diff reduces the run-time, their qualitative results are not competitive on
several image restoration tasks.

Recently, Decoupling Consistency with Diffusion Purification (DCDP) (Li et al., 2024) proposed
separating diffusion sampling steps from measurement consistency by using DMs as diffusion pu-
rifiers (Nie et al., 2022; Alkhouri et al., 2024), with the goal of reducing the run-time. However,
for every task, DCDP requires tuning the number of forward diffusion steps for purification for
each sampling step. Shortly after, Decoupled Annealing Posterior Sampling (DAPS) (Zhang et al.,
2024) introduced another decoupled approach, incorporating gradient descent noise annealing via
Langevin dynamics. DAPS, similar to DPS, also requires a large number of sampling and opti-
mization steps. Under measurement noise, DCDP achieves SOTA run-time across various linear
restoration tasks, while DAPS sets the SOTA in restoration quality. Both will serve as primary
baselines in our experiments.

3 SITCOM: STEP-WISE TRIPLE-CONSISTENT SAMPLING

3.1 MOTIVATION: ADDRESSING THE CHALLENGES IN APPLYING DMS TO IPS

Most inverse problems are ill-conditioned and undersampled. DMs, when trained on a dataset that
closely resembles the target image, can provide critical information to alleviate ill-conditioning and
improve recovery. Despite various previous efforts, a key challenge remains: How to efficiently
integrate DMs into the framework of inverse problems? We will now elaborate on this challenge in
detail.

The standard reverse sampling procedure in DMs consists of applying the backward discrete steps
in Equation (3) for t ∈ {T, T − 1, . . . , 1}, forming the standard diffusion trajectory for which x0

is the generated image1. To incorporate the measurement y into these steps, a common approach
1Diffusion trajectory refers to the path that leads to an in-distribution image, where the distribution is the

one learned by the DM from the training set.
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adopted in previous works that demonstrate superior performance (e.g., (Song et al., 2023a; Zhang
et al., 2024; Li et al., 2024)) is to the x̂0 computed via Equation (4) as follows:

x̂′
0(xt) = argmin

x
∥A(x)− y∥2 + λ∥x− x̂0(xt)∥2 , (5)

where λ ∈ R+ is a regularization parameter. The x̂′
0(xt) obtained from Equation (5) is close

to x̂0(xt) while also remaining consistent with the measurements. When using x̂′
0(xt) to sample

xt−1, the second formula in Equation (3) can be rewritten as in Equation (6), where the derivation
is provided in Appendix A.

xt−1 =

√
αt(1− ᾱt−1)

1− ᾱt
xt +

√
ᾱt−1βt

1− ᾱt
x̂0(xt) +

√
βtηt . (6)

By substituting the x̂0(xt) in Equation (6) with the measurement-consistent x̂′
0(xt), the modified

sampling formula becomes:

xt−1 =

√
αt(1− ᾱt−1)

1− ᾱt
xt +

√
ᾱt−1βt

1− ᾱt
x̂′
0(xt) +

√
βtηt . (7)

While this approach effectively ensures data consistency at each step, it inevitably causes x̂′
0 to

deviate from the diffusion trajectory, leading to two major issues:

(I1) The image x̂0(xt), initially constructed through Tweedie’s formula, usually appears quite natu-
ral (e.g., columns 3 to 5 of Figure 2 ); however, the modified version, x̂′

0(xt), is likely to exhibit
severe artifacts (e.g., columns 6 to 8 of Figure 2).

(I2) Since the DM network, ϵθ, is trained via minimizing the objective function Ex0,ϵ∥ϵ −
ϵθ(

√
ᾱtx0 +

√
1− ᾱtϵ, t)∥2 (denoising score matching (Vincent, 2011)) on a finite dataset,

it performs best on noisy images lying in the high-density regions of the training distribution
N (xt;

√
ᾱtx0, (1 − ᾱt)I), x0 ∼ p(x0). We define an algorithm as forward-consistent if it

likely applies ϵθ only to in-distribution inputs (i.e., those from the same distribution used for
training). For example, if the forward diffusion used to train ϵθ adds Gaussian noise, the in-
distribution input to ϵθ should ideally be sampled from a Gaussian with specific parameters. If
Poisson noise is used in the forward process, inputs drawn from suitable Poisson distributions
are more likely to fall within the well-trained region of the network. In summary, forward con-
sistency requires that inputs to ϵθ during sampling align with the forward process. While the
xt−1 generated from Equation (6) is forward-consistent by design, the one generated from the
modified formula Equation (7) is not. Therefore, in the latter case, the DM network, ϵθ, may be
applied to many out-of-distribution inputs, leading to degraded performance.

We pause to verify our claimed Issue (I1) through a box-inpainting experiment. Columns 3 to
5 of Figure 2 show x̂′

0(xt) at various t. The results clearly demonstrate successful enforcement
of data consistency, as the region outside the box aligns with the original image. However, this
enforcement compromises the natural appearance of the image, introducing significant artifacts in
the reconstructed area inside the box. Details about the setting of the results in Figure 2 are given in
Section C.

Issue (I2) was previously observed in (Lugmayr et al., 2022), which proposed a remedy known as
‘resampling’. In this approach, the sampling formula in Equation (7) is replaced by

xt−1 =
√
ᾱt−1x̂0 +

√
1− ᾱt−1ηt . (8)

Provided x̂0 is close to the ground truth x0, the xt−1 generated this way will stay in-distribution
with high probability. For a more detailed explanation of the rationale behind this remedy, we refer
the reader to (Lugmayr et al., 2022). This method has since been adopted by subsequent works, such
as (Song et al., 2023a; Zhang et al., 2024), and we will also employ it to address (I2).

3.2 NETWORK REGULARIZATION & BACKWARD DIFFUSION CONSISTENCY

Previous studies, such as (Song et al., 2023a; Zhang et al., 2024), mitigate issue (I1) by using a large
number of sampling steps, which inevitably increases the computational burden. In contrast, this
paper proposes employing a network regularization to resolve issue (I1). This approach not only
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Measurement Consistency by 
Equation (5)

Tweedie’s Formula without 
Measurement Consistency

Measurement & Backward 
Consistency by Equation (11)

Ground 
Truth

Masked 
Image

𝑡′ = 600𝑡′ = 400𝑡′ = 200 𝑡′ = 600𝑡′ = 400𝑡′ = 200 𝑡′ = 600𝑡′ = 400𝑡′ = 200

Figure 2: Effects of enforcing backward-consistency in box-inpainting: Results of using Tweedie’s for-
mula without measurement consistency (columns 3 to 5), enforcing measurement-consistency via Equation (5)
(columns 6 to 9), and enforcing both measurement-consistency and backward-consistency via Equation (12)
(columns 10 to 12) at different time steps t′. Experimental details are given in Appendix C.

accelerates convergence but also enhances reconstruction quality. Let’s first clarify the underlying
intuition.

It is widely observed that the U-Net architecture or trained transformers exhibit an effective image
bias (Ulyanov et al., 2018; Liang et al., 2024; Ghosh et al., 2024; Hatamizadeh et al., 2023). From
columns 3 to 5 of Figure 2, we observe that without enforcing data consistency, the reconstructed
x̂0, derived directly from Tweedie-network denoiser f(xt; t, ϵθ) for each time t, exhibits natural
textures. This indicates that the reconstruction using the combination of Tweedie’s formula and the
DM network has a natural regularizing effect on the image.

By definition, the output of f(xt; t, ϵθ) in Equation (4) represents the denoised version of xt at time
t using the Tweedie’s formula and the DM denoiser ϵθ. Due to the implicit bias of ϵθ, this denoised
image tends to align with the clean image manifold, even if xt does not correspond to a training
image, as shown in columns 3 to 5 of Figure 2. We refer to this regularization effect of f(xt; t, ϵθ),
which arises from network bias, as‘network regularization’.

By employing network regularization, we can address (I1) by ensuring that the data-consistent x̂′
0

is also network-consistent. We refer the latter condition as Backward Consistency and define it
formally as follows.

Definition 1 (Backward Consistency). We say a reconstruction x̂′
0 is backward-consistent with pos-

terior mean predictor f( · ; t, ϵθ) at time t if it can be expressed as x̂′
0 = f(vt; t, ϵθ) with some vt.

In other words, backward consistency requires x̂′
0 to be an output of f at time t.

The use of network regularization to define step-wise backward consistency is inspired by the im-
plicit bias of the Deep Image Prior (DIP) (Ulyanov et al., 2018). When gϕ represents a DIP with
ϕ as its weights, it can regularize the reconstruction of inverse problems by solving the following
optimization problem: ϕ̂, x̂ = {argminϕ,x ∥A(x) − y∥22, subject to x = gϕ(z)} , where z is a
random vector. In this setup, the reconstruction x̂ is constrained to be the output of the DIP network
gϕ, and the optimization is performed over both the network parameters ϕ and the reconstruction x.
Similarly, in Definition 1, x̂′

0 is required to be the output of the posterior mean estimator f , which is
defined by the network ϵθ.

The subset of images that are in the range of the function f (i.e., backward-consistent) is denoted by
Ct and defined as

Ct := {f(vt; t, ϵθ) : vt ∈ Rn} . (9)

Enforcing x̂′
0 to be both measurement- and backward-consistent involves solving the following op-

timization problem

x̂′
0, v̂t := argmin

v′
t,x

′
0

{
∥A

(
x′
0

)
− y∥22 subject to x′

0 = f(v′
t; t, ϵθ)

}
. (10)

However, Equation (10) may violate forward consistency, as v̂t could possibly be far from xt.
Therefore, we propose adding a regularization term, for which Equation (10) becomes

x̂′
0, v̂t := argmin

v′
t,x

′
0

{
∥A

(
x′
0

)
− y∥22 + λ∥xt − v′

t∥22 subject to x′
0 = f(v′

t; t, ϵθ)
}
. (11)

During the reverse sampling process, at each time t, with the given xt, we seek a v′
t in the nearby

region (i.e., ∥xt − v′
t∥ is small), such that v′

t can be denoised by f to produce a clean image x′
0

(i.e., x′
0 = f(v′

t; t, ϵθ)), which is also consistent with the measurements y (i.e., ∥A
(
x′
0

)
− y∥22 is

small). We need to identify such a v′
t because xt itself cannot be directly denoised by f to yield an

5
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image consistent with the measurements. By substituting the constraint into the objective function,
the optimization problem in Equation (11) is reduced to

v̂t := argmin
v′
t

{
∥A

(
f(v′

t; t, ϵθ)
)
− y∥22 + λ∥xt − v′

t∥22
}
, x̂′

0 = f(v̂t; t, ϵθ). (12)

The benefit of the considered backward consistency constraint is shown in columns 6 to 8 of Figure
2. After obtaining x̂′

0, the resampling formula in Equation (8) is used to obtain xt−1.

3.3 TRIPLE CONSISTENCY CONDITIONS

We now summarize the three key conditions that apply at each sampling step.

C1 Measurement Consistency: The reconstruction x̂′
0 is consistent with the measurements. This

means that A(x̂′
0) ≈ y.

C2 Backward Consistency: The reconstruction x̂′
0 is a denoised image produced by the Tweedie-

network denoiser f . More generally, we define the backward consistency to include any form of DM
network regularization (e.g., using the DM probability-flow (PF) ODE (Karras et al., 2022)) applied
to x̂′

0.

C3 Forward Consistency: The pre-trained DM network ϵθ is provided with in-distribution inputs
with high probability. To ensure this, we apply the resampling formula in Equation (8) and enforce
that v̂t remains close to xt.

We note that the three considered consistencies are step-wise, meaning they are enforced at every
sampling step. This approach contrasts with enforcing these consistencies solely on the final recon-
struction at t = 0, which represents a significantly weaker requirement.

C1-C3 aim to ensure that all intermediate reconstructions x̂′
0(xt) (with t > 0) are as accurate as

possible, allowing us to effectively reduce the number of sampling steps.

Previous works, such as (Song et al., 2023a; Zhang et al., 2024), enforce measurement consistency
by applying A(x̂0) = y exactly, whereas DPS (Chung et al., 2023b) does not ensure consistency
along the diffusion trajectory.

3.4 THE PROPOSED SAMPLER

Given xt, ϵθ, and towards satisfying the above conditions, our method, at sampling time t, consists
of the following three steps:

v̂t := argminv′
t

∥A
( 1√

ᾱt

[
v′
t −

√
1− ᾱt ϵθ(v

′
t, t)

]
︸ ︷︷ ︸

f(v′
t;t,ϵθ)

)
− y∥22 + λ∥xt − v′

t∥22 (S1)

x̂′
0 = f(v̂t; t, ϵθ) ≡ 1√

ᾱt

[
v̂t −

√
1− ᾱt ϵθ(v̂t, t)

]
(S2)

xt−1 =
√
ᾱt−1x̂

′
0 +

√
1− ᾱt−1ηt , ηt ∼ N (0, I) . (S3)

The minimization in the first step optimizes over the input v′
t of the pre-trained diffusion model

at time t, where the first term of the objective enforces measurement consistency for the posterior
mean estimated image, satisfying condition C1. The second term serves as a regularization term,
implicitly promoting closeness between v̂t and xt (i.e., condition C3), with λ > 0 acting as the
regularization parameter. The argument of the forward operator in Equation (S1) and the second
step in Equation (S2) enforce that v̂t and x̂′

0, respectively, maintain the diffusion trajectory through

6
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Figure 3: Illustrative diagram of the proposed procedure in SITCOM (left). Conceptual illustration of SIT-
COM, whereMt is the DM generative manifold at time t and Ct is the subset of images that are backward-
consistent, defined in Equation (9) (right). Step (1) (solid arrow), Step (2) (dotted arrow), and Step (3) (dashed
arrow) correspond to Equation (S1), Equation (S2), and Equation (S3), respectively.
obeying Tweedie’s formula, thereby satisfying the backward consistency condition, C2. After ob-
taining the measurement-consistent estimate, x̂′

0, as given in Equation (S2), it must be mapped back
to time t− 1 to generate xt−1. This is achieved through the forward diffusion step in Equation (S3)
as outlined in the forward consistency condition, C3. A diagram of SITCOM procedure is provided
in Figure 3 (left).
Remark 1. Obtaining the estimated image at time 0 given some xt using the standard DM PF-
ODE (Karras et al., 2022) is more accurate compared to the one-step Tweedie’s formula. However,
since PF-ODE is an iterative procedure, it requires more computational time. In SITCOM, PF-
ODE could replace Tweedie’s formula in Equation (S2). Nevertheless, we chose not to use it, as
this would increase the run time, and our empirical results are already highly competitive using
Tweedie’s formula.

A conceptual illustration of SITCOM is shown in Figure 3 (right). The DM generative manifold,
Mt, is defined as the set of all xt sampled from q(xt|x0) = N (xt;

√
ᾱtx0, (1 − ᾱt)I), and x0 ∼

p0(x). This set coincides with the entire space Rn equipped with the probability measure induced
by the distribution of xt, which we denote as Pt. In Figure 3 (right), the variation of color around
each Mt indicates the concentration of the measure Pt, with darker colors representing higher
concentration. SITCOM’s Step (1) and Step (2) enforce measurement consistency and backward
consistency, thus map xt to x̂′

0 = f(v̂t; t, ϵθ) which lies within the intersection of (i) measurement-
consistent set {x̂′

0 : A(x̂′
0) ≈ y} (the shaded black line) and (ii) the backward-consistent set Ct (the

yellow ellipsoid) defined in Equation (9). Subsequently, xt−1 is generated by inserting x̂′
0 into the

resampling formula, which enforces the forward consistency.

Handling Measurement Noise: To avoid the case where the first term of the objective in Equa-
tion (S1) reaches small values yielding noise overfitting (i.e., when additive Gaussian noise in Equa-
tion (1) is considered, σy > 0), we propose refraining from enforcing strict measurement fitting
A(x) = y. Instead, we use the stopping criterion

∥∥A(
1√
ᾱt

[
v′
t −

√
1− ᾱt ϵθ(v

′
t, t)

])
− y

∥∥2
2
< δ2 ,

where δ ∈ R+ is a hyper-parameter that indicates the level of tolerance for noise and helps prevent
overfitting. This is equivalent to enforcing an ℓ2 constraint, and is in spirit similar to (Wang et al.,
2024). Since the noise level cannot be accurately estimated, in our experiments, we use δ that is
slightly larger than the actual level of noise in the measurements, i.e., δ > σy

√
m.

3.5 SITCOM WITH ARBITRARY STEP SIZES

In this subsection, we explain how to apply SITCOM with a large step size and present the final
algorithm. The pre-trained DM is trained with T diffusion steps. Given that our method is designed
to satisfy measurement and diffusion consistency, SITCOM requires N ≪ T sampling iterations,
using a step size of ∆t := ⌊ T

N ⌋. Thus, we introduce the index i instead of t with a relation t = i∆t.
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Algorithm 1 Step-wise Triple-Consistent Sampling (SITCOM).
Input: Measurements y, forward operator A(·), pre-trained DM ϵθ(· , ·), number of diffusion steps N , DM
noise schedule ᾱi for i ∈ {1, . . . , N}, number of gradient updates K, stopping criterion δ, learning rate γ, and
regularization parameter λ.
Output: Restored image x̂.
Initialization: xN ∼ N (0, I), ∆t = ⌊ T

N
⌋

1: For each i ∈ {N,N − 1, . . . , 1}. (Reducing diffusion sampling steps)

2: Initialize v
(0)
i ← xi. (Initialization to ensure Closeness: C3 )

3: For each k ∈ {1, . . . ,K}. (Gradient updates for measurement & backward consistency: C1, C2)

4: v
(k)
i = v

(k−1)
i − γ∇vi

[∥∥A( 1√
ᾱi

[
vi −

√
1− ᾱi ϵθ(vi, i∆t)

])
− y

∥∥2

2
+ λ∥xi − vi∥22

]∣∣∣
vi=v

(k−1)
i

.

5: If
∥∥A( 1√

ᾱi

[
v
(k)
i −

√
1− ᾱi ϵθ(v

(k)
i , i∆t)

])
− y

∥∥2

2
< δ2 . (Stopping criterion)

6: Break the For loop in step 3. (Preventing noise overfitting)

7: Assign v̂i ← v
(k)
i . (Backward diffusion consistency of v̂i: C2)

8: Obtain x̂′
0 = f(v̂i; t, θ) =

1√
ᾱi

[
v̂i −

√
1− ᾱi ϵθ(v̂i, i∆t)

]
. (Backward consistency of x̂′

0: C2)

9: Obtain xi−1 =
√
ᾱi−1x̂

′
0 +
√
1− ᾱi−1ηi, ηi ∼ N (0, I) . (Forward diffusion consistency: C3)

10: Restored image: x̂ = x0.

The procedure of SITCOM is outlined in Algorithm 1. As inputs, SITCOM takes y, A(·), ϵθ, the
number of sampling steps N , ᾱi for all i ∈ {1, . . . , N}, the number of optimization steps K per
sampling step, stopping criteria δ, and the learning rate γ.

Starting with initializing v
(0)
i as xi (satisfying condition C3), lines 3 through 6 correspond to the

first step of SITCOM, where Equation (S1) is solved via either gradient descent (as shown in the
algorithm), or the ADAM optimizer (Kingma and Ba, 2015). In lines 5 and 6, the stopping criterion
is applied to prevent strict data fidelity (avoiding noise overfitting). Following the gradient updates
in the inner loop, v̂i is obtained in line 7, which is then used in line 8 to obtain x̂′

0 as specified
in Equation (S2), satisfying condition C2. Note that line 8 requires no additional computation, as
the x̂′

0 calculated here was already obtained while checking the stopping condition in line 6. After
obtaining the double-consistent x̂′

0, the resampling is applied to map the image back to time t − 1
while ensuring xt−1 to be in-distribution, as indicated in line 9 of the algorithm. In the next iteration,
the requirement that v̂t−1 is close to xt−1 ensures that the input v̂t−1 to the DM network, ϵθ, is also
in-distribution, thus satisfying the forward-consistency (condition C3).

The computational requirements of SITCOM are determined by (i) the number of sampling steps
N and (ii) the number of gradient steps K required for each sampling iteration. Given the pro-
posed stopping criterion, this results in at most NK Number of Function Evaluations (NFEs) of the
pre-trained model (forward pass), NK backward passes through the pre-trained model, and NK
applications each for the forward operator and its adjoint to solve the optimization problem in Equa-
tion (S1). With early stopping, the computational cost is lower. For example, for a linear operator
A with dimensions m × n, the cost of applying it (or its adjoint) to a vector is O(mn). For a net-
work with width M and depth L, the cost for making a forward pass is O(LM2). The gradients are
computed w.r.t. the input of the DM network, requiring an additional backward pass. Consequently,
this procedure is significantly more efficient than network training, where the network weights are
updated instead of the input.

3.6 RELATION WITH EXISTING APPROACHES

While SITCOM and DPS (Chung et al., 2023b) both use Tweedie’s formula, there are two major
differences. First, DPS does not enforce backward consistency. Specifically, it only considers one
gradient descent step of the optimization in Equation (S1), whereas our method perform multiple
steps, initializing with xt. Second, DPS does not enforce the forward diffusion consistency, namely,
it does not use resampling Equation (S3). This means that DPS does not enforce a step-wise C1-
C3. Both SITCOM and the works in (Song et al., 2023a; Zhang et al., 2024) are optimization-
based methods that modify the sampling steps to enforce measurement consistency, and both involve
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mapping back to time t− 1 (as in step 3 of SITCOM). However, there is a major difference between
them: The optimization variable in these works is the estimated image at time t (the output of the
DM network), whereas in SITCOM, it is the noisy image at time t (the input of the network). This
means that these studies enforce C1 and C3, but not C2.

It is worth noting that while some previous works, such as RED-diff (Wang et al., 2024) and DMPlug
(Mardani et al., 2023), also utilize the implicit bias of the network, they adopt the full diffusion
process as a regularizer, applied only once. In contrast, our method uses the neural network as the
regularizer at each iteration and focuses specifically on reducing the number of sampling steps for a
given level of accuracy.

4 EXPERIMENTAL RESULTS

Tasks, Baselines, & Datasets: Our experimental setup for IPs and noise levels used largely fol-
lows DPS (Chung et al., 2023b). For linear IPs, we evaluate five tasks: super resolution, Gaussian
deblurring, motion deblurring, box inpainting, and random inpainting. For Gaussian deblurring and
motion deblurring, we use 61×61 kernels with standard deviations of 3 and 0.5, respectively. In
the super-resolution task, a bicubic resizer downscales images by a factor of 4. For box inpainting,
a random 128×128 box is applied to mask image pixels, and for random inpainting, the mask is
generated with each pixel masked with a probability of 0.7, as described in (Song et al., 2023a).
For nonlinear IP tasks, we consider three tasks: phase retrieval, high dynamic range (HDR) recon-
struction, and nonlinear (non-uniform) deblurring. For phase retrieval, an oversampling rate of 2 is
applied in frequency domain, and we report the best result out of four independent samples, consis-
tent with (Chung et al., 2023b; Zhang et al., 2024) (see Appendix D for more discussion on phase
retrieval). In HDR reconstruction, the goal is to restore a higher dynamic range image from a lower
dynamic range image (with a factor of 2). Nonlinear deblurring follows the setup in (Tran et al.,
2021). For measurement noise, we use σy ∈ {0.01, 0.05} for all tasks. For baselines, in this section,
we use DPS (Chung et al., 2023b), DDNM (Wang et al., 2022), DCDP (Li et al., 2024), and DAPS
(Zhang et al., 2024). The selection criteria is based on these baselines’ competitive performance on
several linear and non-linear inverse problems under measurement noise. Additionally, we provide
comparison results with three other baselines in Table 5 of Appendix E. We evaluate SITCOM and
baselines using 100 test images from the validation set of FFHQ (Karras et al., 2019) and 100 test
images from the validation set of ImageNet (Deng et al., 2009) for which the FFHQ-trained and
ImageNet-trained DMs are given in (Chung et al., 2023b) and (Dhariwal and Nichol, 2021), respec-
tively, following the previous convention. For evaluation metrics, we use PSNR, SSIM (Wang et al.,
2004), and LPIPS (Zhang et al., 2018).

SITCOM Settings: For Algorithm 1, we set N = 20 and K = 30 for most tasks. We show
the impact of N and K in Appendix F.1. The parameter λ is set to 0 for all tasks other than
phase retrieval where we use λ = 1, following the ablation study in Appendix F.2. The impact
of the stopping criterion under the noisy setting is given in Appendix F.3. The learning rate for
Equation (S1) is set to γ = 0.01 across all measurements noise levels, datasets, and tasks. Table 8
in Appendix F.4 lists all the hyper-parameters used for every task. We note that the exact set of
hyper-parameters is used for the FFHQ and ImageNet datasets. Our code is available online2.

Main Results: In Table 1, we present the quantitative results in terms of the average PSNR, SSIM,
LPIPS, and run-time (minutes). Columns 3 to 6 correspond to the FFHQ dataset, while columns 7
to 10 reflect results for the ImageNet dataset. The table covers 8 tasks, 4 evaluation metrics, and
2 datasets, totaling 64 results. Among these, SITCOM reports the best performance in 58 out of
64 cases. On average, SITCOM demonstrates strong reconstruction capabilities across most tasks.
For the FFHQ dataset, SITCOM reports a PSNR improvement of over 1 dB in Super Resolution,
random In-painting, and Gaussian Deblurring compared to the second-best method. On ImageNet,
we observe more than a 1 dB improvement in random In-painting. Other than ImageNet Gaussian
Deblurring and ImageNet Phase Retrieval, for which we under-perform by 0.66 dB and 0.31 dB,
respectively, our PSNR improvement when compared to the second-best results are less than 1 dB.
However, in terms of run-time, SITCOM consistently requires less computational time across all
tasks. For FFHQ, SITCOM is over 3× faster in Box In-painting and motion Deblurring, and more

2
https://anonymous.4open.science/r/SITCOM-7539/README.md
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Task Method FFHQ ImageNet
PSNR (↑) SSIM (↑) LPIPS (↓) Run-time (↓) PSNR (↑) SSIM (↑) LPIPS (↓) Run-time (↓)

Super Resolution 4×

DPS 24.44±0.56 0.801±0.032 0.26±0.022 1.26±0.52 23.86±0.34 0.76±0.041 0.357±0.069 2.38±1.02

DAPS 29.24±0.42 0.851±0.024 0.135±0.039 1.24 ±0.22 25.67±0.73 0.802±0.045 0.256±0.067 2.16±0.45

DDNM 28.02±0.78 0.842±0.034 0.197±0.034 1.07±0.42 23.96±0.89 0.767±0.045 0.475±0.044 1.27±0.55

DCDP 27.88±1.34 0.825±0.07 0.211±0.05 0.52±0.34 24.12±1.24 0.772±0.000 0.351±0.00 1.45±0.00

SITCOM (ours) 30.68±1.02 0.867±0.045 0.142±0.056 0.45±0.58 26.35±1.21 0.812±0.021 0.232±0.038 1.12±0.52

Box In-Painting

DPS 23.20±0.89 0.754±0.023 0.196±0.032 1.57±0.55 19.78±0.78 0.691±0.052 0.312±0.025 2.28 ±1.02

DAPS 24.17±1.02 0.787±0.032 0.135±0.032 1.35±0.45 21.43±0.40 0.736±0.020 0.218±0.021 2.54±1.02

DDNM 24.37±0.45 0.792±0.024 0.232±0.026 1.02±0.032 21.64±0.66 0.732±0.028 0.319±0.015 1.45±1.02

DCDP 23.66±1.67 0.762±0.07 0.144±0.05 0.56±0.25 20.45±1.22 0.712±0.07 0.298±0.04 1.127±0.25

SITCOM (ours) 24.68±0.78 0.801±0.042 0.121±0.08 0.35±0.25 21.88±0.92 0.742±0.032 0.214±0.021 1.12±0.35

Random In-Painting

DPS 28.39±0.82 0.844±0.042 0.194±0.021 1.52±0.30 24.26±0.42 0.772±0.02 0.326±0.034 2.27±0.25

DAPS 31.02±0.45 0.902±0.015 0.098±0.017 1.56±0.40 28.44±0.45 0.872±0.024 0.135±0.052 2.14±0.45

DDNM 29.93±0.67 0.889±0.032 0.122±0.056 1.45±0.35 29.22±0.55 0.912±0.034 0.191±0.048 1.54±0.52

DCDP 28.59±0.95 0.852±0.06 0.202±0.04 0.55±0.25 26.22±1.13 0.791±0.06 0.289±0.03 1.44±0.34

SITCOM (ours) 32.05±1.02 0.909±0.09 0.095±0.025 0.45±0.50 29.60±0.78 0.915±0.028 0.127±0.039 1.14±0.45

Gaussian Deblurring

DPS 25.52±0.78 0.826±0.052 0.211±0.017 1.50±0.50 21.86±0.45 0.772±0.08 0.362±0.034 2.55±0.45

DAPS 29.22±0.50 0.884±0.056 0.164±0.032 1.40±0.52 26.12±0.78 0.832±0.092 0.245±0.022 2.23±0.52

DDNM 28.22±0.52 0.867±0.056 0.216±0.042 1.56±0.45 28.06±0.52 0.879±0.072 0.278±0.089 1.75±0.63

DCDP 26.67±0.78 0.835±0.08 0.196±0.04 0.56±0.23 23.24±1.18 0.781±0.06 0.343±0.04 1.34±0.43

SITCOM (ours) 30.25±0.89 0.892±0.032 0.135±0.078 0.46±0.25 27.40±0.45 0.854±0.045 0.236±0.039 1.10±0.42

Motion Deblurring
DPS 23.40±1.42 0.737±0.024 0.270±0.025 2.40±0.55 21.86±2.05 0.724±0.022 0.357±0.032 2.56±0.40

DAPS 29.66±0.50 0.872±0.027 0.157±0.012 1.86±0.12 27.86±1.20 0.862±0.032 0.196±0.021 2.3±0.45

SITCOM (ours) 30.34±0.67 0.902±0.037 0.148±0.041 0.5±0.45 28.65±0.34 0.876±0.021 0.189±0.036 1.48±0.35

Phase Retrieval

DPS 17.34±2.67 0.67±0.045 0.41±0.08 1.50±0.34 16.82±1.22 0.64±0.08 0.447±0.032 2.17±0.24

DAPS 30.67±3.12 0.908±0.041 0.122±0.084 1.34±0.78 25.76±2.33 0.797±0.045 0.255±0.095 2.24±0.25

DCDP 28.52±2.50 0.892±0.19 0.167±0.92 3.30±0.45 24.25±2.25 0.778±0.14 0.287±0.089 3.49±0.52

SITCOM (ours) 30.97±3.10 0.915±0.064 0.112±0.102 0.52±0.34 25.45±2.78 0.808±0.065 0.246±0.088 1.40±0.40

Non-Uniform Deblurring

DPS 23.42±2.15 0.757±0.042 0.279±0.067 1.55±0.44 22.57±0.67 0.778±0.067 0.310±0.102 2.35±0.45

DAPS 28.23±1.55 0.833±0.052 0.155±0.041 1.42±0.41 27.65±1.2 0.822±0.056 0.169±0.044 2.14±0.45

DCDP 28.78±1.44 0.827±0.08 0.162±0.04 3.30±0.45 26.56±1.09 0.803±0.06 0.182±0.05 3.70±0.36

SITCOM (ours) 30.12±0.68 0.902±0.042 0.145±0.037 0.52±0.45 28.78±0.79 0.832±0.056 0.16±0.048 1.25±0.45

High Dynamic Range
DPS 22.88±1.25 0.722±0.056 0.264±0.089 1.45±0.34 19.33±1.45 0.688±0.067 0.503±0.132 2.42±0.46

DAPS 27.12±0.89 0.825±0.056 0.166±0.078 1.25±0.35 26.30±1.02 0.792±0.046 0.177±0.089 2.18±0.55

SITCOM (ours) 27.98±1.06 0.832±0.052 0.158±0.032 0.52±0.30 26.97±0.87 0.821±0.045 0.167±0.052 1.54±0.35

Table 1: Average PSNR, SSIM, LPIPS, and run-time (minutes) of SITCOM and baselines using 100 test
images from the FFHQ dataset (columns 3 to 7) and 100 test images from the ImageNet dataset with a mea-
surement noise level of σy = 0.05. The results for the σy = 0.01 case are given in Table 4 of Appendix E.
The first five tasks are linear, while the last three tasks are non-linear (underlined). For each task and dataset
combination, the best results are bolded, and the second-best results are underlined. Values after ± represent
the standard deviation. All results were obtained using a single RTX5000 GPU machine. For phase retrieval,
the run-time is reported for the best result out of four independent runs. This is applied for SITCOM and base-
lines. More discussion about phase retrieval is given in Appendix D.
than 2× faster in the remaining tasks, whereas on ImageNet, the run-time improvement ranges from
36 seconds (for HDR) to 62.4 seconds (for Super Resolution), when compared to DPS, DDNM,
and DAPS. For linear tasks, SITCOM requires slightly less run-time than DCDP on both datasets.
However, across the two datasets, SITCOM achieves PSNR improvements of more than 1 dB, 2 dB,
and 3 dB for the tasks of super resolution, box in-painting, and random in-painting (and Gaussian
Deblurring), respectively, as compared to DCDP. For non-linear tasks, SITCOM not only provides
PSNR improvements over DCDP but also significantly reduces run-time.

In summary, the results in Table 1 demonstrate that SITCOM either provides a notable improvement
in restoration quality (e.g., cases where we report PSNR improvements of over 1 dB) or delivers
comparable results to the baselines, all while reducing computation time. In Appendix E, we present
the results with σy = 0.01 case (Table 4). Additionally, Table 5 includes quantitative results for three
more baselines. In addition to the FFHQ restored images in Figure 1, we also provide additional
samples from both datasets in the figures found in Appendix H.

5 CONCLUSION

In this paper, we proposed three conditions to achieve measurement- and diffusion-consistent trajec-
tories for linear and non-linear inverse imaging problems using diffusion models (DMs) as priors.
These conditions form the basis of our unique optimization-based sampling method, which opti-
mizes the input of the diffusion model at each step. This approach allows for greater control over
the diffusion process and enhances data consistency with the given measurements. Through exten-
sive experiments across eight image restoration tasks, we evaluated the effectiveness of our method.
The results showed that our sampler consistently delivers improved or comparable quantitative per-
formance against state-of-the-art baselines, even with measurement noise. Notably, our method is
efficient, requiring significantly less run-time than leading baselines, making it practical for real-
world applications.
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Appendix

In the Appendix, we start by showing the equivalence between the second formula in Equation (3)
and Equation (6) (Appendix A). Then, we discuss the known limitations and future extensions
of SITCOM (Appendix B). Subsequently, we present experiments to highlight the impact of the
proposed backward consistency (Appendix C). This is followed by a discussion on phase retrieval
(Appendix D). In Appendix E, we provide further comparison results, and in Appendix F, we per-
form ablation studies to examine the effects of the stopping criterion and other components/hyper-
parameters in SITCOM. Appendix G covers the implementation details of tasks and baselines, fol-
lowed by examples of restored images (Appendix H).

A DERIVATION OF EQUATION (6)

From (Luo, 2022), we have

sθ(xt, t) = − 1√
1− ᾱt

ϵθ(xt, t) . (13)

Rearranging the Tweedie’s formula in Equation (4) to solve for ϵθ(xt, t) yields

ϵθ(xt, t) =
xt −

√
ᾱtx̂0(xt)√

1− ᾱt
. (14)

Now, we substitute into the recursive equation for xt−1:

xt−1 =
1√

1− βt

[xt + βtsθ(xt, t)] +
√

βtηt (15)

=
1√

1− βt

[
xt + βt

(
− 1√

1− ᾱt
ϵθ(xt, t)

)]
+

√
βtηt (16)

=
1√

1− βt

[
xt −

βt√
1− ᾱt

ϵθ(xt, t)

]
+
√

βtηt (17)

=
1√

1− βt

[
xt −

βt√
1− ᾱt

(
xt −

√
ᾱtx̂0(xt)√

1− ᾱt

)]
+
√

βtηt (18)

=
1√

1− βt

[
xt −

βt

1− ᾱt

(
xt −

√
ᾱtx̂0(xt)

)]
+

√
βtηt (19)

=
1√

1− βt

[(
1− βt

1− ᾱt

)
xt +

√
ᾱtβt

1− ᾱt
x̂0(xt)

]
+

√
βtηt (20)

=
(1− ᾱt − βt)√
1− βt (1− ᾱt)

xt +

√
ᾱtβt√

1− βt (1− ᾱt)
x̂0(xt) +

√
βtηt (21)

=
(αt − ᾱt)√
αt (1− ᾱt)

xt +

√
ᾱtβt√

αt (1− ᾱt)
x̂0(xt) +

√
βtηt (22)

=

(√
αt −

√
αtᾱt−1

)
1− ᾱt

xt +

√
ᾱt−1βt

1− ᾱt
x̂0(xt) +

√
βtηt (23)

=

√
αt (1− ᾱt−1)

1− ᾱt
xt +

√
ᾱt−1βt

1− ᾱt
x̂0(xt) +

√
βtηt , (24)

which is equivalent to the second formula in Equation (3).

B LIMITATIONS & FUTURE WORK

In SITCOM, the stopping criterion parameter is set slightly higher than the level of measurement
noise, determined by σy. As a result, our method requires access to (or estimation of) the measure-
ment noise prior to the restoration process. Knowledge of noise level is also assumed in other works

14
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such as DAPS (Zhang et al., 2024). In practice, classical approaches, such as (Liu et al., 2006; Chen
et al., 2015), can be used to estimate the noise.

Additionally, the stated conditions and proposed sampler are limited to the non-blind setting, as
SITCOM assumes full access to the forward model, unlike works such as (Chung et al., 2023a),
which perform both image restoration and forward model estimation.

For future work, in addition to addressing the aforementioned limitations, we aim to extend SIT-
COM to the latent space and explore its applicability in medical image reconstruction.

C IMPACT OF THE PROPOSED BACKWARD CONSISTENCY

Here, we demonstrate the impact of the proposed backward diffusion consistency in SITCOM us-
ing two experiments. We note that, in SITCOM, we apply a step-wise network regularization
for the backward consistency such that we fully exploit the implicit regularization of the net-
work. Removing the step-wise network regularization is equivalent to removing the requirement
for x̂0 = f(vt; θ, t). This makes x0 a free variable which reduces the optimization in Equation (S1)
to Equation (5).

GT

𝑡′ = 800

Optimizing over the output of the DM network at 𝑡 = 𝑡′ for 𝐾 = 20 iterations. 

Optimizing over the input of the DM network (ours) at 𝑡 = 𝑡′ for 𝐾 = 20 iterations. 

Degraded Image

Task: Gaussian Deblurring

𝑡′ = 600𝑡′ = 400𝑡′ = 200

GT Degraded Image

𝑡′ = 800𝑡′ = 600𝑡′ = 400𝑡′ = 200

Task: Box Inpainting

Optimizing over the output of the DM network at 𝑡 = 𝑡′ for 𝐾 = 20 iterations. 

Optimizing over the input of the DM network (ours) at 𝑡 = 𝑡′ for 𝐾 = 20 iterations. 

Figure 4: Results of applying optimization-based measurement consistency, for which the optimization vari-
able is the DM output (resp. input), are shown in the first (resp. second) row for each task: Box Inpainting (top)
and Gaussian Deblurring (bottom).

First, for the box-painting task, we compare optimizing over the input to the DM (as in SITCOM)
with optimizing over the output of the DM network (as is done in DCDP (Li et al., 2024) and DAPS
(Zhang et al., 2024)) at time steps t′ ∈ {200, 400, 600}. For each case (selection of t′), we start
from t = T and run SITCOM with a step size of ⌊ T

N ⌋. At t = t′, given xt′ , we perform two separate
optimizations with intializing the optimization variable as xt′ : one iteratively over the DM network
input (ours) and another iteratively over the DM network output (i.e., Equation (5) but without
the regularization), both running until convergence (i.e., when the loss stops decreasing). For our
approach, the result of the optimization from Equation (S1) is used as input to Tweedie’s formula
in Equation (S2) to compute the posterior mean x̂′

0 = x̂0(vt). For the case of optimizing over
the DM output, we use Equation (5) without regularization. Figure 2 shows the results at different
time steps. The consistency between the ground truth and the unmasked regions of the estimated
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Task Method t′ with PSNR/run-time
200 400 600 800

Super Resolution 4× SITCOM at K = 1000 31.32/558.45 30.78/476.09 29.89/424.26 25.62/256.16
SITCOM without Backward Consistency at K = 20 25.24/529.56 24.74/452.22 17.56/414.45 14.45/245.87

Non-linear Deblurring SITCOM at K = 1000 30.78/544.45 30.56/483.78 28.23/424.69 26.78/229.24
SITCOM without Backward Consistency at K = 1000 24.88/529.44 23.56/464.88 21.45/412.68 12.25/216.47

Table 2: Average PSN/run-time results of 20 FFHQ test images at intermediate time steps to show the impact
of the proposed step-wise network regularization for backward consistency. Here, we use K = 1000 at each t′

for both cases.

Task Method t′ with PSNR/run-time
200 400 600 800

Super Resolution 4× SITCOM at K = 20 30.22/30.45 28.78/26.09 25.45/14.26 22.22/10.16
SITCOM without Backward Consistency at K = 20 15.24/29.56 13.24/25.12 11.56/14.45 9.45/7.87

Non-linear Deblurring SITCOM at K = 20 29.78/29.45 27.56/23.78 24.23/13.69 21.78/10.16
SITCOM without Backward Consistency at K = 20 14.79/29.44 13.56/23.48 11.45/12.88 8.25/9.47

Table 3: Average PSN/run-time results of 20 FFHQ test images at intermediate time steps to show the impact
of the proposed step-wise network regularization for backward consistency. Here, we use K = 20 at each t′

for both cases.

images suggest the convergence of the measurement consistency. As observed, SITCOM produces
significantly less artifacts in the masked region when compared to optimizing over the output. This
is evident both at earlier time steps (t′ = 600) and later steps (t′ = 400 and t′ = 200).

In Table 2, we repeat the above experiment for super-resolution and Non-linear Deblurring where
we report the average PSNR and run-time of 20 FFHQ test images. As observed, given the same
number of gradient updates (K = 1000), optimizing over the input consistently achieves better
results, highlighting the impact of the proposed step-wise network regularization for the backward
consistency. We note that the lower PSNRs is due not running the algorithm until convergence.

For the second experiment, the goal is to show that SITCOM requires much smaller number of
optimization steps to remove the noise as compared to the case where the optimization variable is the
output of the DM network. The results are given in Figure 4, where we repeat the above experiment
with two tasks: Box-inpainting (top) and Gaussian Deblurring (bottom), this time using a fixed
number of optimization steps for both SITCOM, and optimizing over the DM output. Specifically,
we run SITCOM from t = T to t = t′ + 1. Then, we apply K = 20 iterations (the setting in
SITCOM) in Equation (S1), and K = 20 when optimizing Equation (5) (without regularization)
where measurement noise is σy = 0.05. As shown, compared to optimizing over the DM output,
SITCOM significantly reduces noise across all considered t′, underscoring the effect of the proposed
backward diffusion consistency when optimizing over the DM input.

In Table 3, we repeat the second experiment for two more tasks: super-resolution and Non-linear
Deblurring. Similar to Table 2, we report the average PSNR and run-time of 20 FFHQ test images.
The results indicate that even at lower K, using the proposed backward consistency return the best
results.

D DISCUSSION ON PHASE RETRIEVAL

As discussed in our experimental results section, for the phase retrieval task, we report the best
results from 4 independent runs, following the convention in (Chung et al., 2023b; Zhang et al.,
2024). For the phase retrieval results of Table 1 and Table 4 (given in Appendix E), we use this
approach across all baselines where the run-time is reported for one run.

The forward model for phase retrieval is adopted from DPS where the inverse problem is generally
more challenging compared to other image restoration tasks. This increased difficulty arises from
the presence of multiple modes that can yield the same measurements (Zhang et al., 2024).

In Figure 5, we present two examples comparing SITCOM, DPS, and DAPS. For each ground truth
image, we show four results from which the best one was selected. In the first column, SITCOM
avoids significant artifacts, while DAPS produces one image rotated by 180 degrees. In the second
column, both SITCOM and DAPS exhibit one run with severe artifacts. However, the last image
from SITCOM does exhibit more artifacts compared to the second worst-case result from DAPS.
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Ground Truth Ground Truth

DPS

DAPS

SITCOM (Ours)

Figure 5: Results of Phase Retrieval on two images (top row) from the FFHQ dataset. Rows 2, 3, and 4
correspond to the results of DPS, DAPS, and SITCOM (ours), respectively.

Additionally, the DPS results show severe perceptual differences in both cases, with artifacts being
particularly noticeable in the second column.

E ADDITIONAL COMPARISON RESULTS

In Table 4, we present the average PSNR, SSIM, LPIPS, and run-time (minutes) of DPS, DAPS,
DDNM, and SITCOM using the FFHQ and ImageNet datasets for which the measurement noise
level is set to σy = 0.01 (different from Table 1). The goal of these results is to evaluate our method
and baselines under less noisy settings.

Overall, we observe similar trends to those discussed in Section 4 for Table 1. On the FFHQ dataset,
SITCOM achieves higher average PSNR values compared to the baselines across all tasks, with
improvements exceeding 1 dB in 5 out of 8 tasks. For the ImageNet dataset, we observe more than 1
dB improvement on the non-linear deblurring task, while for the remaining tasks, the improvement
is less than 1 dB, except for Gaussian deblurring (where SITCOM underperforms by 0.22 dB) and
phase retrieval (underperforming by 0.36 dB).

In terms of run-time, generally, SITCOM significantly outperforms DDNM, DPS, and DAPS, with
all methods evaluated on a single RTX5000 GPU. For the FFHQ dataset, SITCOM is at least twice
as fast when compared to baselines. On ImageNet, SITCOM consistently requires much less run-
time compared to DPS and DAPS. When compared to DDNM, SITCOM’s run-time is similar or
slightly lower. For example, on the super-resolution task, both SITCOM and DDNM average 1.34
minutes, but SITCOM achieves over a 2 dB improvement.

In Table 5, we report the average PSNR and LPIPS results using three more baselines: Denoising
Diffusion Restoration Models (DDRM) (Kawar et al., 2022), Plug-and-Play (PnP) ADMM (Chan
et al., 2016) (a non diffusion-based solver), and Regularization by Denoising with Diffusion (RED-
Diff) (Mardani et al., 2023). The results of DDRM, PnP-ADMM, and RED-Diff are sourced from
(Zhang et al., 2024). DDRM and PnP-ADMM present results for linear tasks whereas RED-Diff is
used for the non-linear tasks. The results of SITCOM are as reported in Table 1.

When compared to DDRM and PnP-ADMM, SITCOM demonstrates notable improvements in both
PSNR and LPIPS across all tasks and datasets. For instance, SITCOM achieves over a 5 dB im-
provement in random in-painting on both datasets. Compared to RED-Diff, SITCOM outperforms
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Task Method FFHQ ImageNet
PSNR (↑) SSIM (↑) LPIPS (↓) Run-time (↓) PSNR (↑) SSIM (↑) LPIPS (↓) Run-time (↓)

Super Resolution 4×
DPS 25.20±1.22 0.806±0.044 0.242±0.102 1.31±0.44 24.45±0.89 0.792±0.052 0.331±0.089 2.33±0.40

DAPS 29.6±0.67 0.871±0.034 0.132±0.088 1.24±0.43 25.98±0.74 0.794±0.09 0.234±0.089 2.10±1.02

DDNM 28.82±0.67 0.851±0.043 0.188±0.13 1.07±0.35 24.67±0.78 0.771±0.06 0.432±0.34 1.38±0.55

Ours 30.95±0.89 0.872±0.045 0.137±0.046 0.50±0.34 26.89±0.86 0.802±0.057 0.224±0.056 1.34±0.45

Box In-Painting

DPS 23.56±0.78 0.762±0.034 0.191±0.087 1.52±0.43 20.22±0.67 0.69±0.034 0.297±0.077 1.55±0.44

DAPS 24.41±0.67 0.791±0.034 0.129±0.067 1.33±0.42 21.79±0.34 0.734±0.045 0.214±0.034 2.44±0.34

DDNM 24.67±0.067 0.788±0.024 0.229±0.055 1.02±0.42 21.99±0.54 0.737±0.034 0.315±0.022 1.42±0.45

Ours 24.97±0.55 0.804±0.045 0.118±0.022 0.37±0.34 22.23±0.44 0.745±0.034 0.208±0.023 1.23±0.44

Random In-Painting

DPS 28.77±0.56 0.847±0.034 0.191±0.023 1.55±0.34 24.57±0.45 0.775±0.023 0.318±0.26 2.12±0.30

DAPS 31.56±0.45 0.905±0.013 0.094±0.012 1.42±0.45 28.86±0.67 0.877±0.021 0.131±0.044 2.01±0.34

DDNM 30.56±0.56 0.902±0.013 0.116±0.023 1.25±0.42 30.12±0.45 0.917±0.012 0.124±0.032 1.89±0.23

Ours 33.02±0.44 0.919±0.012 0.0912±0.013 0.47±0.34 30.67±0.45 0.918±0.013 0.118±0.012 1.40±0.34

Gaussian Deblurring

DPS 25.78±0.68 0.831±0.034 0.202±0.014 1.33±0.44 22.45±0.42 0.778±0.067 0.344±0.041 2.12±0.44

DAPS 29.67±0.45 0.889±0.045 0.163±0.033 2.15±0.37 26.34±0.55 0.836±0.034 0.244±0.023 2.22±0.43

DDNM 28.56±0.45 0.872±0.024 0.211±0.034 1.24±0.34 28.44±0.021 0.882±0.021 0.267±0.00 1.76±0.33

Ours 32.12±0.34 0.913±0.024 0.139±0.045 0.45±0.25 28.22±0.45 0.891±0.014 0.216±0.021 1.34±0.25

Motion Deblurring
DPS 23.78±0.78 0.742±0.042 0.265±0.024 1.65±0.34 22.33±0.727 0.726±0.034 0.352±0.00 2.21±0.40

DAPS 30.78±0.56 0.892±0.034 0.146±0.023 1.44±0.34 28.24±0.62 0.867±0.023 0.191±0.017 2.12±0.44

Ours 32.34±0.44 0.908±0.028 0.135±0.028 0.52±0.34 29.12±0.38 0.882±0.025 0.182±0.025 1.45±0.31

Phase Retrieval
DPS 17.56±2.15 0.681±0.056 0.392±0.021 1.52±0.42 16.77±1.78 0.651±0.076 0.442±0.037 2.18±0.38

DAPS 31.45±2.78 0.909±0.035 0.109±0.044 1,85±0.32 26.12±2.12 0.802±0.023 0.247±0.034 2.32±0.35

Ours 31.88±2.89 0.921±0.067 0.102±0.078 0.54±0.45 25.76±1.78 0.813±0.032 0.238±0.067 1.31±0.45

Non-Uniform Deblurring
DPS 23.78±2.23 0.761±0.051 0.269±0.064 1.56±0.45 22.97±1.57 0.781±0.023 0.302±0.089 2.34±0.44

DAPS 28.89±1.67 0.845±0.057 0.150±0.056 1.41±0.37 28.02±1.15 0.831±0.082 0.162±0.034 2.23±0.56

Ours 31.09±0.89 0.911±0.056 0.132±0.45 0.56±0.37 29.56±0.78 0.844±0.045 0.147±0.042 1.34±0.44

High Dynamic Range
DPS 23.33±1.34 0.734±0.049 0.251±0.078 1.34±0.42 19.67±0.056 0.693±0.034 0.498±0.112 2.34±0.41

DAPS 27.58±0.829 0.828±0.00 0.161±0.067 1.26±0.44 26.71±0.088 0.802±0.032 0.172±0.066 2.12±0.32

Ours 28.52±0.89 0.844±0.045 0.148±0.035 0.51±0.42 27.56±0.78 0.825±0.037 0.162±0.046 1.45±0.41

Table 4: Average PSNR, SSIM, LPIPS, and run-time (minutes) of SITCOM and baselines using 100 test
images from FFHQ and 100 test images from ImageNet with a measurement noise level of σy = 0.01.
The first five tasks are linear, while the last three tasks are non-linear (underlined). For each task and dataset
combination, the best results are bolded, and the second-best results are underlined. Values after ± represent
the standard deviation. All results were obtained using a single RTX5000 GPU machine. For phase retrieval,
the run-time is reported for the best result out of four independent runs. This is applied for SITCOM and
baselines.

Task Method FFHQ ImageNet
PSNR (↑) LPIPS (↓) PSNR (↑) LPIPS (↓)

Super Resolution 4×
DDRM (Kawar et al., 2022) 27.65 0.210 25.21 0.284

PnP-ADMM (Chan et al., 2016) 23.48 0.725 22.18 0.724
SITCOM (ours) 30.68 0.142 26.35 0.232

Box In-Painting
DDRM (Kawar et al., 2022) 22.37 0.159 19.45 0.229

PnP-ADMM (Chan et al., 2016) 13.39 0.775 12.61 0.702
SITCOM (ours) 24.68 0.121 21.88 0.214

Random In-Painting
DDRM (Kawar et al., 2022) 25.75 0.218 23.23 0.325

PnP-ADMM (Chan et al., 2016) 20.94 0.724 20.03 0.680
SITCOM (ours) 32.05 0.095 29.60 0.127

Gaussian Deblurring
DDRM (Kawar et al., 2022) 23.36 0.236 23.86 0.341

PnP-ADMM (Chan et al., 2016) 21.31 0.751 20.47 0.729
SITCOM (ours) 30.25 0.235 27.40 0.236

Motion Deblurring PnP-ADMM (Chan et al., 2016) 23.40 0.703 24.23 0.684
SITCOM (ours) 30.34 0.148 28.65 0.189

Phase Retrieval RED-Diff (Mardani et al., 2023) 15.60 0.596 14.98 0.536
SITCOM (ours) 30.97 0.112 25.45 0.246

Non-Uniform Deblurring RED-Diff (Mardani et al., 2023) 30.86 0.160 30.07 0.211
SITCOM (ours) 30.12 0.145 28.78 0.160

High Dynamic Range RED-Diff (Mardani et al., 2023) 22.16 0.258 22.03 0.274
SITCOM (ours) 27.98 0.158 26.97 0.167

Table 5: Average PSNR and LPIPS results of our method and other baselines over 100 FFHQ and 100 Ima-
geNet test images. The measurement noise setting is σy = 0.05. The results of DDRM and PnP-ADMM (resp.
RED-Diff) are sourced from Tables 1 and 3 (resp. 2 and 4) in (Zhang et al., 2024). The remaining results are
as given in Table 1 of Section 4.

by 5 dB on FFHQ and more than 10 dB on ImageNet for phase retrieval. A similar trend is observed
in the High Dynamic Range task. For non-linear non-uniform deblurring, although SITCOM per-
forms better in terms of LPIPS, it reports approximately 1 dB (FFHQ) and 2 dB (ImageNet) less
PSNR than RED-Diff, all without requiring external denoisers.
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F ABLATION STUDIES

F.1 EFFECT OF THE NUMBER OF OPTIMIZATION STEPS K , & THE NUMBER OF SAMPLING
STEPS N

In this subsection, we perform an ablation study on the number of optimization steps, K, and the
number of sampling steps, N . Specifically, for the tasks of Super Resolution, Motion Deblurring,
and Random In-painting, we run SITCOM using combinations from N ∈ {10, 20, 30} and K ∈
{20, 30, 40}. The average PSNR results over 20 test images from the FFHQ dataset are presented
in Table 6. As shown, for the first three tasks, SITCOM consistently achieves strong PSNR scores
across all (N,K) pairs, demonstrating that its performance is not very sensitive to variations in
(N,K) within these ranges as the results vary by nearly 1 dB. For High Dynamic Range tasks, we
observe that the best results are obtained with (N,K) = (20, 40). The selected (N,K) values for
our main results are listed in Table 8 of Appendix F.4.

(N,K) (10, 20) (10, 30) (10, 40) (20, 20) (20, 30) (20, 40) (30, 20) (30, 30) (30, 40)

Super Resolution 4× 29.654 29.771 29.815 29.913 29.952 29.961 30.009 30.027 30.033
Motion Deblurring 29.976 30.820 31.264 31.259 31.380 30.452 31.282 30.624 30.438
Random Inpainting 33.428 34.444 34.699 34.546 34.558 34.574 34.619 34.634 34.639

High Dynamic Range 25.902 26.290 27.873 26.957 27.104 27.874 27.171 27.127 26.806

Table 6: Effect of the number of sampling steps (N ) and optimization steps per sampling iteration (K) on
the tasks listed in the first column for SITCOM. The reported PSNR values are averaged over 20 FFHQ test
images.

F.2 EFFECT OF THE REGULARIZATION PARAMETER λ

In this subsection, we perform an ablation study to assess the impact of the regularization parameter,
λ, in SITCOM. Table 7 shows the results across four tasks using various λ values. Aside from phase
retrieval, the effect of λ is minimal. We hypothesize that initializing the optimization variable in
Equation (S1) with xt is sufficient to enforce forward diffusion consistency in C3. Therefore, we
set λ = 1 for phase retrieval and λ = 0 for the other tasks.

Additionally, for all tasks other than phase retrieval, we observed that when λ = 0, the restored
images exhibit enhanced high-frequency details. For visual examples, see the results of λ = 0
versus λ = 1 in Figure 6.

λ 0 0.05 0.5 1 1.5

Super Resolution 4× 29.952 29.968 29.464 29.550 29.288
Motion Deblurring 31.380 31.393 31.429 31.382 31.150
Random Inpainting 34.559 34.537 34.523 34.500 34.301

Phase Retrieval 31.678 31.892 32.221 32.342 32.124

Table 7: Ablation Study on the impact of the regularization parameter λ.

Ground Truth Degraded Image 𝜆 = 0 𝜆 = 0.01 𝜆 = 1

PSNR = 28.99 PSNR = 28.97 PSNR = 27.47

Figure 6: Results of running SITCOM using different regularization parameters in Equation (S1) for the task
of Motion deblurring.

F.3 IMPACT OF THE STOPPING CRITERION FOR NOISY MEASUREMENTS

In this subsection, we demonstrate the impact of applying the stopping criterion in SITCOM when
handling measurement noise. For the tasks of super resolution and motion deblurring, we run SIT-
COM with and without the stopping criterion for the case of σy = 0.05. The results are presented
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in Figure 7. As shown, for both tasks, using the stopping criterion (i.e., δ > 0) not only improves
PSNR values compared to the case of δ = 0, but also visually reduces additive noise in the restored
images. This is because, without the stopping criterion , the measurement consistency enforced by
the optimization in Equation (S1) tends to fit the noise in the measurements.

GT

Degraded Image

Super Resolution

Degraded Image

PSNR = 27.267

𝛿 = 0

PSNR = 30.62

𝛿 > 0

PSNR = 22.819

𝛿 = 0

PSNR = 31.911

Motion Deblurring
𝛿 > 0

Figure 7: Impact of the stopping criterion in preventing noise overfitting. For the most right column, δ is set
as in Table 8.

F.4 COMPLETE LIST OF HYPER-PARAMETERS IN SITCOM

Table 8 summarizes the hyper-parameters used for each task in our experiments, as determined by
the ablation studies in the previous subsections. Notably, the same set of hyper-parameters is applied
to both the FFHQ and ImageNet datasets.

Task Sampling Steps N Optimization Steps K Regularization λ Stopping criterion δ for σy ∈ {0.05, 0.01}
Super Resolution 4× 20 20 0 {0.051√mSR ,0.011

√
mSR}

Box In-Painting 20 20 0 {0.051
√
m ,0.011

√
m}

Random In-Painting 20 30 0 {0.051
√
m ,0.011

√
m}

Gaussian Deblurring 20 30 0 {0.051
√
m ,0.011

√
m}

Motion Deblurring 20 30 0 {0.051
√
m ,0.011

√
m}

Phase Retrieval 20 30 1 {0.051√mPR ,0.011
√
mPR}

Non-Uniform Deblurring 20 30 0 {0.051
√
m ,0.011

√
m}

High Dynamic Range 20 40 0 {0.051
√
m ,0.011

√
m}

Table 8: Hyper-parameters of SITCOM for every task considered in this paper. The same set of hyper-
parameters is used for FFHQ and ImageNet. The learning rate in Algorithm 1 is set to γ = 0.01 for all
tasks, datasets, and measurement noise levels. For the stopping criterion column, mSR = 64 × 64 × 3, m =
256× 256× 3, and mPR = 384× 384× 3.

G DETAILED IMPLEMENTATION OF TASKS AND BASELINES

The forward models of all tasks are adopted from DPS. We refer the reader to Appendix B of (Chung
et al., 2023b) for details. For baselines, we used the codes provided by the authors of each paper:
DPS3, DDNM4, DAPS5, and DCDP6. Default configurations are used for each task.

3
https://github.com/DPS2022/diffusion-posterior-sampling

4
https://github.com/wyhuai/DDNM

5
https://github.com/zhangbingliang2019/DAPS

6
https://github.com/Morefre/Decoupled-Data-Consistency-with-Diffusion-Purification-for-Image-Restoration
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H QUALITATIVE RESULTS

Figure 8 presents results with SITCOM, DPS, and DAPS using ImageNet. See also Figure 9, Fig-
ure 10, Figure 11, and Figure 12 for more images.

Super Resolution
Ground Truth Measurements DPS DAPS SITCOM (ours)

PSNR = 22.10
LPIPIS = 0.256

PSNR = 26.89
LPIPIS = 0.195

PSNR = 28.20
LPIPIS = 0.145

Box Inpainting
Ground Truth Measurements DPS DAPS

PSNR = 20.24
LPIPIS = 0.267

PSNR = 22.78
LPIPIS = 0.211

PSNR = 24.55
LPIPIS = 0.189

Motion Deblurring
Ground Truth Measurements DPS DAPS

PSNR = 22.09
LPIPIS = 0.291

PSNR = 27.99
LPIPIS = 0.184

PSNR = 29.02
LPIPIS = 0.167

Gaussian Deblurring
Ground Truth Measurements DPS DAPS

PSNR = 21.72 
LPIPIS = 0.345

PSNR = 27.34
LPIPIS = 0.245

PSNR = 28.78
LPIPIS = 0.1189

Non-linear Deblurring 
Ground Truth Measurements DPS DAPS

PSNR = 22.56
LPIPIS = 0.312

PSNR = 28.01
LPIPIS = 0.167

PSNR = 29.25
LPIPIS = 0.145

Phase Retrieval 
Ground Truth Measurements DPS DAPS

PSNR = 14.89
LPIPIS = 0.58

PSNR = 30.12
LPIPIS = 0.102

PSNR = 30.34
LPIPIS = 0.089

Random Inpainting 
Ground Truth Measurements DPS DAPS

PSNR = 24.56
LPIPIS = 0.315

PSNR = 29.02
LPIPIS = 0.128

PSNR = 30.15
LPIPIS = 0.102

High Dynamic Range
Ground Truth Measurements DPS DAPS

PSNR = 18.90
LPIPIS = 0.450

PSNR = 26.29
LPIPIS = 0.203

PSNR = 28.02
LPIPIS = 0.156

SITCOM (ours)

SITCOM (ours)SITCOM (ours)

SITCOM (ours) SITCOM (ours)

SITCOM (ours)SITCOM (ours)

Figure 8: Qualitative results on the ImageNet dataset for five linear tasks and three non-linear tasks under
measurement noise of σy = 0.05. The PSNR and LPIPS values are given below each restored image.

Super Resolution

Ground Truth Measurements SITCOM (ours) DAPS DPSGround Truth Measurements SITCOM (ours) DAPS DPS

Figure 9: Super resolution (left) and box inpainting (right) results. First (resp. last) three rows are for the
FFHQ (resp. ImageNet) dataset.

21



1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2025

Ground Truth Measurements SITCOM (ours) DAPS DPS Ground Truth Measurements SITCOM (ours) DAPS DPS

Figure 10: Motion deblurring (left) and Gaussian deblurring (right) results. First (resp. last) three rows are
for the FFHQ (resp. ImageNet) dataset.

Ground Truth Measurements SITCOM (ours) DAPS DPS Ground Truth Measurements SITCOM (ours) DAPS DPS

Figure 11: Random inpainting (left) and non-linear (non-uniform) deblurring (right) results. First (resp.
last) three rows are for the FFHQ (resp. ImageNet) dataset.
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Phase Retrieval

Ground Truth Measurements SITCOM (ours) DAPS DPS Ground Truth Measurements SITCOM (ours) DAPS DPS

Figure 12: Phase retrieval (left) and high dynamic range (right) results. First (resp. last) three rows are for
the FFHQ (resp. ImageNet) dataset.
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