
Under review as a conference paper at ICLR 2022

Supplementary Material

A RELATED WORKS

A.1 TACKLE NON-STATIONARITY IN MARL

Many works have been proposed to tackle non-stationarity in MARL. These methods range
from using a modification of standard RL training schemes to computing and sharing addi-
tional other agents’ information.

A.1.1 MODIFICATION OF STANDARD RL TRAINING SCHEMES

One modification of the standard RL training schemes is the centralized critic and decentral-
ized actor (CCDA) architecture. Since the centralized critics can access the information of
all other agents during training, the dynamics of the environment remain stable for the agent.
Lowe et al. (2017) combined DDPG (Lillicrap et al., 2016) with CCDA architecture and
proposed MADDPG algorithm. Foerster et al. (2018b) proposed a counterfactual baseline
in the advantage estimation and used the REINFORCE (Williams, 1992) algorithm as the
backbone in the CCDA architecture. Similar with Lowe et al. (2017), Iqbal & Sha (2019)
combined SAC (Haarnoja et al., 2018) with CCDA architecture and introduced attention
mechanism into the centralized critic design. In addition, Iqbal & Sha (2019) also intro-
duced the counterfactual baseline proposed by Foerster et al. (2018b). CCDA alleviated
non-stationarity problems indirectly makes it unstable and ineffective, and our experiments
have also verified this. Specifically, on the one hand, the centralized critic does not directly
affect the agent’s policy but only influences the update direction of the policy through the
gradient. The policy modeling does not take into account the actions of other agents like
centralized critics (considering the decisions of other agents in centralized critics is the cru-
cial improvement of this type of algorithm) but only based on local observations. On the
other hand, and more importantly, even if centralized critics explicitly consider the actions
of other agents, they cannot mitigate the adverse effects of non-stationarity. Centralized
critics only consider the sample of other agent’s policy distribution. Once the other agent’s
policy change drastically and frequently (corresponding to more severe non-stationarity),
they need more samples to ”implicit” modeling the outside environment, which leads to
higher sample complexity.

Another modification to handle non-stationarity in MARL is self-play for competitive
tasks or population-based training for cooperative tasks (Papoudakis et al., 2019). Tesauro
(1995) used self-play to train the TD-Gammon, which managed to win against the human
champion in Backgammon. Baker et al. (2019) extended self-play to more complex en-
vironments with continuous state and action space. Liu et al. (2019) and Jaderberg et al.
(2019) combined population-based training with self-play to solve complex team competi-
tion tasks, a popular 3D multiplayer first-person video game, Quake III Arena Capture the
Flag, and MuJoCo Soccer, respectively. However, such methods require a lot of hardware
resources and a well-designed parallelization platform.

13

Under review as a conference paper at ICLR 2022

A.1.2 COMPUTING AND SHARING ADDITIONAL INFORMATION

In addition to modifying the standard RL training scheme, there are also methods to solve
non-stationarity problems by computing and sharing additional information. One naive
approach is parameter sharing and use agents’ aggregated trajectories to conduct policy
optimization at every iteration (Gupta et al., 2017; Terry et al., 2020). Unfortunately, this
simple approach has significant drawbacks. An obvious demerit is that parameter sharing
requires that all agents have identical action spaces, i.e., Ai = Aj ,∀i, j ∈ N , which limits
the class of MARL problems to solve. Importantly, enforcing parameter sharing is equiva-
lent to putting a constraint θi = θj ,∀i, j ∈ N on the joint policy space. In principle, this
can lead to a suboptimal solution. To elaborate, we have following proposition proposed
by Kuba et al. (2021):

Proposition 1 (suboptimal). Let’s consider a fully-cooperative game with an even number
of agents n, one state, and the joint action space {0, 1}n, where the reward is given by
r(0n/2,1n/2) = r(1n/2,0n/2) = 1, and r(a1:n) = 0 for all other joint actions. Let J ∗
be the optimal joint reward, and J ∗share be the optimal joint reward under the shared policy
constraint. Then

J ∗share

J ∗
=

2

2n
.

This proposition shows that parameter sharing can lead to a suboptimal outcome that is
exponentially-worse with the increasing number of agents.

In addition, there are many other ways to share or compute additional information among
agents. Foerster et al. (2017) proposed importance sampling corrections to adjust the
weight of previous experience to the current environment dynamic to stabilize multi-agent
experience replay. Raileanu et al. (2018) and Rabinowitz et al. (2018) used additional
networks to predict the actions or goals of other agents and input them as additional infor-
mation into the policy network to assist decision-making. Foerster et al. (2018a) accessed
the optimized trajectory of other agents by explicitly predicting the parameter update of
other agents when calculating the policy gradient, thereby alleviating the non-stationarity
problem. These explicitly considering other agents’ information are also called modeling
of others. Recently, Al-Shedivat et al. (2018) transformed non-stationarity problems into
meta-learning problems, and extended MAML (Finn et al., 2017) to MAS to find an ini-
tialization policy that can quickly adapt to non-stationarity. However, due to the unique
training mechanism of the above methods, they are difficult to extend to the tasks of more
than 2 agents.

A.2 TRUST-REGION METHODS

A.2.1 TRUST-REGION METHODS IN SINGLE-AGENT RL

trust-region or proximity-based methods, resonating the fact they make the new policy
lie within a trust-region around the old one. Such methods include traditional dynamic
programming-based conservative policy iteration (CPI) algorithm (Kakade & Langford,
2002), as well as deep RL methods, such as trust-region policy optimization (TRPO) (Schul-
man et al., 2015) and proximal policy optimization (PPO) (Schulman et al., 2017). TRPO
used line-search to ensure that the KL divergence between the new policy and the old pol-
icy is below a certain threshold. PPO is to solve a more relaxed unconstrained optimization
problem, in which the ratio of the old and new policy is clipped to a specific bound. Wu
et al. (2017) (ACKTR) extended the framework of natural policy gradient and proposed to

14

Under review as a conference paper at ICLR 2022

optimize both the actor and the critic using Kronecker-factored approximate curvature (K-
FAC) with trust-region. Nachum et al. (2018) proposed an off-policy trust-region method,
Trust-PCL, which introduced relative entropy regularization to maintain optimization sta-
bility while exploiting off-policy data. Recently, Tomar et al. (2020) used mirror decent to
solve a relaxed unconstrained optimization problem and achieved strong performance.

A.2.2 TRUST-REGION METHODS IN MARL

Extending trust-region methods to MARL is highly non-trivial. Despite empirical suc-
cesses, none of them managed to propose a theoretically-justified trust-region protocol in
multi-agent learning. Instead, they tend to impose certain assumptions to enable direct im-
plementations of TRPO/PPO in MARL problems. For example, IPPO (de Witt et al., 2020)
assume homogeneity of action spaces for all agents and enforce parameter sharing which
is discussed above. Yu et al. (2021) proposed MAPPO which enhances IPPO by consider-
ing a joint critic function and finer implementation techniques for on-policy methods. Yet,
it still suffers similar drawbacks of IPPO. Wen et al. (2021) adjusted PPO for MARL by
considering a game-theoretical approach at the meta-game level among agents. Unfortu-
nately, it can only deal with two-agent cases due to the intractability of Nash equilibrium.
Hu & Hu (2021) developed Noisy-MAPPO that targets to address the sub-optimality issue;
however, it still lacks theoretical insights for the modification made on MAPPO. Recently,
Li & He (2020) tried to implement TRPO for MARL through distributed consensus opti-
mization; however, they enforced the same trust-region for all agents (see their Equation
(7)) which, similar to parameter sharing, largely limits the policy space for optimization,
and this also will make the algorithm face the trust-region decomposition dilemma. The
method HATRPO (Kuba et al., 2021) based on sequential update scheme is proposed from
the perspective of monotonic improvement guarantee. But at the same time, sequential
update scheme also limit the scalability of the algorithm.

In addition, Jiang & Lu (2021) proposes a MARL algorithm to adjust the learning rates
of agents adaptively. Limiting the size of the trust-region of each agent’s local policy is
related to limiting the learning rate of its local policy. They focus on speeding up the
learning speed, instead of solving non-stationarity problems, However, Jiang & Lu (2021)
has no theoretical support, and matching the direction of adjusting the learning rates with
the directions of maximizing the Q values may cause overestimation problems.

B PRELIMINARIES

Cooperative POSG. POSG (Hansen et al., 2004) is denoted as a seven-tuple via the
stochastic game (or Markov game)

〈I,S, {Ai}ni=1 , {Oi}
n
i=1 ,P, E , {Ri}

n
i=1〉,

where n denotes the number of agents; I represents the agent space; S represents the finite
set of states; Ai, Oi denote a finite action set and a finite observation set of agent i ∈ I
respectively; A = A1 ×A2 × · · · ×An is the finite set of joint actions; P(s′|s,a) denotes
the Markovian state transition probability function, where s, s′ ∈ S represent states of
environment and a = {ai}ni=1, ai ∈ Ai represents the action of agent i; O = O1 ×
O2 × · · · × On is the finite set of joint observations; E(o|s) is the Markovian observation
emission probability function, where o = {oi}ni=1, oi ∈ Oi represents the local observation
of agent i;Ri : S ×A×S → R denotes the reward function of agent i and ri ∈ Ri is the
reward of agent i. The game in POSG unfolds over a finite or infinite sequence of stages

15

Under review as a conference paper at ICLR 2022

(or timesteps), where the number of stages is called horizon. In this paper, we consider the
finite horizon case. The objective for each agent is to maximize the expected cumulative
reward received during the game. For a cooperative POSG, we quote the definition in Song
et al. (2020),

∀i ∈ I, ∀i′ ∈ I\{i},∀πi ∈ Πi,∀πi′ ∈ Πi′ ,
∂Ri′
∂Ri

> 0,

where i and i′ are a pair of agents in agent space I; πi and πi′ are the corresponding policies
in the policy space Πi and Πi′ respectively. Intuitively, this definition means that there is
no conflict of interest for any pair of agents.

Mirror descent method in RL. The mirror descent method (Beck & Teboulle, 2003) is
a typical first-order optimization method, which can be considered an extension of the
classical proximal gradient method. In order to minimize the objective function f(x) under
a constraint set x ∈ C ⊆ Rn, the basic iterative scheme at iteration k+1 can be written as

xk+1 ∈ arg min
x∈C

〈
∇f

(
xk
)
,x− xk

〉
+ γkBψ

(
x,xk

)
, (10)

where Bψ (x,y) := ψ(x) − ψ (x) − 〈∇ψ (y) ,x− y〉 denotes the Bregman divergence
associated with a strongly convex function φ and γk is the step size (or learning rate).
Each reinforcement learning problem can be formulated as optimization problems from
two distinct perspectives, i.e.,

π∗(· | s) ∈ arg max
π

V π(s), ∀s ∈ S; (11a)

π∗ ∈ arg max
π

Es∼µ [V π(s)] . (11b)

Geist et al. (2019) and Shani et al. (2020) have utilized the mirror descent scheme (10) and
update the policy iteratively as follows

πk+1(·|s)←arg max
π

Ea∼π
[
Aπ

k

(s, a)
]
−γk KL

(
π, πk

)
;

πk+1←arg max
π

Es∼ρπk
[
Ea∼π

[
Aπ

k

(s, a)
]
−γk KL

(
π, πk

)]
,

where KL(·, ·) denotes the Bregman divergence corresponding to negative entropy func-
tion.

C PSEUDO-CODE OF MAMT

This section gives the pseudo-code of the MAMT algorithm (see Algorithm 1||) and the
MAMT algorithm without trust-region decomposition network (see Algorithm 2). For con-
venience, we named the latter MAMD. In the MAMD algorithm, the trust-region constraint
is equally distributed to the local policies of all agents.

16

Under review as a conference paper at ICLR 2022

Figure 6: The probabilistic graphical models of two different modelings of the joint policy. Left:
Modeling the joint policy with the mean-field variation family; Right: Modeling the joint policy as a
pairwise Markov random field. Each node represents the action of agent i at timestep t.

D TRUST-REGION DECOMPOSITION DILEMMA

Algorithm 1: MAMT
Input : initial behavior policy πψi and main centralized critic Qζi for each agent i,

empty replay buffer D, trust-region decomposition network fθ− and gw+, local
trust-region δ0

i

1 Set target critic Qζ̄i equal to main critic;
2 Set πψ̄i and πψold

i
equal to behavior policy;

3 while not convergence do
4 Observe local observation oi and select action ai ∼ πδ(· | oi) for each agent i;
5 Execute joint action a in the environment;
6 Observe next local observation o′i, local reward ri and local done signal di of each

agent i;
7 Store ({oi}, {ai}, {ri}, {o

′

i}, {di}) in replay buffer D;
8 if it’s time to update then
9 for j in range(however many updates) do

10 Sample a batch of transitions B from D;
11 Compute {Cti,\i} with Eq. 7;
12 Compute {Dti,ns} with Eq. 5;
13 for slow update do
14 Update δti with Eq. 8;
15 for fast update do
16 Update fθ−, gw+ with Eq. 8;
17 Update centralized critic of all agents by Eq. 9;
18 Update individual policy of all agents by Eq. 10;
19 Update target networks Qζ̄i and πψ̄i ;
20 if it’s time to update then
21 Update old policy πψold

i
;

In order to verify the existence of the trust-region decomposition dilemma, we defined a
simple coordination environment. We extend the Spread environment of Section 4 to 3
agents and 3 landmarks, labeled Spread-3. We define different Markov random fields (see
Figure 7) of the joint policy by changing the reward function to influence the transition
function of each agent indirectly.

Specifically, the reward function of each agent is composed of two parts: the minimum
distance between all agents and the landmarks, and the other is the collision. For the

||The source code is available at https://anonymous.4open.science/r/MAMT.

17

https://anonymous.4open.science/r/MAMT

Under review as a conference paper at ICLR 2022

Algorithm 2: MAMD.
Input : initial behavior policy πψi and main centralized critic Qζi for each agent i, empty replay

buffer D
1 Set target critic Qζ̄i equal to main critic;
2 Set target policy πψ̄i equal to behavior policy;
3 Set old policy πψold

i
equal to behavior policy;

4 while not convergence do
5 Observe local observation oi and select action ai ∼ πδ(· | oi) for each agent i;
6 Execute joint action a in the environment;
7 Observe next local observation o′i, local reward ri and local done signal di of each agent i;
8 Store ({oi}, {ai}, {ri}, {o

′

i}, {di}) in replay buffer D;
9 if All di are terminal then

10 Reset the environment;
11 if it’s time to update then
12 for j in range(however many updates) do
13 Sample a batch of transitions B from D;
14 Update centralized critic of all agents by Eq. 9;
15 Update individual policy of all agents by Eq. 10;
16 Update target networks Qζ̄i and πψ̄i ;
17 if it’s time to update then
18 Update old policy πψold

i
;

Figure 7: In the Spread-3 environment, 3 different Markov random fields are generated due to the
different definitions of the reward function of each agent. Note that these are not all possible Markov
random fields, but three typical cases.

leftmost MRF in Figure 7, all agents are independent. The reward function of each agent
is only related to itself, only related to the minimum distance between itself and a specific
landmark, and will not collide with other agents. We labeled this situation as Spread-3-
Sep. For the middle MRF in Figure 7, the reward function of agent j is the same as that of
Spread-3-Sep, which is only related to itself; but agent i and k are interdependent. For agent
i, its reward function consists of the minimum distance between i and k and the landmark
and whether the two collide. The reward function of agent k is similar. We labeled this
situation as Spread-3-Mix. Finally, the rightmost MRF is consistent with the standard
environment settings, labeled Spread-3-Ful.

To verify the existence of the trust-region decomposition dilemma, we compare the per-
formance of three different algorithms. First, we select MAAC without any trust-region
constraints as the baseline, labeled MAAC. Secondly, we choose MAMD based on mean-
field approximation and naive trust-region decomposition as one of the algorithms to be
compared, labeled MAMD. Finally, we optimally assign trust-region based on prior knowl-
edge. For Spread-3-Sep, we do not impose any trust-region constraints, same as MAAC;
for Spread-3-Mix, we only impose equal size constraints on agent i and k; and for Spread-
3-Ful, we impose equal size constraints on all agents, same as MAMD. We labeled these
optimally decomposition as MAMD-OP. The performance is shown in Figure 8.

18

Under review as a conference paper at ICLR 2022

0 200 400 600 800 1000
Training Episodes (x10)

−70

−60

−50

−40

−30

−20

M
ea

n
Ep

iso
de

 R
ew

ar
ds

Spread-3-Sep

MAAC & MAMD-OP
MAMD

(a) Spread-3-Sep.

0 200 400 600 800 1000
Training Episodes (x10)

−60

−55

−50

−45

−40

−35

−30

M
ea

n
Ep

iso
de

 R
ew

ar
ds

Spread-3-Mix

MAAC
MAMD
MAMD-OP

(b) Spread-3-Mix.

0 25 50 75 100 125 150 175 200
Training Episodes (x50)

−85

−80

−75

−70

−65

−60

M
ea

n
Ep

iso
de

 R
ew

ar
ds

Spread-3-Ful

MAAC
MAMD & MAMD-OP

(c) Spread-3-Ful.

Figure 8: The performance of different trust-region decompositions in different scenarios. These
results indicate the existence of a trust-region decomposition dilemma.

It can be seen from the figure that inappropriate decomposition of the trust-region will
negatively affect the convergence speed and performance of the algorithm. The optimal de-
composition method can make the algorithm performance and convergence speed steadily
exceed baselines.

Note that the three algorithms compared here are all based on the MAAC with centralized
critics. After we change the reward function of the agent, the information received by these
centralized critics has more redundancy in some scenarios (for example, in Spread-3-Sep
and Spread-3-Mix). To exclude the algorithm’s performance from being affected by this
redundant information, we output the attention weights in MAAC, as shown in Figure 9.
It can be seen from the figure that different algorithms can filter redundant information
well, thus eliminating the influence of redundant information on the convergence speed
and performance of the algorithm.

j k0.0

0.2

0.4

0.6

0.8

1.0

i k0.0

0.2

0.4

0.6

0.8

1.0

i j0.0

0.2

0.4

0.6

0.8

1.0

(a) MAAC in Spread-3-Sep.

j k0.0

0.2

0.4

0.6

0.8

1.0

i k0.0

0.2

0.4

0.6

0.8

1.0

i j0.0

0.2

0.4

0.6

0.8

1.0

(b) MAMD in Spread-3-Sep.

j k0.0

0.2

0.4

0.6

0.8

1.0

i k0.0

0.2

0.4

0.6

0.8

1.0

i j0.0

0.2

0.4

0.6

0.8

1.0

(c) MAMD-OP in Spread-3-Sep.

j k0.0

0.2

0.4

0.6

0.8

1.0

i k0.0

0.2

0.4

0.6

0.8

1.0

i j0.0

0.2

0.4

0.6

0.8

1.0

(d) MAAC in Spread-3-Mix.

j k0.0

0.2

0.4

0.6

0.8

1.0

i k0.0

0.2

0.4

0.6

0.8

1.0

i j0.0

0.2

0.4

0.6

0.8

1.0

(e) MAMD in Spread-3-Mix.

j k0.0

0.2

0.4

0.6

0.8

1.0

i k0.0

0.2

0.4

0.6

0.8

1.0

i j0.0

0.2

0.4

0.6

0.8

1.0

(f) MAMD-OP in Spread-3-Mix.

Figure 9: The attention weights of the different agents of different trust-region decomposition in
different scenarios. These results indicate the existence of a trust-region decomposition dilemma.

19

Under review as a conference paper at ICLR 2022

E PROOFS

E.1 PROOF OF LEMMA 1

Proof.

DTV(pt(·|o, ai), pt+1(·|o, ai)) = max
o,ai
|pt+1(·|o, ai)− pt(·|o, ai)|

= max
o,ai
|
∫
p(·|o,a) ·

(
πt+1
−i (a−i|o)− πt−i(a−i|o)

)
da−i|

≤ max
o

∫ ∣∣πt+1
−i (a−i|o)− πt−i(a−i|o)

∣∣ da−i
= max

o

∥∥πt+1
−i (o)− πt−i(o)

∥∥
1

≤ 2 ln 2 ·max
o

D
1/2
KL (πt−i(o)‖πt+1

−i (o))

≤ 2 ln 2 · δ1/2
i .

E.2 PROOF OF LEMMA 2

Proof.

DTV(rt(o, ai), r
t+1(o, ai)) = max

o,ai
|rt+1(o, ai)− rt(o, ai)|

= max
o,ai
|
∫
r(o,a) ·

(
πt+1
−i (a−i|o)− πt−i(a−i|o)

)
da−i|

≤ max
o

∫ ∣∣πt+1
−i (a−i|o)− πt−i(a−i|o)

∣∣ da−i
= max

o

∥∥πt+1
−i (o)− πt−i(o)

∥∥
1

≤ 2 ln 2 ·max
o

D
1/2
KL (πt−i(o)‖πt+1

−i (o))

≤ 2 ln 2 · δ1/2
i .

E.3 PROOF OF THEOREM 1

Proof. In this paper, we model the learning procedure of each agent in a multi-agent system
as a dynamic non-stationary MDP. From each agent’s perspective, the quantities rt(o, ai)’s
and pt(·|o, ai)’s of each agent i vary across different t’s in general. Following Besbes et al.
(2014), Cheung et al. (2019) and Mao et al. (2021), we quantify the variations on rt(o, ai)’s
and pt(·|o, ai)’s in terms of their respective variation budgets Br, Bp (> 0):

Br =

T−1∑
t=1

Br,t, where Br,t = max
o∈O,ai∈Ai

|rt+1(o, ai)− rt(o, ai)| ,

Bp =

T−1∑
t=1

Bp,t, where Bp,t = max
o∈O,ai∈Ai

‖pt+1(· | o, ai)− pt(· | o, ai)‖1 .

To measure the convergence to the best-response from each agent’s perspective, we con-
sider an objective of minimizing the dynamic regret (Jaksch et al., 2010; Besbes et al.,

20

Under review as a conference paper at ICLR 2022

2014; Cheung et al., 2019; Mao et al., 2021)

Dyn- RegT (Π) =

T∑
t=1

{ρ∗t − E [ri,t (ot,at)]} .

In the oracle
∑T

t=1 ρ
∗
t , the summand ρ∗t is the optimal long-term average reward of the

stationary MDP, i.e., other agents follow the fixed optimal policies, with state transition
distribution pi,t and mean reward ri,t. Below we give a definition and an assumption.

Definition 4 (Communicating MDPs and Diameter). Consider a set of states S,
a collection A = {As}s∈S of action sets, and a state transition distribution
p̄ = {p̄(· | s, a)}s∈S,a∈As . For any s, s′ ∈ S and stationary policy π,
the hitting time from s to s′ under π is the random variable Λ (s′ | π, s) :=
min {t : st+1 = s′, s1 = s, sτ+1 ∼ p̄ (· | sτ , π (sτ))∀τ}, which can be infinite. We say that
is a communicating MDP iff D := maxs,s′∈S minstationary π E [Λ (s′ | π, s)] is finite. The
quantity D is the diameter (Jaksch et al., 2010) associated with (S,A, p̄).

Assumption 2 (Bounded Diameters). For each t ∈ [T], the tuple (S,A, pt) constitutes
a communicating MDP with diameter at most Dt. We denote the maximum diameter as
Dmax = maxt∈{1,...,T}Dt.

Then we have following proposition (Cheung et al., 2019) from each agent’s perspective:

Proposition 2. Consider an instance (S,A, T, p, r) from each agent’s perspective that
satisfies Assumption 2 with maximum diameter Dmax and has variation budgets Br, Bp
for rewards and transition distributions respectively. In addition, suppose that T ≥ Br +
2DmaxBp > 0, then it holds that

T∑
t=1

ρ∗t ≥ max
Π

{
E

[
T∑
t=1

rt
(
sΠ
t , a

Π
t

)]}
− 4 (Dmax + 1)

√
(Br + 2DmaxBp)T .

The maximum is taken over all non-anticipatory policies Π’s. We denote
{(
sΠ
t , a

Π
t

)}T
t=1

as
the trajectory under policy Π, where aΠ

t ∈ AsΠ
t

is determined based on Π andHt−1∪
{
sΠ
t

}
,

and sΠ
t+1 ∼ pt

(
· | sΠ

t , a
Π
t

)
for each t.

The proof of Proposition 2 is shown in (Cheung et al., 2019). Based on Lemma 1 and
Lemaa 2, we can easily obtain Br ≤ 2 ln 2 · δ1/2

i · T and Bp ≤ 2 ln 2 · δ1/2
i · T · |O|. Then

we have following corollary:

Corollary 1. Consider an instance (S,A, T, p, r) from each agent’s perspective that sat-
isfies Assumption 2 with maximum diameter Dmax and has variation budgets Br, Bp
for rewards and transition distributions respectively. In addition, suppose that T ≥
Br + 2DmaxBp > 0, then it holds that

T∑
t=1

ρ∗t ≥ max
Π

{
E

[
T∑
t=1

rt
(
sΠ
t , a

Π
t

)]}
−4 (Dmax + 1)·T

√
(1 + 2 ·Dmax|O|)2 ln 2 · δ1/2

i .

According to the Definition 4, Theorem 1 is proved.

21

Under review as a conference paper at ICLR 2022

E.4 PROOF OF THEOREM 2

Proof.

KL
[
π | π′

]
=

∫ ∫
π(ai, a−i|o) log

π(ai, a−i|o)

π′(ai, a−i|o)
daida−i

=

∫ ∫
π(ai|a−i,o)π(a−i|o)

log
π(ai|a−i,o)π(a−i|o)

π′(ai|a−i,o)π(a−i|s)
daida−i

=

∫ ∫
π(ai|a−i,o)π(a−i|o) log

π(ai|a−i,o)

π′(ai|a−i,o)
daida−i

+

∫ ∫
π(ai|a−i,o)π(a−i|o) log

π(a−i|o)

π′(a−i|o)
daida−i

=

∫ ∫
π(ai|a−i,o)π(a−i|o) log

π(ai|a−i,o)

π′(ai|a−i,o)
daida−i+

KL
[
π−i | π′−i

]
=

∫
KL
[
πi(a−i,o) | π′i(a−i,o)

]
π(a−i|o)da−i

+ KL
[
π−i | π′−i

]
≥ KL

[
π−i | π′−i

]
.

So we have

KL
[
π | π′

]
≥ 1

n

∑
i

KL
[
π−i | π′−i

]
.

Take the maximum value on both sides of the inequality, Theorem 2 is proved.

Since a similar conclusion is reached in Li & He (2020), we will make a brief comparison
with it here. Theorem 2 establishes the relationship between the maximum KL-divergence
of the consecutive joint policies of all agents and the maximum KL-divergence of the con-
secutive joint policies of other agents. It establishes the theoretical connection between
the KL-divergence of the consecutive joint policies of all agents and environmental non-
stationarity. The Equation (8) of Li & He (2020) extends the KL divergence constraint of
the TRPO algorithm to the multi-agent scenario and establishes the connection between the
divergence of the joint policy of all agents and the divergence of local policy of each agent.

22

Under review as a conference paper at ICLR 2022

E.5 PROOF OF THEOREM 3

Proof.

Eo∼µ

[
KL(π(·|o),πk(·|o))

]
< δ

⇐⇒ Eo∼µ

[∫
a
π(·|o) log

π(·|o)

πk(·|o))
da

]
< δ

⇐⇒ Eo∼µ

[∫
a
π(·|o)

(
n∑
i=1

log
πi(·|oi)
πki (·|oi))

)
da

]
< δ

⇐⇒ Eo∼µ

[
n∑
i=1

∫
a
π(·|o) log

πi(·|oi)
πki (·|oi))

da

]
< δ

⇐⇒
n∑
i=1

Eo∼µ

[∫
a
π(·|o) log

πi(·|oi)
πki (·|oi))

da

]
< δ

⇐⇒
n∑
i=1

[∫
o
µ(o)

∫
a
π(·|o) log

πi(·|oi)
πki (·|oi))

dado

]
< δ.

We first simplify the integral term of the inner layer∫
a
π(·|o) log

πi(·|oi)
πki (·|oi))

da

⇐⇒
∫
a\i×ai

π\i(·|o\i)πi(·|oi) log
πi(·|oi)
πki (·|oi))

da\idai

⇐⇒
∫
ai

πi(·|oi) log
πi(·|oi)
πki (·|oi))

[∫
a\i

π\i(·|o\i)da\i

]
dai

⇐⇒
∫
ai

πi(·|oi) log
πi(·|oi)
πki (·|oi))

dai

⇐⇒ KL
(
πi(·|oi), πki (·|oi)

)
.

We replace the original formula with the simplified one
n∑
i=1

[∫
o
µ(o)

∫
a
π(·|o) log

πi(·|oi)
πki (·|oi))

dado

]
< δ

⇐⇒
n∑
i=1

[∫
o
µ(o)KL

(
πi(·|oi), πki (·|oi)

)
do

]
< δ

⇐⇒
n∑
i=1

[∫
o
µ(o)δ(oi)do

]
< δ.

23

Under review as a conference paper at ICLR 2022

(a) (b) (c) (d)

Figure 10: Coordination environments with increasing complexity.(a) Spread; (b) Multi-Walker; (c)
Rover-tower; (d) Pursuit.

where we denote KL
(
πi(·|oi), πki (·|oi)

)
as δ(oi). For the outer integral term, we have∫

o
µ(o)δ(oi)do

⇐⇒
∫
o\i×oi

µ(o\i)µ(oi)δ(oi)do\idoi

⇐⇒
∫
oi

µ(oi)δ(oi)

[∫
o\i

µ(o\i)do\i

]
doi

⇐⇒
∫
oi

µ(oi)δ(oi)doi

⇐⇒ Eoi∼ui [δ(oi)] .

Overall, we have

Eo∼µ

[
KL(π(·|o),πk(·|o))

]
< δ

⇐⇒
n∑
i=1

[∫
o
µ(o)

∫
a
π(·|o) log

πi(·|oi)
πki (·|oi))

dado

]
< δ

⇐⇒
n∑
i=1

[∫
o
µ(o)δ(oi)do

]
< δ

⇐⇒
n∑
i=1

Eoi∼ui [δ(oi)] < δ

⇐⇒
n∑
i=1

Eoi∼ui
[
KL
(
πi(·|oi), πki (·|oi)

)]
< δ.

F EXPERIMENTAL DETAILS

F.1 ENVIRONMENTS

Spread. This environment (Lowe et al., 2017) has 2 agents, 2 landmarks. Each agent
is globally rewarded based on how far the closest agent is to each landmark (sum of the
minimum distances). Locally, the agents are penalized if they collide with other agents (−1
for each collision).
Multi-Walker. In this environment (Terry et al., 2020a), bipedal robots attempt to carry a

24

Under review as a conference paper at ICLR 2022

In
p
u
t

B
N

FC
-1
2
8

LeakyR
eLU

FC
-1
2
8

LeakyR
eLU

FC
-1
2
8

LeakyR
eLU

FC
-1
2
8

LeakyR
eLU

G
C
N

FC
-1
2
8

LeakyR
eLU

FC
-1
2
8

LeakyR
eLU

B
N

FC
-1
2
8

LeakyR
eLU

FC
-1
2
8

LeakyR
eLU

FC
-1
2
8

LeakyR
eLU

FC
-1
2
8

LeakyR
eLU

FC
-1
2
8

LeakyR
eLU

FC
-3
2

In
p
u
t

B
N

FC
-1
2
8

LeakyR
eLU

B
N

FC
-1
2
8

LeakyR
eLU

FC
-3
2

FC
-3
2

LeakyR
eLU

FC
-3
2

A
tte

m
tio

n

FC
-1
2
8

LeakyR
eLU

FC

In
p
u
t

B
N

FC
-1
2
8

FC
-1
2
8

FC

So
ftm
ax

Figure 11: There are actor-network (i.e., policy and modeling policy) architecture, critic-network
architecture, and trust-region decomposition network architecture from left to right and from top to
bottom.

package as far right as possible. A package is placed on top of 3 bipedal robots. A positive
reward is awarded to each walker, which is the change in the package distance.
Rover-Tower. This environment (Iqbal & Sha, 2019) involves 8 agents, 4 of which are
“rovers” and another 4 which are “towers”. In each episode, rovers and towers are randomly
paired. The pair is negatively rewarded by the distance of the rover to its goal. The rovers
are unable to see in their surroundings and must rely on communication from the towers,
sending one of 5 discrete messages.
Pursuit. 30 blue evaders and 8 red pursuer agents are placed in a grid with an obstacle.
The evaders move randomly, and the pursuers are controlled (Terry et al., 2020a). Every
time the pursuers surround an evader, each of the surrounding agents receives a reward of
5, and the evader is removed from the environment. Pursuers also receive a reward of 0.01
every time they touch an evader.

F.2 OTHER DETAILS

Random seeds. All experiments were run for 8 random seeds each. Graphs show the aver-
age (solid line) and std dev (shaded) performance over random seed throughout training.

Performance metric. Performance for the on-policy (MA-PPO) algorithms is measured as
the average reward across the batch collected at each epoch. Performance for the off-policy
algorithms (MAMT, MAMD, LOLA, MADDPG, and MAAC) is measured by running the
deterministic policy (or, in the case of SAC, the mean policy) without action noise for 10
trajectories and reporting the average reward over those test trajectories.

Network Architecture. Figure 11 shows the detailed parameters of the three main net-
works in the MAMT algorithm.

Hyperparameters. Table 1 shows the default configuration used for all the experiments
of our methods (MAMD and MAMT) and baselines in this paper. We do not fine-tune
the hyperparameters of baselines and use the default setting as same as original papers, see
Table 2,3,4 and 5. The hyperparameter fine-tune range of our methods are shown in Table 6
and 7. Considering the long training time of the MARL algorithm, we did not train all

25

Under review as a conference paper at ICLR 2022

hyperparameter combinations to the pre-defined maximum number of episodes for MAMT.
We first train all hyperparameter combinations to one-sixth of the maximum number of
episodes and select the top-sixth hyperparameter combinations with the best performance
(defined in Performance metric.). Then we train the selected one-sixth combination to
one-third of the maximum number of episodes and select the best-performing one-sixth
combination. Finally, we train the remaining combinations to the maximum number of
episodes and select the best hyperparameter combination.

Hardware. The hardware used in the experiment is a server with 128G memory and 4
NVIDIA 1080Ti graphics cards with 11G video memory.

The Code of Baselines. The code and license of baselines are shown in following list:

• MADDPG (Lowe et al., 2017): https://github.com/
shariqiqbal2810/maddpg-pytorch, MIT License;

• MAAC (Iqbal & Sha, 2019): https://github.com/shariqiqbal2810/
MAAC, MIT License;

• MA-PPO: https://github.com/zoeyuchao/mappo, MIT License;

• LOLA (Foerster et al., 2018a): https://github.com/alexis-jacq/
LOLA_DiCE and https://github.com/geek-ai/MAgent, MIT Li-
cense.

Learning curves are smoothed by averaging over a window of 11 epochs. Source code is
available at https://anonymous.4open.science/r/MAMT.

26

https://github.com/shariqiqbal2810/maddpg-pytorch
https://github.com/shariqiqbal2810/maddpg-pytorch
https://github.com/shariqiqbal2810/MAAC
https://github.com/shariqiqbal2810/MAAC
https://github.com/zoeyuchao/mappo
https://github.com/alexis-jacq/LOLA_DiCE
https://github.com/alexis-jacq/LOLA_DiCE
https://github.com/geek-ai/MAgent
https://anonymous.4open.science/r/MAMT

Under review as a conference paper at ICLR 2022

Table 1: Default settings of our methods used in experiments.

Name Default value

num parallel envs 12
step size from 10,000 to 50,000
num epochs per step 4
steps per update 100
buffer size 1,000,000
batch size 1024
batch handling Shuffle transitions
num critic attention heads 4
value loss MSE
modeling policy loss CrossEntropyLoss
discount 0.99
optimizer Adam
adam lr 1e-3
adam mom 0.9
adam eps 1e-7
lr decay 0.0
policy regularization type L2
policy regularization coefficient 0.001
modeling policy regularization type L2
modeling policy regularization coefficient 0.001
critic regularization type L2
critic regularization coefficient 1.0
critic clip grad 10 * num of agents
policy clip grad 0.5
soft reward scale 100
modeling policy clip grad 0.5
trust-region decomposition network clip grad 10 * num of agents
trust-region clip from 0.01 to 100
num of iteration delay in mirror descent 100
tsallis q in mirror descent 0.2
δ in coordination coefficient 0.2

G MORE RESULTS

Figure 12 to Figure 22 show the performance indicators of all agents in 4 environments
under different random seeds.

27

Under review as a conference paper at ICLR 2022

Table 2: Default settings of MAAC used in experiments.

Name Default value

num parallel envs 12
step size from 10,000 to 50,000
num epochs per step 4
steps per update 100
buffer size 1,000,000
batch size 1024
batch handling Shuffle transitions
num critic attention heads 4
value loss MSE
discount 0.99
optimizer Adam
adam lr 1e-3
adam mom 0.9
adam eps 1e-7
lr decay 0.0
policy regularization type L2
policy regularization coefficient 0.001
critic regularization type L2
critic regularization coefficient 1.0
critic clip grad 10 * num of agents
policy clip grad 0.5
soft reward scale 100

Table 3: Default settings of MADDPG used in experiments.

Name Default value

num parallel envs 12
step size from 10,000 to 50,000
num epochs per step 4
steps per update 100
buffer size 1,000,000
batch size 1024
batch handling Shuffle transitions
value loss MSE
discount 0.99
optimizer Adam
adam lr 1e-3
adam mom 0.9
adam eps 1e-7
lr decay 0.0
policy regularization type L2
policy regularization coefficient 0.001
critic regularization type L2
critic regularization coefficient 1.0
critic clip grad 10 * num of agents
policy clip grad 0.5

28

Under review as a conference paper at ICLR 2022

Table 4: Default settings of MAPPO used in experiments.

Name Default value

num parallel envs 12
step size from 10,000 to 50,000
batch size 4096
num critic attention heads 4
value loss Huber Loss
Huber delta 10.0
GAE lambda 0.95
discount 0.99
optimizer Adam
adam lr 1e-3
adam mom 0.9
adam eps 1e-7
lr decay 0.0
policy regularization type L2
policy regularization coefficient 0.0
critic regularization type L2
critic regularization coefficient 0.0
critic clip grad 10
policy clip grad 10
use reward normalization TRUE
use feature normalization TRUE

Table 5: Default settings of LOLA(+DQN) used in experiments.

Name Default value

num parallel envs 12
step size from 10,000 to 50,000
num epochs per step 4
steps per update 100
buffer size 1,000,000
batch size 1024
batch handling Shuffle transitions
value loss MSE
discount 0.99
optimizer Adam
adam lr 1e-3
adam mom 0.9
adam eps 1e-7
lr decay 0.0
regularization type L2
regularization coefficient 1.0
clip grad 10 * num of agents

Table 6: Tuning ranges of key hyperparameters of MAMD in experiments.

Name Range

num epochs per step {1, 4, 8}
adam lr {0.0003, 0.001}
soft reward scale {10, 100}
num of iteration delay in mirror descent {100, 1000}

29

Under review as a conference paper at ICLR 2022

Table 7: Tuning ranges of key hyperparameters of MAMT in experiments.

Name Range

num epochs per step {1, 4, 8}
adam lr {0.0003, 0.001}
soft reward scale {10, 100}
trust-region clip {0.01, 1, 100}
num of iteration delay in mirror descent {100, 1000}
δ in coordination coefficient {0.002, 0.02, 0.2}

Agent-2

Agent-3

Agent-4

Agent-5Agent-6

Agent-7

Agent-8

0.2
0.4
0.6
0.8

mean
variance

(a) Agent 1.

Agent-1

Agent-2

Agent-4

Agent-5Agent-6

Agent-7

Agent-8

0.2
0.4
0.6
0.8

mean
variance

(b) Agent 3.

Agent-1

Agent-2

Agent-3

Agent-4Agent-6

Agent-7

Agent-8

0.2
0.4
0.6
0.8

mean
variance

(c) Agent 5.

Agent-1

Agent-2

Agent-3

Agent-4Agent-5

Agent-6

Agent-8

0.2
0.4
0.6
0.8

mean
variance

(d) Agent 7.
Agent-1

Agent-3

Agent-4

Agent-5Agent-6

Agent-7

Agent-8

0.2
0.4
0.6
0.8

mean
variance

(e) Agent 2.

Agent-1

Agent-2

Agent-3

Agent-5Agent-6

Agent-7

Agent-8

0.2
0.4
0.6
0.8

mean
variance

(f) Agent 4.

Agent-1

Agent-2

Agent-3

Agent-4Agent-5

Agent-7

Agent-8

0.2
0.4
0.6
0.8

mean
variance

(g) Agent 6.

Agent-1

Agent-2

Agent-3

Agent-4Agent-5

Agent-6

Agent-7

0.2
0.4
0.6
0.8

mean
variance

(h) Agent 8.

Figure 12: The mean and variance of coordination coefficient of each agent in Rover-Tower environ-
ment.

Agent-2

Agent-3

Agent-4

Agent-5Agent-6

Agent-7

Agent-8

0.2
0.4
0.6
0.8

mean
variance

(a) Agent 1.

Agent-1

Agent-2

Agent-4

Agent-5Agent-6

Agent-7

Agent-8

0.2
0.4
0.6
0.8

mean
variance

(b) Agent 3.

Agent-1

Agent-2

Agent-3

Agent-4Agent-6

Agent-7

Agent-8

0.2
0.4
0.6
0.8

mean
variance

(c) Agent 5.

Agent-1

Agent-2

Agent-3

Agent-4Agent-5

Agent-6

Agent-8

0.2
0.4
0.6
0.8

mean
variance

(d) Agent 7.
Agent-1

Agent-3

Agent-4

Agent-5Agent-6

Agent-7

Agent-8

0.2
0.4
0.6
0.8

mean
variance

(e) Agent 2.

Agent-1

Agent-2

Agent-3

Agent-5Agent-6

Agent-7

Agent-8

0.2
0.4
0.6
0.8

mean
variance

(f) Agent 4.

Agent-1

Agent-2

Agent-3

Agent-4Agent-5

Agent-7

Agent-8

0.2
0.4
0.6
0.8

mean
variance

(g) Agent 6.

Agent-1

Agent-2

Agent-3

Agent-4Agent-5

Agent-6

Agent-7

0.2
0.4
0.6
0.8

mean
variance

(h) Agent 8.

Figure 13: The mean and variance of coordination coefficient of each agent in Pursuit environment.

30

Under review as a conference paper at ICLR 2022

mean variance0.0

0.2

0.4

0.6

0.8

1.0

mean variance0.0

0.2

0.4

0.6

0.8

1.0

(a) Spread environment.

mean variance0.0

0.5

1.0

mean variance0.0

0.5

1.0

mean variance0.0

0.5

1.0

mean variance0.0

0.5

1.0

mean variance0.0

0.5

1.0

mean variance0.0

0.5

1.0

(b) Multi-Walker environment.

Figure 14: The mean and variance of coordination coefficient of each agent in Spread environment
and Multi-Walker environment. Different color represents different agent.

0

0.04

0.08

0.12

0 10k 20k 30k 40k 50k

(a) Seed 1.

0

0.04

0.08

0.12

0 10k 20k 30k 40k 50k

(b) Seed 2.

0

0.04

0.08

0.12

0 10k 20k 30k 40k 50k

(c) Seed 3.

0

0.04

0.08

0.12

0 10k 20k 30k 40k 50k

(d) Seed 4.

0

0.04

0.08

0.12

0 10k 20k 30k 40k 50k

(e) Seed 5.

0

0.04

0.08

0.12

0 10k 20k 30k 40k 50k

(f) Seed 6.

0

0.04

0.08

0.12

0 10k 20k 30k 40k 50k

(g) Seed 7.

0

0.02

0.04

0.06

0.08

0.1

0 10k 20k 30k 40k 50k

(h) Seed 8.

Figure 15: The averaged KL-divergence of each agent in Rover-Tower environments. Red line
represents MAAC and green line represents MAMT.

0

0.04

0.08

0.12

0.16

0.2

0 40k 80k 120k 160k 200k

(a) Seed 1.

0

0.05

0.1

0.15

0.2

0.25

0 40k 80k 120k 160k 200k

(b) Seed 2.

0

0.05

0.1

0.15

0.2

0.25

0 40k 80k 120k 160k 200k

(c) Seed 3.

0

0.05

0.1

0.15

0.2

0.25

0 40k 80k 120k 160k 200k

(d) Seed 4.

0

0.05

0.1

0.15

0.2

0.25

0 40k 80k 120k 160k 200k

(e) Seed 5.

0

0.05

0.1

0.15

0.2

0.25

0 40k 80k 120k 160k 200k

(f) Seed 6.

0

0.05

0.1

0.15

0.2

0.25

0 40k 80k 120k 160k 200k

(g) Seed 7.

0

0.04

0.08

0.12

0.16

0.2

0 40k 80k 120k 160k 200k

(h) Seed 8.

Figure 16: The averaged KL-divergence of each agent in Pursuit environments. Red line represents
MAAC and green line represents MAMT.

31

Under review as a conference paper at ICLR 2022

0

0.04

0.08

0.12

0.16

0 40k 80k 120k 160k 200k

(a) Seed 1.

0

0.04

0.08

0.12

0 40k 80k 120k 160k 200k

(b) Seed 2.

0

0.04

0.08

0.12

0 40k 80k 120k 160k 200k

(c) Seed 3.

Figure 17: The averaged KL-divergence of each agent in Multi-Walker environments. Red line
represents MAAC and green line represents MAMT.

0

0.05

0.1

0.15

0.2

0.25

0 10k 20k 30k 40k 50k

(a) Seed 1.

0

0.05

0.1

0.15

0.2

0.25

0 10k 20k 30k 40k 50k

(b) Seed 2.

0

0.1

0.2

0.3

0 10k 20k 30k 40k 50k

(c) Seed 3.

Figure 18: The averaged KL-divergence of each agent in Spread environments. Red line represents
MAAC and green line represents MAMT.

0

0.2

0.4

0.6

0 10k 20k 30k 40k 50k

(a) Seed 1.

0

0.2

0.4

0.6

0.8

0 10k 20k 30k 40k 50k

(b) Seed 2.

0

0.2

0.4

0.6

0 10k 20k 30k 40k 50k

(c) Seed 3.

0

0.2

0.4

0.6

0 10k 20k 30k 40k 50k

(d) Seed 4.

0

0.2

0.4

0.6

0.8

1

0 10k 20k 30k 40k 50k

(e) Seed 5.

0

0.2

0.4

0.6

0.8

1

0 10k 20k 30k 40k 50k

(f) Seed 6.

0

0.2

0.4

0.6

0.8

1

0 10k 20k 30k 40k 50k

(g) Seed 7.

0

0.2

0.4

0.6

0.8

1

0 10k 20k 30k 40k 50k

(h) Seed 8.

Figure 19: The averaged K̂L of each agent in Rover-Tower environments.

0

0.2

0.4

0.6

0 40k 80k 120k 160k 200k

(a) Seed 1.

0

0.2

0.4

0.6

0.8

0 40k 80k 120k 160k 200k

(b) Seed 2.

0

0.2

0.4

0.6

0.8

0 40k 80k 120k 160k 200k

(c) Seed 3.

0

0.2

0.4

0.6

0.8

0 40k 80k 120k 160k 200k

(d) Seed 4.

0

0.2

0.4

0.6

0.8

0 40k 80k 120k 160k 200k

(e) Seed 5.

0

0.2

0.4

0.6

0.8

0 40k 80k 120k 160k 200k

(f) Seed 6.

0

0.2

0.4

0.6

0.8

0 40k 80k 120k 160k 200k

(g) Seed 7.

0

0.2

0.4

0.6

0.8

0 40k 80k 120k 160k 200k

(h) Seed 8.

Figure 20: The averaged K̂L of each agent in Pursuit environments.

32

Under review as a conference paper at ICLR 2022

0

0.4

0.8

1.2

1.6

2

0 40k 80k 120k 160k 200k

(a) Seed 1.

0

0.4

0.8

1.2

1.6

0 40k 80k 120k 160k 200k

(b) Seed 2.

0

0.4

0.8

1.2

1.6

0 40k 80k 120k 160k 200k

(c) Seed 3.

Figure 21: The averaged K̂L of each agent in Multi-Walker environments.

0.36

0.4

0.44

0.48

0.52

0.56

0.6

0 10k 20k 30k 40k 50k

(a) Seed 1.

0.35

0.45

0.55

0.65

0.75

0 10k 20k 30k 40k 50k

(b) Seed 2.

0.4

0.45

0.5

0.55

0.6

0.65

0 10k 20k 30k 40k 50k

(c) Seed 3.

Figure 22: The averaged K̂L of each agent in Spread environments.

33

Under review as a conference paper at ICLR 2022

REFERENCES FOR SUPPLEMENTARY MATERIAL

Maruan Al-Shedivat, Trapit Bansal, Yura Burda, Ilya Sutskever, Igor Mordatch, and Pieter
Abbeel. Continuous adaptation via meta-learning in nonstationary and competitive envi-
ronments. In ICLR, 2018.

Bowen Baker, Ingmar Kanitscheider, Todor Markov, Yi Wu, Glenn Powell, Bob McGrew,
and Igor Mordatch. Emergent tool use from multi-agent autocurricula. In ICLR, 2019.

Amir Beck and Marc Teboulle. Mirror descent and nonlinear projected subgradient meth-
ods for convex optimization. Operations Research Letters, 31(3):167–175, 2003.

Omar Besbes, Yonatan Gur, and Assaf Zeevi. Stochastic multi-armed-bandit problem with
non-stationary rewards. In NeurIPS, 2014.

Wang Chi Cheung, David Simchi-Levi, and Ruihao Zhu. Non-stationary reinforcement
learning: The blessing of (more) optimism. Machine Learning eJournal, 2019.

Christian Schroeder de Witt, Tarun Gupta, Denys Makoviichuk, Viktor Makoviychuk,
Philip HS Torr, Mingfei Sun, and Shimon Whiteson. Is independent learning all you
need in the starcraft multi-agent challenge? arXiv preprint arXiv:2011.09533, 2020.

Chelsea Finn, Pieter Abbeel, and Sergey Levine. Model-agnostic meta-learning for fast
adaptation of deep networks. In ICML, 2017.

Jakob Foerster, Richard Y Chen, Maruan Al-Shedivat, Shimon Whiteson, Pieter Abbeel,
and Igor Mordatch. Learning with opponent-learning awareness. In AAMAS, 2018a.

Jakob N. Foerster, Nantas Nardelli, Gregory Farquhar, Triantafyllos Afouras, Philip H. S.
Torr, Pushmeet Kohli, and Shimon Whiteson. Stabilising experience replay for deep
multi-agent reinforcement learning. In ICML, 2017.

Jakob N Foerster, Gregory Farquhar, Triantafyllos Afouras, Nantas Nardelli, and Shimon
Whiteson. Counterfactual multi-agent policy gradients. In AAAI, 2018b.

Matthieu Geist, Bruno Scherrer, and Olivier Pietquin. A theory of regularized markov
decision processes. In ICML, 2019.

Jayesh K Gupta, Maxim Egorov, and Mykel Kochenderfer. Cooperative multi-agent control
using deep reinforcement learning. In AAMAS, 2017.

Tuomas Haarnoja, Aurick Zhou, Pieter Abbeel, and Sergey Levine. Soft actor-critic: Off-
policy maximum entropy deep reinforcement learning with a stochastic actor. In ICML,
2018.

Eric A Hansen, Daniel S Bernstein, and Shlomo Zilberstein. Dynamic programming for
partially observable stochastic games. In AAAI, 2004.

Siyue Hu and Jian Hu. Noisy-MAPPO: Noisy advantage values for cooperative multi-agent
actor-critic methods. arXiv preprint arXiv:2106.14334, 2021.

Shariq Iqbal and Fei Sha. Actor-attention-critic for multi-agent reinforcement learning. In
ICML, 2019.

34

Under review as a conference paper at ICLR 2022

Max Jaderberg, Wojciech M. Czarnecki, Iain Dunning, Luke Marris, Guy Lever, Anto-
nio Garcı́a Castañeda, Charlie Beattie, Neil C. Rabinowitz, Ari S. Morcos, Avraham
Ruderman, Nicolas Sonnerat, Tim Green, Louise Deason, Joel Z. Leibo, David Silver,
Demis Hassabis, Koray Kavukcuoglu, and Thore Graepel. Human-level performance in
3D multiplayer games with population-based reinforcement learning. Science, 364:859
– 865, 2019.

Thomas Jaksch, Ronald Ortner, and Peter Auer. Near-optimal regret bounds for reinforce-
ment learning. Journal of Machine Learning Research, 11(51):1563–1600, 2010.

Jiechuan Jiang and Zongqing Lu. Adaptive learning rates for multi-agent reinforcement
learning, 2021. URL https://openreview.net/forum?id=yN18f9V1Onp.

Sham Kakade and John Langford. Approximately optimal approximate reinforcement
learning. In ICML, 2002.

Jakub Grudzien Kuba, Ruiqing Chen, Munning Wen, Ying Wen, Fanglei Sun, Jun Wang,
and Yaodong Yang. Trust region policy optimisation in multi-agent reinforcement learn-
ing. arXiv preprint arXiv:2109.11251, 2021.

Hepeng Li and Haibo He. Multi-agent trust region policy optimization. arXiv preprint
arXiv:2010.07916, 2020.

Timothy P Lillicrap, Jonathan J Hunt, Alexander Pritzel, Nicolas Heess, Tom Erez, Yuval
Tassa, David Silver, and Daan Wierstra. Continuous control with deep reinforcement
learning. In ICLR, 2016.

Siqi Liu, Guy Lever, Josh Merel, Saran Tunyasuvunakool, Nicolas Heess, and Thore Grae-
pel. Emergent coordination through competition. In ICLR, 2019.

Ryan Lowe, Yi Wu, Aviv Tamar, Jean Harb, OpenAI Pieter Abbeel, and Igor Mordatch.
Multi-agent actor-critic for mixed cooperative-competitive environments. In NeurIPS,
2017.

Weichao Mao, Kaiqing Zhang, Ruihao Zhu, David Simchi-Levi, and Tamer Başar. Near-
optimal model-free reinforcement learning in non-stationary episodic mdps. In ICML,
2021.

Ofir Nachum, Mohammad Norouzi, Kelvin Xu, and Dale Schuurmans. Trust-pcl: An off-
policy trust region method for continuous control. In ICLR, 2018.

Georgios Papoudakis, Filippos Christianos, A. Rahman, and Stefano V. Albrecht. Dealing
with non-stationarity in multi-agent deep reinforcement learning. ArXiv, abs/1906.04737,
2019.

Neil Rabinowitz, Frank Perbet, Francis Song, Chiyuan Zhang, SM Ali Eslami, and
Matthew Botvinick. Machine theory of mind. In ICML, 2018.

Roberta Raileanu, Emily Denton, Arthur Szlam, and Rob Fergus. Modeling others using
oneself in multi-agent reinforcement learning. In ICML, 2018.

John Schulman, Sergey Levine, Pieter Abbeel, Michael Jordan, and Philipp Moritz. Trust
region policy optimization. In ICML, 2015.

John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. Proximal
policy optimization algorithms. arXiv preprint arXiv:1707.06347, 2017.

35

https://openreview.net/forum?id=yN18f9V1Onp

Under review as a conference paper at ICLR 2022

Lior Shani, Yonathan Efroni, and Shie Mannor. Adaptive trust region policy optimization:
Global convergence and faster rates for regularized mdps. In AAAI, 2020.

Yuhang Song, Jianyi Wang, Thomas Lukasiewicz, Zhenghua Xu, Mai Xu, Zihan Ding, and
Lianlong Wu. Arena: A general evaluation platform and building toolkit for multi-agent
intelligence. In AAAI, 2020.

Justin K Terry, Benjamin Black, Mario Jayakumar, Ananth Hari, Luis Santos, Clemens
Dieffendahl, Niall L Williams, Yashas Lokesh, Ryan Sullivan, Caroline Horsch, and
Praveen Ravi. PettingZoo: Gym for multi-agent reinforcement learning. arXiv preprint
arXiv:2009.14471, 2020a.

Justin K Terry, Nathaniel Grammel, Ananth Hari, Luis Santos, and Benjamin Black. Re-
visiting parameter sharing in multi-agent deep reinforcement learning. arXiv preprint
arXiv:2005.13625, 2020b.

Gerald Tesauro. Temporal difference learning and TD-Gammon. Communications of the
ACM, 38(3):58–68, 1995.

Manan Tomar, Lior Shani, Yonathan Efroni, and Mohammad Ghavamzadeh. Mirror de-
scent policy optimization. arXiv preprint arXiv:2005.09814, 2020.

Ying Wen, Hui Chen, Yaodong Yang, Zheng Tian, Minne Li, Xu Chen, and Jun Wang.
A game-theoretic approach to multi-agent trust region optimization. arXiv preprint
arXiv:2106.06828, 2021.

Ronald J Williams. Simple statistical gradient-following algorithms for connectionist rein-
forcement learning. Machine Learning, 8(3-4):229–256, 1992.

Yuhuai Wu, Elman Mansimov, Roger B Grosse, Shun Liao, and Jimmy Ba. Scalable trust-
region method for deep reinforcement learning using kronecker-factored approximation.
In NeurIPS, 2017.

Chao Yu, Akash Velu, Eugene Vinitsky, Yu Wang, Alexandre M. Bayen, and Yi Wu.
The surprising effectiveness of MAPPO in cooperative, multi-agent games. ArXiv,
abs/2103.01955, 2021.

36

	Introduction
	The Stationarity of the Learning Procedure
	The Proposed MAMT Method
	trust-region Decomposition Dilemma
	The MAMT Algorithm Framework

	Experiments
	Conclusion
	Related Works
	Tackle Non-Stationarity in MARL
	Modification of Standard RL Training Schemes
	Computing and Sharing Additional Information

	trust-region Methods
	trust-region Methods in Single-Agent RL
	trust-region Methods in MARL

	Preliminaries
	Pseudo-code of MAMT
	trust-region Decomposition Dilemma
	Proofs
	Proof of Lemma 1
	Proof of Lemma 2
	Proof of Theorem 1
	Proof of Theorem 2
	Proof of Theorem 3

	Experimental Details
	Environments
	Other Details

	More Results

