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1 Introduction

From our experiments in the paper, it can be seen that Transformers have a better generalization
ability over ConvNets. Here we intend to provide some explanations about why transformers can
generalize well from source domain to target domain.

One of the possible reasons is that Transformer is more resilient than CNN to random perturba-
tion made to individual image patches. This is because through the self-attention/cross-attention
mechanism, each patch will be combined with all visual similar patches within the same image to
form its representation. This combination and weighted averaging process, despite its simplicity,
allows us to reduce the impact of noise, like most averaging processes in statistics. To make our
argument more rigorous, we provide some theoretical analysis to reveal the power of averaging in
self-attention in terms of reducing noise. Our analysis shows that the essential role of self-attention
is to distill noises from the input patterns/instances, making the learned model more robust.

2 Problem Definition

Let xi ∈ Rd, i ∈ [m] be the input instances to self-attention, where m � 1 is the number of input
patterns and d� 1 is the input dimensionality. We assume that {xi}mi=1 are sampled from C � m
different Gaussian distributions, denoted by N (uk, σ

2/dI), k ∈ [C], where uk ∈ Rd is the center of
the kth distribution. We assume that all ui, i ∈ [m] are normalized, i.e. |ui| = 1, i ∈ [m], and any
two center ui and uj are well separated, i.e. r` ≤ |ui − uj | ≤ ru, ∀i, j ∈ [m]. We denote by mk the
number of instances that are generated from the kth Gaussian distribution N (uk, σ

2/dI). For each
instance xi, we denote by ki the index of Gaussian distribution that xi is assigned to.

3 Analysis

We will start with a simple case for analysis, followed by a full version analysis of self-attention.

3.1 Analysis I: Simple Case

As a starting point, we consider a simple case for self-attention, where bothWK andWV are set to be
identity matrices. In addition, instead of using softmax to compute the pairwise similarity between
input instances, k nearest neighbor is used: for each instance xi, we identify the first K instances
closest xi, denoted by xji , j ∈ [K], and calculate the updated pattern x′i as x′i =

∑K
i=1 x

j
i/K. We
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assume that K is significantly smaller than mi, i ∈ [C]. As it will be revealed by Theorem 1, with
a high probability, ∣∣x′i − uki∣∣ ≤ |xi − uki | , i ∈ [m]

implying that the set-attention structure helps reduces the noise in input instances.

Theorem 1. Assume

d ≥ max

(
8,

2σ2

(r` − 2σ)2

)
log

m

δ
, K ≥ max

(
C, 9 log

m

δ

)
where C is a universal constant. Then, with a probability 1− 3δ, for all i ∈ [m], we have∣∣x′i − uki∣∣ < |xi − uki |
Proof. First, it is easy to verify that |xi − uki |2/σ2 follows a 1

dχ
2
d distribution with d degree of

freedom. Using the concentration of χ2
d distribution, i.e.

Pr (x ≥ (1 + δ)d) ≤ exp

(
−dδ

2

2

)
, Pr (x ≤ (1− δ)d) ≤ exp

(
−dδ

2

2

)
,

under the assumption d ≥ 8 log(m/δ), we have, with a probability 1− δ, for all i ∈ [m]

σ

(
1− 1

2

√
2

d
log

m

δ

)
≤ |xi − uki | ≤ σ

(
1 +

1

2

√
2

d
log

m

δ

)
As a result, when √

2

d
log

m

δ
≤ r` − 2σ

σ
or

d ≥ 2σ2

(r` − 2σ)2
log

m

δ

with a probability 1− δ, for every xi, its K nearest neighbors xji , j ∈ [m] are all generated from the
kith distribution N (uki , σ

2I). Using the vector concentration (Adamczak bound, the unbounded
version), we have, for each instance, with a probability 1− δ

|x′i − uki | ≤ Cσ

(
1

K
+

√
1

K
log

m

δ

)
where C is an universal constant. When K is large enough so that

Cσ

(
1

K
+

√
1

K
log

m

δ

)
≤ σ

(
1− 1

2

√
2

d
log

m

δ

)
we have

|x′i − uki | < |xi − uki |, i ∈ [m]

Using the assumption d ≥ 8 log(m/δ), we simplify the above expression as

K ≥ max

(
8

3
C, 9 log

m

δ

)
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3.2 Analysis II: Full Analysis

We now come to the more challenging case where softmax is used for computing in self-attention.
We simplify WK as λI, where λ ≥ 0 is the parameter to be tuned. For any xi, after self-attention,
it is given as

x′′i =

∑m
j=1 exp(λ〈xj , xi〉)Wvxj∑m

j=1 exp(λ〈xj , xi〉)
= Wvx

′
i

where

x′i =

∑m
j=1 exp(λ〈xj , xi〉)xj∑m
j=1 exp(λ〈xj , xi〉)

We will thus show that with a high probability, |x′i − uki | < |xi − uki |.
Before we perform the analysis, the following lemmas provides a few key result that will be used

by the analysis.

Lemma 1.

|〈ui, uj〉| ≤
√

2

∣∣∣∣1− γ`√
2

∣∣∣∣
Proof. To bound |〈ui, uj〉|, we have

|〈ui, uj〉| ≤

√
1− γ`

√
1− γ2

4

Define δ` = 1− γ`/
√

2. We then have

|〈ui, uj〉| ≤
√

1− (1− δ`)
√

2− (1− δ`)2 ≤

√
1− (1− δ`)

(
1 + δ` −

δ2`
2

)
≤
√

2δ`

where the last step follows |δ`| ≤ 1

Lemma 2. Suppose

log
m

δ
≤ d, log

m

2δσ2
≤ d

2

We have, with a probability 1− 3δ, for any i, j

|〈hi, hj〉| ≤ 2σ2
√

1

d
log

m

2δσ2
,

and for i, k

|〈hi, uk〉| ≤ 2σ

√
1

d
log

m

2δσ

Proof. Define hi = xi − uki . Since |hi|2 follow 1
dχ

2
d distribution, we have

Pr
(
|hi|2 ≥ (1 + t)

)
≤ exp

(
−dt

2

2

)
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There, with a probability 1− δ, for any i ∈ [m], we have

|hi| ≤ σ

(
1 +

√
1

d
log

2m

δ

)
≤ 2σ

For 〈hi, hj〉, by first treating hi as a constant, we know 〈hi, hj〉 follows N (0, σ2|hi|2/d). Using the
concentration property of sub-gaussian distribution, i.e.

Pr (|〈hi, hj〉| ≥ t) ≤
√

2

π

exp(−dt2/[σ2|hi|2])
t

,

we have, with a probability at least 1− 2δ, for any i, j,

|〈hi, hj〉| ≤ t0 := σ|hi|
√

2

d
log

m

t0δ
≤ 2σ2

√
2

d
log

m

t0δ

Using log(m/[2δσ2]) ≤ d/2, we have t0 ≤ 2σ2 and therefore, with a probability 1− 2δ,

|〈hi, hj〉| ≤ 2σ2
√

2

d
log

m

2δσ2

For 〈hi, uk〉, it followsN (0, σ2/d). We derive its bound by following the same method for 〈hi, hj〉

Theorem 2. Suppose σ ≤ 1 and

20λ

√
1

d
log

2m

δσ
≤ 1

4
,

6m

mi
exp

(
−λ

2

)
≤ σ

4
,
∣∣∣√2− γ`

∣∣∣ ≤ 1

2
, log

m

2δσ2
≤ d

Then, with a probability 1− 4δ, for all i ∈ [m]

|x′i − uki | ≤
σ

2

Proof. We first analyze the denominator of x′i. Define hi = xi − ukj
m∑
j=1

exp(λ〈xj , xi〉)xj =

m∑
j=1

exp
{
λ
(
〈uki , ukj 〉+ 〈hi, hj〉+ 〈hi, ukj 〉+ 〈hj , uki〉

)} (
ukj + hj

)
=

m∑
j=1

exp
(
λ〈uki , ukj 〉

)
ukj︸ ︷︷ ︸

:=ai

+

m∑
j=1

exp
{
λ
(
〈uki , ukj 〉+ 〈hi, hj〉+ 〈hi, ukj 〉+ 〈hj , uki〉

)}
hj︸ ︷︷ ︸

:=bi

+
m∑
j=1

(
exp

{
λ
(
〈uki , ukj 〉+ 〈hi, hj〉+ 〈hi, ukj 〉+ 〈hj , uki〉

)}
− exp

(
λ〈uki , ukj 〉

))
uki︸ ︷︷ ︸

:=ci

Below we will bound ai, bi and ci separately.
For ai, we have∣∣∣ai − eλmiuki

∣∣∣ ≤ (m−mi) max
{

exp
(
λ〈uki , ukj 〉

)
: kj 6= ki

}
≤ m exp

(
λ
∣∣∣√2− γ`

∣∣∣)
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where the last step follows from Lemma 1. We then bound bi. Since each summand in bi is an
independent random vector with zero mean, we have, with a probability 1− δ

|bi| ≤ mUi

(
maxj∈[m] |hj |

m
+ σ

√
2

m
log

2

δ

)
where

Ui = max
j∈[m]

exp
{
λ
(
〈uki , ukj 〉+ 〈hi, hj〉+ 〈hi, ukj 〉+ 〈hj , uki〉

)}
Since with a probability 1− 3δ, for any i, j ∈ [m] and k ∈ [C], we have

|hi| ≤ 2σ, |〈hi, hj〉| ≤ 2σ2
√

1

d
log

m

2δσ2
, |〈hi, uk〉| ≤ 2σ

√
1

d
log

m

2δσ

and therefore

Ui ≤ exp
(
λ
∣∣∣√2− γ`

∣∣∣) exp

(
λ

[
2σ2
√

1

d
log

m

2δσ2
+ 4σ

√
1

d
log

m

2δσ

])

≤ exp

(
λ

[∣∣∣√2− γ`
∣∣∣+ 6σ

√
1

d
log

m

2δσ

])
As a result, with a probability 1− 4δ, for any i ∈ [m], we have

|bi| ≤ σ exp

(
λ

[∣∣∣√2− γ`
∣∣∣+ 6σ

√
1

d
log

2m

δσ

])(
2 +

√
2m log

2m

δ

)

≤ 3σ

√
m log

2m

δ
exp

(
λ

[∣∣∣√2− γ`
∣∣∣+ 6σ

√
1

d
log

2m

δσ

])
To bound ci, we have

|ci| ≤
m∑
j=1

exp
(
λ〈uki , ukj 〉

) ∣∣exp
(
λ
[
〈hi, hj〉+ 〈hi, ukj 〉+ 〈hj , uki〉

])
− 1
∣∣

≤ eλ
∑

j:kj=ki

∣∣exp
(
λ
[
|hi|2 + 2〈hi, uki〉

])
− 1
∣∣

+
∑

j:kj 6=ki

exp
(
λ〈uki , ukj 〉

) ∣∣exp
(
λ
[
〈hi, hj〉+ 〈hi, ukj 〉+ 〈hj , uki〉

])
− 1
∣∣

Using the bounds for 〈hi, hj〉, |hi|2, and 〈hi, uk〉, we have, with a probability 1− 3δ

|ci| ≤ mie
λ

(
exp

(
2λ

[
σ2 + 2σ

√
1

d
log

m

δ

])
− 1

)

+(m−mi) exp
(
λ
∣∣∣√2− γ`

∣∣∣)(exp

(
λ

[
6σ

√
1

d
log

2m

δσ

])
− 1

)

≤ λσ

(
8mie

λ

√
1

d
log

m

δ
+ 12(m−mi)

√
1

d
log

2m

δσ
exp

(
λ
∣∣∣√2− γ`

∣∣∣))

≤ 12mλσeλ|
√
2−γ`|

√
1

d
log

2m

δσ
+ 8miλσe

λ

√
1

d
log

m

δ
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Combining the above results, we have, with a probability at least 1− 4δ,∣∣∣∣∣∣
m∑
j=1

exp (〈xi, xj〉)xj − eλmiuki

∣∣∣∣∣∣
≤ exp

(
λ
∣∣∣√2− γ`

∣∣∣)(m+ 6σ

√
m log

2m

δ
+ 12mλσ

√
1

d
log

2m

δσ

)
+ 8miλσe

λ

√
1

d
log

2m

δσ

≤ 5m exp
(
λ
∣∣∣√2− γ`

∣∣∣)+ 8miλσe
λ

√
1

d
log

2m

δσ

or∣∣∣∣∣∣e
−λ

mi

m∑
j=1

exp (〈xi, xj〉)xj − uki

∣∣∣∣∣∣ ≤ 5m

mi
exp

(
−λ
[
1−

∣∣∣√2− γ`
∣∣∣]) ≤ 2m

mi
exp

(
−λ

2

)
+ 8λσ

√
1

d
log

2m

δσ︸ ︷︷ ︸
:=νi

We finally bound the partition function

m∑
j=1

exp(λ〈xj , xi〉) =

m∑
j=1

exp
{
λ
(
〈uki , ukj 〉+ 〈hi, hj〉+ 〈hi, ukj 〉+ 〈hj , uki〉

)}
Using the above bounds, we have, with a probability 1− 3δ∣∣∣∣∣∣

m∑
j=1

exp (λ〈xi, xj〉)−mie
λ

∣∣∣∣∣∣
=

∑
j:kj=ki

eλ (exp (λ [〈hi, hj〉+ 〈hi, uki〉+ 〈hj , uki〉])− 1)

+
∑

j:kj 6=ki

exp
{
λ
(
〈uki , ukj 〉+ 〈hi, hj〉+ 〈hi, ukj 〉+ 〈hj , uki〉

)}
≤ mie

λ

(
exp

(
6λσ

√
1

d
log

2m

δσ

)
− 1

)
+ (m−mi) exp

(
λ
∣∣∣√2− γ`

∣∣∣+ 6λσ

√
1

d
log

2m

δσ

)

≤ 12mie
λλσ

√
1

d
log

2m

δσ
+m exp

(
λ
∣∣∣√2− γ`

∣∣∣+ 6λσ

√
1

d
log

2m

δσ

)

Hence,

e−λ

mi

m∑
j=1

exp(λ〈xi, xj〉) ≤ 1 + 12λσ

√
1

d
log

2m

δσ
+

2m

mi
exp

(
−λ

2

)
︸ ︷︷ ︸

:=τi
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Finally, with a high probability, we have∣∣∣∣∣
∑m

j=1 exp (〈xi, xj〉)xj∑m
j=1 exp (〈xi, xj〉)

− uki

∣∣∣∣∣
≤ (1 + τi)

∣∣∣∣∣∣e
−λ

mi

m∑
j=1

exp (〈xi, xj〉)xj − uki

∣∣∣∣∣∣+ τi ≤ τi + (1 + τi)νi ≤ τi + 2νi

=
6m

mi
e−λ/2 + 20λσ

√
1

d
log

2m

δσ

When

20λ

√
1

d
log

2m

δσ
≤ 1

4
,

6m

mi
exp

(
−λ

2

)
≤ σ

4

we have ∣∣∣∣∣
∑m

j=1 exp (〈xi, xj〉)xj∑m
j=1 exp (〈xi, xj〉)

− uki

∣∣∣∣∣ ≤ σ

2
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