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This appendix contains a proofs of the results in the main text and further analysis on the two FIM es-
timators Î1(θ) and Î2(θ). In particular, Appendix C presents an analysis of how the FIM estimators
and their covariance tensors change under reparametrization. Appendix D presents element-wise
bound alternatives to those presented in Section 3.2. Appendix E explores various results using
alternative norms to the Frobenius norm results of the main text. Appendix F presents an analy-
sis on taking a linear combination of the two FIM estimators. Appendix G presents a numerical
experiments of the FIM estimators on the MNIST dataset.
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A List of Symbols

Table A.1: Table of symbols.
Symbol Meaning Defined
I(θ) Fisher information matrix (FIM) Eq. (1)
Î1(θ) An estimator of the FIM Eq. (2)
Î2(θ) Another estimator of the FIM
Var(·) Element-wise variance of input;

output is the same dimension as the input dimension Eq. (9)
Cov(·) Pair-wise covariance of input;

output is the dimension of an outer product on the input Lemma 2
h Natural parameter of exponential family Table 1
hl Hidden layer output in our neural network model Eq. (3)
hL Last layer’s output in our neural network model

and the natural parameter of the exponential family Eq. (3)
nl Size of layer l Eq. (3)
F (hL) Log-partition function of exponential family Lemma 2
η = η(hL) Dual parameterization of exponential family Lemma 2
I(hL) = Var(t) Covariance matrix of t Lemma 2
K(t) 4th central moment of t Theorem 4
κa,b,c,d 4th order cumulant of exponential family Lemma 5
λmin(M) Smallest eigenvalue of M Theorem 10
ρ(M) Spectral radius of M (absolute value of spectrum) Theorem 10
∂ℓ; ∂2ℓ Partial derivatives of likelihood w.r.t. weights Eq. (2)
∂hL; ∂

2hL Partial derivatives of neural network w.r.t. weights Eq. (4)
∥ · ∥F Frobenius norm / L2-norm Proposition 1
∥ · ∥2 2-norm / L2-norm Proposition 1
∥ · ∥2σ Tensor spectral norm Lemma 15
∥ · ∥1 L1-norm Theorem A.6
∥ · ∥∞ L∞-norm Theorem A.6
M⊤ Matrix transpose Eq. (3)
⊗ Tensor product Lemma A.4

B Variance of FIM estimators

B.1 Proof of Proposition 1

Proof. The first statement holds as both Î1(θ) and Î2(θ) are point-wise estimators, they are unbi-
ased (central limit theorem).

The second statement holds by the law of large numbers (and triangle inequality with ε/2 and a
union bound).

B.2 Proof of Lemma 2

Proof. The statement follows as p(y | x,θ) is given by an exponential family. See [1].
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B.3 Proof of Theorem 3

Proof. Consider the alternative formulation of the FIM.

Ex,y

[
− ∂2

∂θ∂θ⊤ log p(y | x)
]
= Ex,y

[
∂ℓ

∂θ

∂ℓ

∂θ⊤

]
− Ex,y

[
∂2

∂θ∂θ⊤ p(y | x)
p(y | x)

]

= I(θ)−
∫

p(x)
∂2

∂θ∂θ⊤ p(y | x) dy dx.

Thus for this to be equivalent to the Jacobian definition, we need the residual term to be zero.

As σ ∈ C2(ℜ) and thus σ′ is smooth, it follows by the composition of smooth functions that
p(y | x) and ∂p(y | x) is also a smooth function. This provides sufficient conditions for the
Leibniz integration rule to be used (switch order of integration and differentiation). As such,

Ex,y

[
− ∂2

∂θ∂θ⊤ log p(y | x)
]
= I(θ)−

∫
p(x)

∂2

∂θ∂θ⊤ p(y | x) dy dx

= I(θ)− ∂2

∂θ∂θ⊤

∫
p(x)p(y | x) dy dx

= I(θ).

B.4 Proof of Theorem 4

Proof. First define δ := δ(x,y;θ) = t(y)− η(hL(x)).

Cov (∂iℓ · ∂jℓ, ∂kℓ · ∂lℓ) = Ey|x;θ[(∂iℓ · ∂jℓ)(∂kℓ · ∂lℓ)]− Ey|x;θ[∂iℓ · ∂jℓ] · Ey|x;θ[∂kℓ · ∂lℓ].

We then calculate each components. For the first:

Ey|x;θ[(∂iℓ · ∂jℓ)(∂kℓ · ∂lℓ)] = Ey|x;θ
[
∂ih

a
L(x) · ∂jhb

L(x) · ∂kha
L(x) · ∂lhb

L(x) · δa · δb · δc · δd
]

= ∂ih
a
L(x) · ∂jhb

L(x) · ∂kha
L(x) · ∂lhb

L(x) · Ey|x;θ [δa · δb · δc · δd] .

For the second term, we can first consider the expectation:

Ey|x;θ[∂iℓ · ∂jℓ]
= Ey|x;θ

[
∂ih

a
L(x) · ∂jhb

L(x) · δa · δb
]

= ∂ih
a
L(x) · ∂jhb

L(x) · Ey|x;θ [δa · δb] .

Thus the product of this gives:

Ey|x;θ[∂iℓ · ∂jℓ] · Ey|x;θ[∂kℓ · ∂lℓ]
= ∂ih

a
L(x) · ∂jhb

L(x) · ∂khc
L(x) · ∂lhd

L(x) · Ey|x;θ [δa · δb] · Ey|x;θ [δc · δd] .

This gives the total covariance:

Cov (∂iℓ · ∂jℓ, ∂kℓ · ∂lℓ) = ∂ih
a
L(x) · ∂jhb

L(x) · ∂khc
L(x) · ∂lhd

L(x)·(
Ey|x;θ [δa · δb · δc · δd]− Ey|x;θ [δa · δb] · Ey|x;θ [δc · δd]

)
.

B.5 Proof of Lemma 5

Proof. We first consider the following notation, consistent with [20] except as subscripts, to denote
the central moments and different multivariate cumulants. The non-central moment of a vector
random variable X is denoted as

κr1...rm = E[Xr1 · · ·Xrm ],
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where r is an integer vector denoting the dimensions in which the non-central moment is taken as.
The dimensions can be repeated, i.e., r1 = r2 etc. Note that in the notation r1 . . . rm are not comma
separated.

Similarly, for central moments we have:

Kr1...rm = E[(Xr1 − E[Xr1 ]) · · · (Xrm − E[Xrm ])].

For cumulants, we use a comma separated subscripts to distinguish it from central moments. In
our case (X is from an exponential family), this just reduces to m-derivative of the log-partition
function:

κr1,...,rm =
∂mF (hL)

∂hr1 · · · ∂hrm

In addition to these moment-like quantities, we introduce the [n] notation from [20] to denote the
possible permutations in indices. For example:

κiκj,k[3] = κiκj,k + κjκi,k + κkκi,j ,

noting that the (central and non-central) moments and cumulants are index order invariant. The
numbering also must be equal to the number of available permutations. Also note that κi denotes a
cumulant and not the moment.

[20] only provides a formulation from cumulants to non-central moments. Thus we need to rewrite
Kabcd in terms of non-central moments. The following is given in [20, Equation (2.6)]:

κij = κi,j + κiκj ;

κijk = κi,j,k + κiκj,k[3] + κiκjκk;

κijkl = κi,j,k,l + κiκj,k,l[4] + κi,jκk,l[3] + κiκjκk,l[6] + κiκjκkκl.

Expanding Kabcd, the 4th central moment, yields the following:

Kabcd = κabcd − κaκbcd[4] + κaκbκcd[6]− 3κaκbκcκd

= κabcd − κaκbcd[4] + (κaκb(κc,d + κcκd))[6]− 3κaκbκcκd

= κabcd − κaκbcd[4] + κaκbκc,d[6] + 3κaκbκcκd

= κabcd − (κa(κb,c,d + κaκc,d[3] + κbκcκd))[4] + κaκbκc,d[6] + 3κaκbκcκd

= κabcd − κaκb,c,d[4]− κaκbκc,d[6]− κaκbκcκd

= κa,b,c,d + κa,bκc,d[3],

which when substituting for derivatives proves the Lemma.
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B.6 Proof of Theorem 6

Proof.

Cov

(
− ∂2ℓ

∂θi∂θj
,− ∂2ℓ

∂θk∂θl

)
= Cov

(
∂ih

a
L(x)Iab(hL)∂jh

b
L(x)− [tα(y)− ηα]

∂2hα
L(x)

∂θi∂θj
,

∂kh
a
L(x)Iab(hL)∂lh

b
L(x)− [tβ(y)− ηβ ]

∂2hβ
L(x)

∂θk∂θl

)

= Cov

(
[tα(y)− ηα]

∂2hα
L(x)

∂θi∂θj
, [tβ(y)− ηβ ]

∂2hβ
L(x)

∂θk∂θl

)

= E

[
[tα(y)− ηα]

∂2hα
L(x)

∂θi∂θj
· [tβ(y)− ηβ ]

∂2hβ
L(x)

∂θk∂θl

]

− E

[
[tα(y)− ηα]

∂2hα
L(x)

∂θi∂θj

]
· E

[
[tβ(y)− ηβ ]

∂2hβ
L(x)

∂θk∂θl

]

= E

[
[tα(y)− ηα]

∂2hα
L(x)

∂θi∂θj
· [tβ(y)− ηβ ]

∂2hβ
L(x)

∂θk∂θl

]

=
∂2hα

L(x)

∂θi∂θj

∂2hβ
L(x)

∂θk∂θl
E[δα · δβ ].

The theorem follows immediately.

B.7 Proof of Theorem 7

Proof. Let 1 ≤ p, q ≤ ∞ such that 1/p + 1/q = 1. Let Tabcd = Kabcd(t) − Iab(hL) · Icd(hL).
From the last inequality in the proof of Lemma A.4 we have,∣∣∣∣[Cov (Î1(θ))]ijkl∣∣∣∣ ≤ 1

N
· ∥∂ihL(x)∥p · ∥∂jhL(x)∥p · ∥∂khL(x)∥p · ∥∂lhL(x)∥p · ∥T ∥q.

Thus for the p-norm,∥∥∥Cov (Î1(θ))∥∥∥
p

=

∑
i,j,k,l

∣∣∣∣[Cov (Î1(θ))]ijkl∣∣∣∣p
1/p

≤ 1

N
· ∥T ∥q

∑
i,j,k,l

|∥∂ihL(x)∥p · ∥∂jhL(x)∥p · ∥∂khL(x)∥p · ∥∂lhL(x)∥p|p
1/p

=
1

N
· ∥T ∥q

(∑
i

∥∂ihL(x)∥pp

)4
1/p

=
1

N
· ∥T ∥q

(∑
i

∥∂ihL(x)∥pp

)1/p
4

=
1

N
· ∥T ∥q · ∥∂hL(x)∥4p.

Thus, by taking the p = q = 2 the Theorem holds.
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B.8 Proof of Theorem 8

Proof. Let 1 ≤ p, q ≤ ∞ such that 1/p + 1/q = 1. From the last inequality in the proof of
Lemma A.5 we have,

∣∣∣∣[Cov (Î2(θ))]ijkl∣∣∣∣ ≤ 1

N
· ∥∂2

ijhL(x)∥p · ∥∂2
klhL(x)∥p · ∥I(hL)∥q

Thus for the p-norm,

∥∥∥Cov (Î2(θ))∥∥∥
q
=

∑
i,j,k,l

∣∣∣∣[Cov (Î2(θ))]ijkl∣∣∣∣p
1/p

≤ 1

N
· ∥I(hL)∥q ·

∑
i,j,k,l

∣∣∥∂2
ijhL(x)∥p · ∥∂2

klhL(x)∥p
∣∣p1/p

=
1

N
· ∥I(hL)∥q ·


∑

i,j

∣∣∥∂2
ijhL(x)∥p

∣∣p2


1/p

=
1

N
· ∥I(hL)∥q ·


∑

i,j

∣∣∥∂2
ijhL(x)∥p

∣∣p1/p


2

=
1

N
· ∥I(hL)∥q · ∥∂2hL(x)∥2p.

Thus, by taking the p = q = 2 the Theorem holds.

B.9 Proof of Lemma 9

Proof. We first prove the second part of the Lemma, which is simpler.

∥I(hL)∥F =

√∑
a,b

Cov2(ta, tb)

≤
√∑

a,b

Var(ta)Var(tb) (by Cauchy-Schwarz inequality)

=

√∑
a

Var(ta)
∑
b

Var(tb)

=
∑
a

Var(ta)

=
∑
a

Iaa(hL). (A.1)

6
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We are left with the first part of the Lemma.
∥K(t)− I(hL)⊗ I(hL)∥2F

=
∑

a,b,c,d

(
E ((ta − ηa)(tb − ηb)(tc − ηc)(td − ηd))

− E ((ta − ηa)(tb − ηb))E ((tc − ηc)(td − ηd))

)2

≤2
∑

a,b,c,d

(
E2 ((ta − ηa)(tb − ηb)(tc − ηc)(td − ηd))︸ ︷︷ ︸

Sabcd

+ E2 ((ta − ηa)(tb − ηb))E2 ((tc − ηc)(td − ηd))︸ ︷︷ ︸
Tabcd

)
=2

∑
a,b,c,d

(Sabcd + Tabcd).

We have
Sabcd = E2 ((ta − ηa)(tb − ηb)(tc − ηc)(td − ηd))

≤ E
(
(ta − ηa)

2(tb − ηb)
2
)
E
(
(tc − ηc)

2(td − ηd)
2
)

≤ E1/2(ta − ηa)
4 · E1/2(tb − ηb)

4 · E1/2(tc − ηc)
4 · E1/2(td − ηd)

4

=
√

Kaaaa(t) ·
√
Kbbbb(t) ·

√
Kcccc(t) ·

√
Kdddd(t).

At the same time,
Tabcd = E2 ((ta − ηa)(tb − ηb))E2 ((tc − ηc)(td − ηd))

≤ E(ta − ηa)
2 · E(tb − ηb)

2 · E(tc − ηc)
2 · E(td − ηd)

2

= Iaa(hL) · Ibb(hL) · Icc(hL) · Idd(hL).

To sum up, we have

∥K(t)− I(hL)⊗ I(hL)∥2F ≤ 2
∑

a,b,c,d

(Sabcd + Tabcd)

= 2

(∑
a

√
Kaaaa(t)

)4

+ 2

(∑
a

Iaa(hL)

)4

≤ 2

(∑
a

(
√

Kaaaa(t) + Iaa(hL))

)4

.

Taking the square root of both sides gives the result.

B.10 Proof of Theorem 10

Proof. The estimator is a p.s.d. matrix subtracted by a linear combination of symmetric matrices.

Î2(x;θ) = I(θ)− 1

N

N∑
i=1

[t(yi)− η(hL(x))]
⊤ ∂2hL(x)

∂θ∂θ⊤

= I(θ)−
n∑

a=1

(t̄a − E[t̄a])
∂2ha

L(x)

∂θ∂θ⊤ ,

where t̄a = 1
N

∑N
i=1 ta(yi).

We consider the Chebyshev inequalities for

k =

√
Nλmin(I(θ))

∥ρ∥2
√

λmax(I(hL))
> 0.

7
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Pr

(
∥t̄− E[t̄]∥2 ≤ k

√
1

N
λmax(I(hL))

)

=Pr

(
∥t̄− E[t̄]∥22

1
N λmax(I(hL))

≤ k2
)

≥Pr

(
(t̄− E[t̄])⊤

(
1

N
I(hL)

)−1

(t̄− E[t̄]) ≤ k2

)
≥1− nL

k2

=1− nL∥ρ∥22λmax(I(hL))

Nλ2
min(I(θ))

.

Thus with probability at least

1− nL∥ρ∥22λmax(I(hL))

Nλ2
min(I(θ))

,

the following statement is true: for all unit vector v we have

v⊤Î2(θ)v = v⊤

(
I(θ)−

n∑
a=1

(t̄a − E[t̄a])
∂2ha

L(x)

∂θ∂θ⊤

)
v

= v⊤I(θ)v −
n∑

a=1

(t̄a − E[t̄a])
(
v⊤ ∂2ha

L(x)

∂θ∂θ⊤ v

)

≥ λmin(I(θ))−
n∑

a=1

(t̄a − E[t̄a])
(
v⊤ ∂2ha

L(x)

∂θ∂θ⊤ v

)

≥ λmin(I(θ))−
n∑

a=1

|t̄a − E[t̄a]| · ρ(∂2ha
L)

≥ λmin(I(θ))− ∥t̄− E[t̄]∥2 · ∥ρ∥2

≥ λmin(I(θ))− k ·
√

1

N
λmax(I(h)L) · ∥ρ∥2

≥ λmin(I(θ))− λmin(I(θ))
= 0.

Thus with the specified probability, estimator Î2(θ) is a positive semidefinite matrix.

B.11 Proof of Theorem 11

Proof. Let t̄a = 1
N

∑N
i=1 ta(yi). As the FIM is a p.s.d. matrix, ∀v such that ∥v∥ = 1, we have

v⊤Î2(θ)v = v⊤
(
I(θ)− (t̄a − E[t̄a])

∂2ha
L(x)

∂θ∂θ⊤

)
v

≥ −v⊤
(
(t̄a − E[t̄a])

∂2ha
L(x)

∂θ∂θ⊤

)
v

= (ηa − t̄a) · v⊤ ∂2ha
L(x)

∂θ∂θ⊤ v

≥ − |ηa − t̄a| · ρ(∂2ha
L) · v⊤v

= −ρ(∂2ha
L) |ηa − t̄a| .

As Î2(θ) is a real symmetric matrix, we can write its spectrum decomposition as

Î2(θ) = λ̂αvαv
⊤
α ,

8
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where {vα} are orthonormal vectors and λ̂α are the corresponding eigenvalues of Î2(θ).
Therefore

λ̂α = v⊤
α Î2(θ)vα ≥ −ρ(∂2ha

L) |ηa − t̄a| .
The statement in Theorem 11 follows immediately.

B.12 Proof of Lemma 12

To prove the Lemma, we first consider a variant of the result presented in Chen [8].

Lemma A.1 (Variant of Chen [8]). For any random vector X ∈ ℜn with variances Var(X),

Pr
(
(X − EX)⊤(X − EX) ≥ ε

)
≤ 1

ε
·

n∑
i=1

Var(Xi), ∀ε > 0.

Proof. The proofs follows closely to Chen [8], with the slight change in set of variables considered.
Let ε > 0 and Dε := {V ∈ ℜn : (V − EX)⊤(V − EX) ≥ ε}. By definition we have that for all
V ∈ Dε,

(V − EX)⊤(V − EX) · 1
ε
≥ 1

Thus for the probability of the set, we have:

Pr
(
(X − EX)⊤(X − EX) ≥ ε

)
= Pr (X ∈ Dε)

= E [1X∈Dε ]

≤ 1

ε
· E
[
(X − EX)⊤(X − EX) · 1X∈Dε

]
≤ 1

ε
· E
[
(X − EX)⊤(X − EX)

]
=

1

ε
·

n∑
i=1

E [(Xi − EXi)(Xi − EXi)]

=
1

ε
·

n∑
i=1

Var(Xi),

where 1X∈S denotes the indicator function for X being in a set S.

We can now prove the main Lemma through standard tricks:

Proof. From Lemma A.1 (and utilizing the vec operator) we have that for any δ > 0 and each
z ∈ {1, 2}:

Pr(∥Îz(θ)− I(θ)∥2F ≤ δ) ≥ 1

δ
·
dim(θ)∑
i,j=1

Var
(
Îz(θ)

)ij
.

Letting ε := 1
δ ·
∑dim(θ)

i,j=1 Var
(
Îz(θ)

)ij
and rearranging, we have:

Pr

∥Îz(θ)− I(θ)∥2F ≥ 1

ϵ
·
dim(θ)∑
i,j=1

Var
(
Îz(θ)

)ij ≤ 1− ε

=⇒ Pr

∥Îz(θ)− I(θ)∥F ≥ 1√
ϵ
·

√√√√dim(θ)∑
i,j=1

Var
(
Îz(θ)

)ij ≤ 1− ε.

Substituting appropriately from Eq. (10) w.r.t. the FIM estimator considered completes the proof.

9
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B.13 Proof of Lemma 13

Proof. We first show that Bl is the Jacobian of the mapping hl → hL, that is,

dhL = Bldhl. (l = 0, · · · , L) (A.2)

Obviously, this is true for l = L, as we have

dhL = I · dhL = BL · dhL.

From Eq. (3), we have
hl+1 = σ(Wlh̄l),

where σ is abused to denote the non-linear activation function for l = 0, · · · , L − 2 and σ is the
identity map for l = L− 1. Therefore

dhl+1 = Dl ·W−
l · dhl,

where Dl = diag
(
σ′(Wlh̄l)

)
for l = 0, · · · , L− 2, and DL−1 = I . Assume Eq. (A.2) is true for

l + 1, then
dhL = Bl+1dhl+1 = Bl+1 ·Dl ·W−

l · dhl = Bldhl.

Hence Bl is the Jacobian of hl → hL for l = 0, · · · , L.

Now we are ready to derive the expression of ∂ℓ
∂hl

.

dℓ = d(log p(y | x))
= d(t⊤(y)hL − F (hL))

= d(tr
{
t⊤(y)hL − F (hL)

}
)

= tr
{
d(t⊤(y)hL − F (hL))

}
= tr

{
d(t⊤(y)hL)− d(F (hL))

}
= tr

{
t⊤(y)dhL −▽F (hL)

⊤dhL

}
= tr

{
t⊤(y)dhL − η⊤(hL)dhL

}
= tr

{
(t(y)− η(hL))

⊤dhL

}
= tr

{
(t(y)− η(hL))

⊤Bldhl

}
Therefore

∂ℓ

∂hl
=
(
(t(y)− η(hL))

⊤Bl

)⊤
= B⊤

l (t(y)− η(hL)).

Next, we show the gradient w.r.t. the neural network weights, i.e. ∂ℓ
∂Wl

. We have

dℓ = tr

{(
∂ℓ

∂hl+1

)⊤

dhl+1

}

= tr

{(
∂ℓ

∂hl+1

)⊤

Dl · dWl · h̄l

}

= tr

{
h̄l

(
∂ℓ

∂hl+1

)⊤

Dl · dWl

}
.

Therefore

∂ℓ

∂Wl
=

(
h̄l

(
∂ℓ

∂hl+1

)⊤

Dl

)⊤

= D⊤
l

(
∂ℓ

∂hl+1

)
h̄⊤
l

= Dl

(
∂ℓ

∂hl+1

)
h̄⊤
l .

10
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Finally, we give the gradient of hL w.r.t. the neural network parameters. By definition, Bl+1 is the
Jacobian of the mapping hl+1 → hL. Therefore

dhL = Bl+1 · dhl+1 = Bl+1 ·DldWlh̄l.

We rewrite the above equation in the element-wise form

dha
L = tr

{
Bl+1 ·DldWlh̄le

⊤
a

}
= tr

{
h̄le

⊤
a Bl+1Dl · dWl

}
.

Therefore

∂ha
L

∂Wl
=
(
h̄le

⊤
a Bl+1Dl

)⊤
= D⊤

l B
⊤
l+1eah̄

⊤
l

= DlB
⊤
l+1eah̄

⊤
l .

B.14 Proof of Lemma 14

Proof. First, we notice that
∂ha

L

∂Wl
= DlB

⊤
l+1ea · h̄⊤

l

has rank one. Therefore ∥∥∥∥ ∂ha
L

∂Wl

∥∥∥∥
F

= ∥DlB
⊤
l+1ea∥2 · ∥h̄l∥2.

Therefore ∥∥∥∥ ∂hL

∂Wl

∥∥∥∥
F

=

√√√√∑
a

∥∥∥∥ ∂ha
L

∂Wl

∥∥∥∥2
F

=

√∑
a

∥DlB⊤
l+1ea∥22 · ∥h̄l∥22

=

√∑
a

∥DlB⊤
l+1ea∥22 · ∥h̄l∥2

= ∥DlB
⊤
l+1∥F · ∥h̄l∥2

= ∥Bl+1Dl∥F · ∥h̄l∥2.

The matrix Dl is diagonal, with entries bounded in the range [−1, 1]. Therefore a left or right
multiplication by Dl does not increase the Frobenius norm. Hence∥∥∥∥ ∂hL

∂Wl

∥∥∥∥
F

≤ ∥Bl+1∥F · ∥h̄l∥2.

By the recursive definition of Bl, we have

Bl = Bl+1DlW
−
l .

Therefore

∥Bl∥F ≤ ∥Bl+1∥F · ∥DlW
−
l ∥F ≤ ∥Bl+1∥F · ∥W−

l ∥F .
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Applying the above inequality repeatably leads to

∥Bl∥F ≤ ∥BL−1∥F ·
L−2∏
i=l

∥W−
i ∥F

= ∥BLDL−1W
−
L−1∥F ·

L−2∏
i=l

∥W−
i ∥F

= ∥W−
L−1∥F ·

L−2∏
i=l

∥W−
i ∥F

=

L−1∏
i=l

∥W−
i ∥F .

Hence ∥∥∥∥ ∂hL

∂Wl

∥∥∥∥
F

≤ ∥Bl+1∥F · ∥h̄l∥2

≤
L−1∏
i=l+1

∥W−
i ∥F · ∥h̄l∥2.

B.15 Proof of Lemma 15

Proof. Recall the 2-spectral norm for a d-dimensional tensor is defined by

∥T ∥2σ = max
{
⟨T ,x1 ⊗ . . .⊗ xd⟩ : ∥xk∥2 = 1, ∀k ∈ [d]

}
.

Let α, β, γ be unit vectors, so that

∥α∥2 = 1, ∥β∥2 = 1, ∥γ∥2 = 1.

Then

max
α,β,γ

〈
∂hL

∂Wl
,α⊗ β ⊗ γ

〉
= max

α,β,γ

〈∑
a

∂ha
L

∂Wl
γa,α⊗ β

〉
= max

α,β,γ

∑
a

α⊤DlB
⊤
l+1eah̄

⊤
l βγa

= max
α,β,γ

α⊤DlB
⊤
l+1(

∑
a

γaea)(h̄
⊤
l β)

= max
α,β,γ

α⊤DlB
⊤
l+1γ(h̄

⊤
l β)

= max
α,β,γ

⟨Bl+1Dlα,γ⟩ · ⟨h̄l,β⟩

= max
α

∥Bl+1Dlα∥2 · ∥h̄l∥2.

Recall that
Bl = Bl+1DlW

−
l .

Therefore
BlDl−1α = Bl+1DlW

−
l Dl−1α.

Moreover,

max
α

∥BlDl−1α∥2 = max
α

∥Bl+1Dl ·W−
l Dl−1α∥2

≤ max
α′

smax(W
−
l )∥Bl+1Dlα

′∥2

= smax(W
−
l )max

α′
∥Bl+1Dlα

′∥2.
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Hence,

max
α,β,γ

〈
∂hL

∂Wl
,α⊗ β ⊗ γ

〉
= max

α
∥Bl+1Dlα∥2 · ∥h̄l∥2

≤
L−1∏
i=l+1

smax(W
−
i )max

α′
∥BLDL−1α

′∥2 · ∥h̄l∥2

=

L−1∏
i=l+1

smax(W
−
i )max

α
∥BLDL−1α∥2 · ∥h̄l∥2

=

L−1∏
i=l+1

smax(W
−
i )max

α
∥IIα∥2 · ∥h̄l∥2

=

L−1∏
i=l+1

smax(W
−
i )max

α
∥α∥2 · ∥h̄l∥2

=

L−1∏
i=l+1

smax(W
−
i ) · ∥h̄l∥2.

C Change of Coordinates and Covariance

Reparametrization is a common technique in deep learning. See e.g. weight normalization [28].
From a geometric perspective, reparametrization corresponds to change of coordinates. We consider
how our results can be generalized in a new coordinate system {ξi} instead of the default coordinates
{θα}. By definition, the FIM w.r.t. to the new coordinates is

I(ξ) = ∂θa
∂ξ

∂hα
L

∂θa
Iαβ(hL)

∂hβ
L

∂θb

∂θb
∂ξ⊤

=
∂θa
∂ξ

Iab(θ)
∂θb
∂ξ⊤

. (A.3)

The FIM I(ξ) can be estimated by Eq. (2), where the estimators are denoted by Î1(ξ) and Î2(ξ).
Note that as per the main text, upper- and lower-indices in the Einstein are equivalent. Similarly, we
take an upper index for derivatives of hL w.r.t. θ in this section — which we take as equivalent to
the lower-index notation appearing in the main text. That is ∂βhL = ∂hL/∂θ

β = ∂hL/∂θβ .

Theorem A.2. Consider the FIM estimators under the coordinate transformation θ → ξ with the
same samples size N .

Î1(ξ) =
∂θa
∂ξ

Îab
1 (θ)

∂θb
∂ξ⊤

, (A.4)

Î2(ξ) =
∂θa
∂ξ

Îab
2 (θ)

∂θb
∂ξ⊤

+

(
ηα − 1

N

N∑
i=1

tα(yi)

)
∂βhα

L

∂2θβ
∂ξ∂ξ⊤

. (A.5)

Proof. Let Ê[X] denote the empirical expectation of random variable X .

For the first estimator, consider the partial derivative of the log-likelihood:

∂ℓ

∂ξ
=

(
∂θ

∂ξ

)⊤(
∂ℓ

∂θ

)
=

∂θa
∂ξ

∂hα
L

∂θa
(tα(y)− ηα).
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Thus the first FIM estimator follows immediately:

Ê
[
∂ℓ

∂ξ

∂ℓ

∂ξT

]
= Ê

[
∂θa
∂ξ

∂hα
L

∂θa
(tα(y)− ηα)

∂θb
∂ξ⊤

∂hβ
L

∂θb
(tβ(y)− ηβ)

]

=
∂θa
∂ξ

Ê

[
∂hα

L

∂θa
(tα(y)− ηα)

∂hβ
L

∂θb
(tβ(y)− ηβ)

]
∂θb
∂ξ⊤

=
∂θa
∂ξ

[Î1(θ)]ab
∂θb
∂ξ⊤

.

For the second estimator, we consider the second derivative:

∂2ℓ

∂ξ∂ξ⊤
=

∂

∂ξ

[
∂θa
∂ξ⊤

∂hα
L

∂θa
(tα(y)− ηα)

]
= −∂ηα

∂ξ

∂hα
L

∂θa

∂θa
∂ξ⊤

+ (tα − ηα)

[
∂

∂ξ

(
∂hα

L

∂θa

)]
∂θa
∂ξ⊤

+ (tα − ηα)
∂hα

L

∂θa

∂2θa
∂ξ∂ξ⊤

= −∂θb
∂ξ

[
∂[hL]β
∂θb

∂ηα

∂hβ
L

∂hα
L

∂θa
− (tα − ηα)

∂2hα
L

∂θb∂θa

]
∂θa
∂ξ⊤

+ (tα − ηα)
∂hα

L

∂θa

∂2θa
∂ξ∂ξ⊤

.

Taking the empirical expectation we have:

Ê
[
− ∂2ℓ

∂ξ∂ξ⊤

]
= Ê

[
∂θb
∂ξ

[
∂[hL]β
∂θb

∂ηα

∂hβ
L

∂hα
L

∂θa
− (tα − ηα)

∂2hα
L

∂θb∂θa

]
∂θa
∂ξ⊤

− (tα − ηα)
∂hα

L

∂θa

∂2θa
∂ξ∂ξ⊤

]

=
∂θb
∂ξ

Ê

[
∂[hL]β
∂θb

∂ηα

∂hβ
L

∂hα
L

∂θa
− (tα − ηα)

∂2hα
L

∂θb∂θa

]
∂θa
∂ξ⊤

− Ê
[
(tα − ηα)

∂hα
L

∂θa

∂2θa
∂ξ∂ξ⊤

]
=

∂θb
∂ξ

[Î2(θ)]ba
∂θa
∂ξ⊤

− Ê
[
(tα − ηα)

∂hα
L

∂θa

∂2θa
∂ξ∂ξ⊤

]
=

∂θa
∂ξ

[Î2(θ)]ab
∂θb
∂ξ⊤

+

(
ηα − 1

N

∑
i=1

tα(yi)

)
∂hα

L

∂θa

∂2θa
∂ξ∂ξ⊤

=
∂θa
∂ξ

[Î2(θ)]ab
∂θb
∂ξ⊤

+

(
ηα − 1

N

∑
i=1

tα(yi)

)
∂hα

L

∂θβ

∂2θβ
∂ξ∂ξ⊤

.

Thus we have both estimators for the theorem.

Interestingly, the way to compute Î1(ξ) under coordinate transformation follows the same rule to
compute the FIM I(ξ) in the new coordinate system. See the similarity between Eq. (A.3) and
Eq. (A.4). The transformation rule of Î2(ξ) introduces an additional term, which depends on the
Hessian of the coordinate transform ∂2θβ/∂ξ∂ξ

⊤. This term vanishes as the number of samples
increases N → ∞, or the transformation θ → ξ is affine.

The results we need to generalize for coordinate transformation depend on the (co)variance of the
estimators. As such, we present a {ξi} variant of Theorems 4 and 6.
Theorem A.3.[

Cov
(
Î1(ξ)

)]ijkl
=

∂θa
∂ξi

∂θb
∂ξj

∂θc
∂ξk

∂θd
∂ξl

[
Cov

(
Î1(θ)

)]abcd
(A.6)[

Cov
(
Î2(ξ)

)]ijkl
=

∂θa
∂ξi

∂θb
∂ξj

∂θc
∂ξk

∂θd
∂ξl

[
Cov

(
Î2(θ)

)]abcd
+

1

N
CαβIαβ(hL), (A.7)

where Cαβ :=

∂θa
∂ξi

∂θb
∂ξj

∂2θc
∂ξk∂ξl

∂a∂bhα
L∂

chβ
L +

∂2θa
∂ξi∂ξj

∂θb
∂ξk

∂θc
∂ξl

∂ahα
L∂

b∂chβ
L +

∂2θa
∂ξi∂ξj

∂2θb
∂ξk∂ξl

∂ahα
L∂

bhβ
L.

14

varfim.pdf{}{}{}#theorem.4{}{}{}
varfim.pdf{}{}{}#theorem.6{}{}{}


Proof. For the first estimator’s covariance, immediately get the result by the way covariance inter-
acts with constant products:

Cov
(
[Î1(ξ)]ij , [Î1(ξ)]kl

)
= Cov

(
∂θa
∂ξi

[Î1(θ)]ab
∂θb
∂ξj

,
∂θc
∂ξk

[Î1(θ)]cd
∂θd
∂ξl

)
=

∂θa
∂ξi

∂θb
∂ξj

∂θc
∂ξk

∂θd
∂ξl

Cov
(
[Î1(θ)]ab, [Î1(θ)]cd

)

For the second estimator, we must exploit the linear combination property of covariances as well:

Cov
(
[Î2(ξ)]ij , [Î2(ξ)]kl

)
= Cov

(
∂θa
∂ξi

[Î2(θ)]ab
∂θb
∂ξj

+

(
ηα − 1

N

∑
i=1

tα(yi)

)
∂hα

L

∂θa

∂2θa
∂ξi∂ξj

,

∂θc
∂ξk

[Î2(θ)]cd
∂θd
∂ξl

+

(
ηβ − 1

N

∑
i=1

tβ(yi)

)
∂hβ

L

∂θb

∂2θb
∂ξk∂ξl

)

= Cov

(
∂θa
∂ξi

[Î2(θ)]ab
∂θb
∂ξj

,
∂θc
∂ξk

[Î2(θ)]cd
∂θd
∂ξl

)
+Cov

(
∂θa
∂ξi

[Î2(θ)]ab
∂θb
∂ξj

,

(
ηβ − 1

N

∑
i=1

tβ(yi)

)
∂hβ

L

∂θb

∂2θb
∂ξk∂ξl

)

+Cov

((
ηα − 1

N

∑
i=1

tα(yi)

)
∂hα

L

∂θa

∂2θa
∂ξi∂ξj

,
∂θc
∂ξk

[Î2(θ)]cd
∂θd
∂ξl

)

+Cov

((
ηα − 1

N

∑
i=1

tα(yi)

)
∂hα

L

∂θa

∂2θa
∂ξi∂ξj

,

(
ηβ − 1

N

∑
i=1

tβ(yi)

)
∂hβ

L

∂θb

∂2θb
∂ξk∂ξl

)
.

It follows that the first covariance term is exactly the coordinate transform of the original variance:

Cov

(
∂θa
∂ξi

[Î2(θ)]ab
∂θb
∂ξj

,
∂θc
∂ξk

[Î2(θ)]cd
∂θd
∂ξl

)
=

∂θa
∂ξi

∂θb
∂ξj

∂θc
∂ξk

∂θd
∂ξl

Cov
(
[Î2(θ)]ab, [Î2(θ)]cd

)
.

For the final covariance term we have:

Cov

((
ηα − 1

N

∑
i=1

tα(yi)

)
∂hα

L

∂θa

∂2θa
∂ξi∂ξj

,

(
ηβ − 1

N

∑
i=1

tβ(yi)

)
∂hβ

L

∂θb

∂2θb
∂ξk∂ξl

)

=
∂2θa
∂ξi∂ξj

∂2θb
∂ξk∂ξl

Cov

((
ηα − 1

N

∑
i=1

tα(yi)

)
∂hα

L

∂θa
,

(
ηβ − 1

N

∑
i=1

tβ(yi)

)
∂hβ

L

∂θb

)

=
∂2θa
∂ξi∂ξj

∂2θb
∂ξk∂ξl

∂hα
L

∂θa

∂hβ
L

∂θb
Cov

((
ηα − 1

N

∑
i=1

tα(yi)

)
,

(
ηβ − 1

N

∑
i=1

tβ(yi)

))

=
∂2θa
∂ξi∂ξj

∂2θb
∂ξk∂ξl

∂hα
L

∂θa

∂hβ
L

∂θb

1

N

∑
i=1

Cov ((ηα − tα(yi)) , (ηβ − tβ(yi)))

=
∂2θa
∂ξi∂ξj

∂2θb
∂ξk∂ξl

∂hα
L

∂θa

∂hβ
L

∂θb

1

N
Iαβ(hL),

where the second last line comes from the independence of samples.
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Thus all there is left is to calculate the middle terms. Without loss of generality, we calculate:

Cov

(
∂θa
∂ξi

[Î2(θ)]ab
∂θb
∂ξj

,

(
ηβ − 1

N

∑
i=1

tβ(yi)

)
∂hβ

L

∂θb

∂2θb
∂ξk∂ξl

)

=
∂θa
∂ξi

∂θb
∂ξj

∂2θc
∂ξk∂ξl

Cov

(
[Î2(θ)]ab,

(
ηβ − 1

N

∑
i=1

tβ(yi)

)
∂hβ

L

∂θc

)

=
∂θa
∂ξi

∂θb
∂ξj

∂2θc
∂ξk∂ξl

Cov

(
Iab(θ) +

(
ηβ − 1

N

∑
i=1

tβ(yi)

)
∂2hα

L

∂θaθb
,

(
ηβ − 1

N

∑
i=1

tβ(yi)

)
∂hβ

L

∂θc

)

=
∂θa
∂ξi

∂θb
∂ξj

∂2θc
∂ξk∂ξl

∂2hα
L

∂θaθb

∂hβ
L

∂θc
Cov

((
ηβ − 1

N

∑
i=1

tβ(yi)

)
,

(
ηβ − 1

N

∑
i=1

tβ(yi)

))

=
∂θa
∂ξi

∂θb
∂ξj

∂2θc
∂ξk∂ξl

∂2hα
L

∂θaθb

∂hβ
L

∂θc

1

N
Iαβ(hL).

Combining these 3 covariance results gives us the covariance presented in the theorem.

As per the estimators themselves in Theorem A.2, the 4D covariances obey similar rules under coor-
dinate transformations. Equation (A.7) has an additional term 1

N CαβIαβ(hL) which depends on the
Hessian of the coordinate transformation. Notice that each of the coordinate transformed covariance
values depend on the same central moments of the exponential family – even the second estimator
with the additional term only depends on the covariance/FIM w.r.t. hL. Each of these covariances
include a weighted sums of the original covariance matrices in Theorems 4 and 6. As such, our
initial element-wise considerations of the covariance will still be useful in the computation of the
covariance in the new coordinates. In-fact, our upper bounds in Lemmas A.4 and A.5 and Theo-
rem A.6 can be simply adapted by adding the appropriate norms of the coordinate transformation
(and its Hessian component for the second estimator).

D Element-wise Covariance Bounds

The covariance tensor
[
Cov

(
Î1(θ)

)]ijkl
has the following element-wise bound.

Lemma A.4.∣∣∣∣[Cov (Î1(θ))]ijkl∣∣∣∣ ≤ 1

N
· ∥∂ihL(x)∥2 · ∥∂jhL(x)∥2 · ∥∂khL(x)∥2 · ∥∂lhL(x)∥2

· ∥K(t)− I(hL)⊗ I(hL)∥F ,
where ∥ · ∥F is the Frobenius norm of a tensor (square root of the sum of the squares of the elements
/ the L2-norm) and ⊗ is the tensor-product: (I(hL)⊗ I(hL))abcd := Iab(hL) · Icd(hL).

Proof. Corollary holds immediately from the use of Hölder’s inequality / Cauchy-Schwarz. Let
1 ≤ p, q ≤ ∞ such that 1/p + 1/q = 1. Let Tabcd = Kabcd(t) − Iab(hL) · Icd(hL). From
Theorem 4 we have:∣∣∣∣[Cov (Î1(θ))]ijkl∣∣∣∣

=
1

N
·
∣∣∂iha

L(x)∂jh
b
L(x)∂kh

c
L(x)∂lh

d
L(x) · Tabcd

∣∣
≤ 1

N
· ∥∂ihL(x)⊗ ∂jhL(x)⊗ ∂khL(x)⊗ ∂lhL(x)∥p · ∥T ∥q

=
1

N
· ∥∂ihL(x)∥p · ∥∂jhL(x)∥p · ∥∂khL(x)∥p · ∥∂lhL(x)∥p · ∥T ∥q.

Thus, by taking the p = q = 2 the Lemma holds.
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We have similar element-wise and global upper bounds on the covariance of Î2(θ).
Lemma A.5. ∣∣∣∣[Cov (Î2(θ))]ijkl∣∣∣∣ ≤ 1

N
· ∥∂2

ijhL(x)∥2 · ∥∂2
klhL(x)∥2 · ∥I(hL)∥F .

Proof. Corollary holds immediately from the use of Hölder’s inequality / Cauchy-Schwarz. Let
1 ≤ p, q ≤ ∞ such that 1/p+ 1/q = 1. From Theorem 6 we have:∣∣∣∣[Cov (Î2(θ))]ijkl∣∣∣∣ = 1

N
·
∣∣∣∂2

ijh
α
L(x)∂

2
klh

β
L(x)Iαβ(hL)

∣∣∣
≤ 1

N
· ∥∂2

ijhL(x)⊗ ∂2
klhL(x)∥ · ∥I(hL)∥

=
1

N
· ∥∂2

ijhL(x)∥ · ∥∂2
klhL(x)∥ · ∥I(hL)∥.

Thus, by taking the p = q = 2 the Lemma holds.

E Alternative Norm Results

An alternative bound to Theorem 7 and Theorem 8 can be established by utilizing Hölder’s inequality
for Lp-norms.
Theorem A.6. ∥∥∥Cov (Î1(θ))∥∥∥

∞
≤ 1

N
· ∥∂hL(x)∥4∞ · ∥K(t)− I(hL)⊗ I(hL)∥1 (A.8)∥∥∥Cov (Î2(θ))∥∥∥

∞
≤ 1

N
· ∥∂2hL(x)∥2∞ · ∥I(hL)∥1, (A.9)

where ∥ · ∥∞ is the L∞-norm and ∥ · ∥1 is the L1-norm.

Proof. The Corollary holds directly from the inequalities given in the proof of Theorem 7 and The-
orem 8. Let p = ∞ and q = 1.

Thus we have the inequalities for Lp-norms:∥∥∥Cov (Î1(θ))∥∥∥
∞

≤ 1

N
· ∥∂hL(x)∥4∞ · ∥K(t)− I(hL)⊗ I(hL)∥1∥∥∥Cov (Î2(θ))∥∥∥

∞
≤ 1

N
· ∥∂2hL(x)∥2∞ · ∥I(hL)∥1.

Remark A.6.1. Note that these are exactly equivalent to certain spectral and nuclear norms. How-
ever these have slight differences in their definition [6].

The p-spectral norm for a d-dimensional tensor is given by:

∥T ∥pσ
= max

{
⟨T ,x1 ⊗ . . .⊗ xd⟩ : ∥xk∥p = 1, ∀k ∈ [d]

}
.

The standard tensor spectral norm is only equivalent when p = 2, i.e., ∥ · ∥2σ .

The p-nuclear norm for a d-dimensional tensor is given by:

∥T ∥p∗ = min

{
r∑

i=1

|λi| : T =

r∑
i=1

λix
1
i ⊗ . . .⊗ xd

i : ∥xk
i ∥p = 1, ∀k ∈ [d] and i, r ∈ N

}
.

The standard tensor nuclear norm is only equivalent when p = 2, i.e., ∥ · ∥2∗ .

It follows that for the Lp norms we have established, the L1-norm is equivalent to the 1-nuclear
norm and the L∞-norm is equal to the 1-spectral norm [6, Proposition 2.6]. However, this equality
is not true for the standard tensor nuclear and spectral norms.

Instead, we can upper bound the L∞-norm by the standard tensor spectral norm by the definition of
the p-spectral norm, i.e., ∥ · ∥∞ = ∥ · ∥1σ ≤ ∥ · ∥2σ . For the L1-norm, we can upper bound it by
the corresponding L2-norm through Cauchy-Schwarz, i.e., ∥ · ∥1 ≤ ∥ · ∥2 ·

√
D, where D(·) is the

product of the dimension size of the tensor. One should note that L2 is the Frobenius norm.
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Notably, the L1-norm can be upper-bounded by the Frobenius norm trivially through the Cauchy-
Schwarz inequality, with ∥ · ∥1 ≤ ∥ · ∥F ·

√
D, where D is the product of the dimension size of the

tensor. Thus the analysis in Lemma 9 can be useful to extend the bounds in Theorem A.6. On the
other hand, the L∞-norm ∥ · ∥∞ is upper bounded by the largest singular value of the tensor [17].
As such, the ∥ · ∥∞ quantities on the RHS can be interpreted as functions of the maximum singular
value of the Jacobian ∂hL(x) or the Hessian ∂2hL(x). Similar corollaries for Lemma A.4 and
Lemma A.5 can be established — which we omit for brevity.

F Combination of estimators

We consider a convex combination of estimators, i.e., Eqs. (7) and (8).

In particular, for 0 ≤ α ≤ 1 we have:

Îα(θ) = αÎ1(θ) + (1− α)Î2(θ). (A.10)

Clearly, this is also a point-wise estimator. Thus, Proposition 1 holds for this estimator.

For the variance, we use the following linear relation:

Var(αÎ1(θ)+(1−α)Î2(θ)) = α2Var(Î1(θ))+(1−α)2Var(Î2(θ))+2α(1−α)Cov(Î1(θ), Î2(θ)).
Or as we have previously discussed we consider:

α2Var

(
∂ℓ

∂θi

∂ℓ

∂θj

)
+ (1− α)2Var

(
− ∂2ℓ

∂θi∂θj

)
+ 2α(1− α)Cov

(
∂ℓ

∂θi

∂ℓ

∂θj
,− ∂2ℓ

∂θi∂θj

)
We already have the variance values from Theorems 4 and 6. Thus all we have to calculate is the
covariance term.

Cov
(
∂iℓ · ∂jℓ,−∂2

ijℓ
)
= −E[∂iℓ · ∂jℓ · ∂2

ijℓ] + E[∂iℓ · ∂jℓ]E[∂2
ijℓ].

The first term of the covariance can be given by:

− E[∂iℓ · ∂jℓ · ∂2
ijℓ]

= E
[
∂iℓ · ∂jℓ ·

(
∂c
ihL∂

d
jhLIcd(hL)− δc∂

c
ijhL

)]
= E

[
∂iℓ · ∂jℓ · ∂c

ihL∂
d
jhLIcd(hL)

]
− E

[
∂iℓ · ∂jℓ · δc∂c

ijhL

]
= ∂c

ihL∂
d
jhLIcd(hL) · E [∂iℓ · ∂jℓ]− ∂c

ijhL · E [∂iℓ · ∂jℓ · δc]
= ∂c

ihL∂
d
jhLIcd(hL) · E [∂iℓ · ∂jℓ]− ∂c

ijhL · E [∂iℓ · ∂jℓ · δc]
= ∂ih

a
L · ∂jhb

L · ∂c
ihL · ∂d

jhL · Icd(hL) · E [δa · δb]− ∂ih
a
L(x) · ∂jhb

L(x) · ∂c
ijhL · E [δa · δb · δc]

= ∂ih
a
L · ∂jhb

L · ∂c
ihL · ∂d

jhL · Icd(hL) · Iab(hL)− ∂ih
a
L(x) · ∂jhb

L(x) · ∂c
ijhL · E [δa · δb · δc]

The second term is given by:

E[∂iℓ · ∂jℓ]E[∂2
ijℓ] = −∂ih

a
L · ∂jhb

L · ∂c
ihL · ∂d

jhL · Icd(hL) · Iab(hL)

Thus, together we have the covariance:

Cov
(
∂iℓ · ∂jℓ,−∂2

ijℓ
)
= −∂ih

a
L · ∂jhb

L · ∂c
ijhL · E [δa · δb · δc] .

This gives us the variance of the combined estimator:

α2∂ih
a
L∂jh

b
L∂ih

c
L∂jh

d
L · (Kabcd(t)− Iab(hL) · Icd(hL)) + (1− α)2∂2

ijh
α
L∂

2
ijh

β
L · Iαβ(hL)

− 2α(1− α)∂ih
a
L∂jh

b
L∂

c
ijhL · E [δa · δb · δc] . (A.11)
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The covariance (as per Theorems 4 and 6) can similarly be calculated by changing the variables of
the partial derivatives of hL. Notably, the largest differentiating factor from the original estimator
is that the combined estimator is dependent on the third central moment of t. This third central
moment is equivalent to the third-order cumulant of t. Thus it can be directly calculated via the
derivatives of the log-partition function F (hL).

G Experimental Verification of Bounds

The bounds of the variance of the FIM estimators Î1(θ) and Î2(θ) (as presented in Section 3) can
be experimentally verified. We train a simple convolutional neural network trained on the standard
MNIST dataset. By leveraging the Jacobian and Hessian in-built functions in PyTorch, we cal-
culate the bounds in Theorems 7 and 8 applied to the variance of the estimators (as described in
Section 3.1).
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(a) Î1(θ) and Î2(θ), where θ is a random model. Color values are shared.
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(b) Î1(θ) and Î2(θ), where θ is a trained model. Color values are shared.

Figure A.1: The estimated FIM presented in heatmaps corresponding to the first layer of a CNN .
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(a) Trained model.
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Figure A.2: Ratio of the bound of the variance in Theorem 7 over the true estimated variance.

G.1 Dataset

We consider the MNIST dataset of 28× 28 pixel grayscale images after normalization. The training
set consists of 60,000 examples and the test set consists of 10,000 examples.

G.2 Model Setup

The convolutional neural network considered in our experiments are given by the following layers
(in order):

→ Conv(in_channel=1, out_channel=32, kernel_size=(3, 3), stride=(1, 1))
→ Softplus()
→ Conv(in_channel=32, out_channel=64, kernel_size=(3, 3), stride=(1, 1))
→ Softplus()
→ MaxPool2D()
→ Dropout(p=0.25)
→ Linear(in_features=9216, out_features=128)
→ Softplus()
→ Dropout(p=0.5)
→ Linear(in_features=128, out_features=10)
→ LogSoftMax()

After training, the final model has a 99% test accuracy. For most of the training samples, the pre-
dicted probabilities have a low entropy and are close to a one-hot vector. Consequently, the overall
variance of the estimated FIM is very close to zero.

G.3 Evaluation

To compute the FIM, We only consider the weight and bias parameters in the first layer for simplicity.
We randomly choose a fixed x with multiple sampled yi for calculation, as per Eqs. (7) and (8).
Recall that the randomness of our estimators comes from the sampling of yi ∼ p(y | x). For all
related computation, we use double-precision floating point (64 bits). The FIM estimations for both
a trained model and a random model are given in Figs. A.1a and A.1b.

To calculate the “true” variance to compare against the bounds, we use Monte-Carlo estimation using
a large number (1,000 for the presented results) of samples. Then, the variance of the estimator is
approximated by the sample variance.
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Figure A.3: Ratio of the bound of the variance in Theorem 8 over the true estimated variance.
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Figure A.4: Distance between estimator Î1(θ) and Î2(θ).

G.4 Results

We plot the histograms of the ratio of the estimated variance of Î1(θ) (Î2(θ)) over the variance
bound given by Theorem 7 (Theorem 8). For the trained network, the plot is given by Fig. A.2a
(Fig. A.3a); for the random network, the plot is by Fig. A.2b (Fig. A.3b). In both the trained and
random models, the bounds are empirically verified (the ratio is always smaller than 1). When com-
paring the ratio histograms, a smaller ratio value corresponds to a looser bound. We can immediately
see that the trained network’s bounds are looser than that of the randomized network.

We also plot of the (Frobenius) distance ∥Î1(θ) − Î2(θ)∥F between the two estimators over the
number of samples for calculating the estimators. See Figs. A.4a and A.4b for the cases of trained
and random networks, respectively. As the trained model has a very small variance of yi, it is
hard to observe in Fig. A.4a any change of the distance between Î1(θ) and Î2(θ) as the samples
increase. For the randomized model, we do observe the decrease in estimator distance as the number
of samples increase, as expected, Fig. A.4b.

H Univariant Gaussian

We consider the case where we parameterize a univariant Gaussian distribution and consider the
FIM and the corresponding estimators quantities.

Firstly, we specify Eq. (3) for a univariant Gaussian by setting:

t(y) = (y, y2); F (h) = − h2
1

4h2
+

1

2
ln

(
−π

h2

)
,
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where y = y ∈ ℜ and h = hL for readability.

In particular, the 2 dimensional output neural network parametrizes the mean µ and standard devia-
tion s by:

h =

(
µ

s2
,− 1

2s2

)
.

Furthermore, we have dual coordinates:

η =

(
− h1

2h2
,
h2
1 − 2h2

4h2
2

)
= (µ, µ2 + s2).

The closed form for the FIM/covariance matrix is given by:

I(h) = Var(t) =

[
− 1

2h2

h1

2h2
2

h1

2h2
2

− h2
1

2h3
2
+ 1

2h2
2

]
.

Notably, we have that h1 ∈ ℜ and h2 ∈ (−∞, 0).

We present the following element-wise plots of FIM in Fig. A.5.
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Figure A.5: Normal distribution I(h).

I Residual simple cases

We look into the residual term which is present in the proof of Theorem 3. Specifically, the quantity:

R(θ) =

∫
p(x)

∂2

∂θ∂θ⊤ p(y | x) dy dx.

Consider the simple case where we only have a single weight and neuron,

p(y | x) = exp (t(y)h− F (h)) ,

h = σ(wx).

First consider the first derivative:

∂

∂w
p(y | x) = p(y | x) · ∂

∂w
(t(y)h− F (h))

= p(y | x) · (t(y)− η(h)) · ∂h
∂w

= p(y | x) · (t(y)− η(h)) · σ′(wx) · x
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I.1 Assume that activation is identity

As σ′(z) = 1, we have the second derivative is the following:

∂2

∂2w
p(y | x) = ∂

∂w
(p(y | x) · (t(y)− η(h)) · x)

= p(y | x)
[
(t(y)− η(h))

2 · x2 −▽η(h) · x2
]

Integrating the first term for the residual we have∫ ∫
p(x)p(y | x) · (t(y)− η(h))

2 · x2 dy dx =

∫
p(x) · ▽η(h) · x2 dx.

Integrating the second term for the residual we have∫ ∫
p(x)p(y | x) · ▽η(h) · x2 dy dx =

∫
p(x) · ▽η(h) · x2 dx.

Thus by taking the difference, the residual is zero.

I.2 Assume that activation is not identity

The second derivative is the following:

∂2

∂2w
p(y | x) = ∂

∂w
(p(y | x) · (t(y)− η(h)) · σ′(wx) · x)

=
∂

∂w
(p(y | x)) · (t(y)− η(h)) · σ′(wx) · x

+ p(y | x) · ∂

∂w
(t(y)− η(h)) · σ′(wx) · x

+ p(y | x) · (t(y)− η(h)) · ∂

∂w
(σ′(wx)) · x

= p(y | x) · (t(y)− η(h))
2 · σ′(wx)2 · x2

+ p(y | x) · ∂

∂w
(t(y)− η(h)) · σ′(wx) · x

+ p(y | x) · (t(y)− η(h)) · ∂

∂w
(σ′(wx)) · x

= p(y | x) · (t(y)− η(h))
2 · σ′(wx)2 · x2

− p(y | x) · ▽η(h) · σ′(wx)2 · x2

+ p(y | x) · (t(y)− η(h)) · ∂

∂w
(σ′(wx)) · x.

By the linearity of the integral, we calculate each term of the residual. For the first term:∫ ∫
p(x) · p(y | x) · (t(y)− η(h))

2 · σ′(wx)2 · x2 dy dx

=

∫
p(x) · σ′(wx)2 · x2

∫
p(y | x) · (t(y)− η(h))

2
dy dx

=

∫
p(x) · σ′(wx)2 · x2 · ▽η(h) dx.

23



Given that the second term only has p(y | x) which is dependent on y, the first and second term of
the residual cancel out. Thus we only have:

R(w) =

∫ ∫
p(x)p(y | x) · (t(y)− η(h)) · ∂

∂w
(σ′(wx)) · x dy dx

=

∫ ∫
p(x)p(y | x) · t(y) · ∂

∂w
(σ′(wx)) · xdy dx

−
∫ ∫

p(x)p(y | x) · η(h) · ∂

∂w
(σ′(wx)) · xdy dx

=

∫
p(x) · ∂

∂w
(σ′(wx)) · x

∫
p(y | x) · t(y) dy dx−

∫
p(x) · η(h) · ∂

∂w
(σ′(wx)) · xdx.

Given that
∂

∂w
(σ′(wx)) = δ(wx)

and ∫
f(x)δ(x) dx = f(0), (A.12)

the residual will result in zero for this case.
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