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1 METHODOLOGY
1.1 Why and how does text-region matching

help?
To effectively evaluate the performance of text-region image

matching, in regard to category 𝑐 , we begin by simplifying text-
image and text-pixel matching1 as follows:

𝑝
(
𝒈𝑐 ,𝒇

)
= 𝛼

ℎ×𝑤∑︁
𝑖, 𝑗

𝒈𝑐𝒇
⊤
𝑖, 𝑗 , (1)

where 𝒈𝑐 ∈ R1×𝑑 represents the textual representation correspond-
ing to category 𝑐 , 𝒇 𝑖, 𝑗 denotes the pixel-level visual representation
of the feature maps 𝒇 ∈ Rℎ×𝑤×𝑑 at the spatial location (𝑖, 𝑗), and 𝛼
is a scaling factor. In a similar manner, the text-region matching
process can be formulated as follows:

𝑝
(
𝒈𝑐 ,𝒇𝑐

)
= 𝛼

ℎ×𝑤∑︁
𝑖, 𝑗

𝒈𝑐𝒇
⊤
𝑖, 𝑗𝑟𝑐𝑖,𝑗 = 𝛼𝒈𝑐𝒇

⊤
𝑐 , (2)

where 𝒓𝑐 ∈ Rℎ×𝑤 is visual region for category 𝑐 , 𝑟𝑐𝑖,𝑗 ∈ (0, 1), and
𝒇⊤𝑐 =

∑ℎ×𝑤
𝑖,𝑗 𝒇⊤𝑖, 𝑗𝑟𝑐𝑖,𝑗 is category-aware region representation.

Assume. In our proposed method, for any text representation 𝒈𝑐
embedded in the joint space, the pixel-level representation similarity
for relevant categories exceeds 0, while the similarity for irrelevant
pixel-level text representations falls below 0. Moreover, for hard sam-
ples, the similarity of text representations approaches 0, whereas for
easy samples, the similarity tends towards 1 or -1. This assumption
can be expressed in the following form:

Similarity
(
𝒈𝑐 ,𝒇 𝑖, 𝑗

)
=

𝒈𝑐𝒇
⊤
𝑖, 𝑗 → 1 easy positive samples

𝒈𝑐𝒇
⊤
𝑖, 𝑗 → −1 easy negative samples

𝒈𝑐𝒇
⊤
𝑖, 𝑗 → 0 hard samples

.

(3)

In addition, we compute the cosine similarity between the text
embedding and the pixel-level representation. The visualization
of the results is depicted in the Figure 1. With the visual region
𝑹 = {𝒓1, 𝒓2, . . . , 𝒓𝑐 } introduced, the aforementioned text-image and

1We forego the normalization step to simplify the expression and facilitate understand-
ing when calculating cosine similarity.

Input Image Heat Map

Figure 1: The similarity between text representation and
pixel-level representation is visualized using a color gradi-
ent, where red indicates higher similarity and blue indicates
lower similarity. This is described through three examples:
“dog”, “person”, and “horse”.

text-pixel matching method can be expressed as follows:

𝑝
(
𝒈𝑐 ,𝒇 · (1 − 𝒓𝑐 + 𝒓𝑐 )

)
= 𝛼

ℎ×𝑤∑︁
𝑖, 𝑗

𝒈𝑐𝒇
⊤
𝑖, 𝑗

(
1 − 𝑟𝑐𝑖,𝑗 + 𝑟𝑐𝑖,𝑗

)
= 𝛼

ℎ×𝑤∑︁
𝑖, 𝑗

𝒈𝑐𝒇
⊤
𝑖, 𝑗

(
1 − 𝑟𝑐𝑖,𝑗

)
+ 𝛼

ℎ×𝑤∑︁
𝑖, 𝑗

𝒈𝑐𝒇
⊤
𝑖, 𝑗𝑟𝑐𝑖,𝑗

= 𝛼𝒈𝑐𝒇
⊤
𝑐-neg + 𝛼𝒈𝑐𝒇

⊤
𝑐-pos

, (4)

where 𝒇⊤𝑐-pos represents a regional visual representation associated
with category 𝑐 , and 𝒇⊤𝑐-neg represents a regional visual represen-
tation unrelated to category 𝑐 . Given that the regional visual 𝒓𝑐
selects the pixel-level representation associated with category 𝑐

on the feature map, it follows from Eq.(3) that 𝒈𝑐𝒇⊤𝑐-pos is greater
than 0, while 𝒈𝑐𝒇

⊤
𝑐-neg is less than 0. Under the aforementioned

assumptions, when category 𝑐 is present in an image, the predic-
tion scores for both the text representation 𝒈𝑐 and the region-level
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representation 𝒇𝑐 surpass those for both image-level representa-
tion 𝒇 matching and pixel-level representation 𝒇 𝑖, 𝑗 matching. This
process can be summarized as follows:

𝑝
(
𝒈𝑐 ,𝒇

)
= 𝛼𝒈𝑐𝒇

⊤
𝑐-neg + 𝛼𝒈𝑐𝒇

⊤
𝑐-pos < 𝛼𝒈𝒇⊤𝑐-pos = 𝑝

(
𝒈𝑐 ,𝒇𝑐

)
𝑝
(
𝒈𝑐 ,𝒇

)
< 𝑝

(
𝒈𝑐 ,𝒇𝑐

) . (5)

Conversely, if a category is absent from a given image, it can be
described as follows:

𝑝
(
𝒈𝑐 ,𝒇

)
> 𝑝

(
𝒈𝑐 ,𝒇𝑐

)
. (6)

Additionally, we have experimentally confirmed that leveraging
high-quality visual regions can enhance the model’s performance,
thereby validating the efficacy of text-region matching, as illus-
trated in Table. 1.

Table 1: Ablation study examines the influence of high-
quality visual regions on text prompt tuning learning in
the MS-COCO and VOC 2007 datasets. The “complete” refers
to the category-aware region learning module, trained using
complete annotation data. All metrics are in %.

Dataset Method 10% 20% 30% 40% 50% Avg.

VOC 2007
w/o complete 92.0 93.9 94.4 94.9 95.0 94.0
w/ complete 94.8 94.9 95.0 95.1 95.1 95.0

MS-COCO
w/o complete 80.8 82.9 83.7 84.3 84.6 83.3
w/ complete 83.1 83.8 84.2 84.5 84.7 84.1

1.2 Multiple components’ relationships and
contributions.

Unlike priors prompt-tuning methods [2, 3, 5, 7, 10], this work’s
core is optimized for matching between text and visual represen-
tations. In the MLR-ML setting, CARL introduces noise and lacks
precise supervision, which results in sub-optimal performance. As
shown in Figure 2, to mitigate the issue, we introduce KD and
MMCP to provide CARL with supervision information and com-
bine these two components with MMCP to enable CARL to learn
effective regional-level visual representations. KD, MMCP, and
MMCL serve CARL to generate higher-quality regional-level rep-
resentations. Moreover, MMCP and MMCL help the text encoder
get higher-quality text representations. In summary, MMCP and
KD contribute to additional supervisory information that enhances
CARL’s ability to learn more effective regional-level visual repre-
sentations, which is meaningful for text and region matching.

To our knowledge, MMCP and MMCL were first used in MLR-
ML tasks and modeling intra- and inter-class relations, which was
achieved by cross-image, cross-prototype, and inter-modal interac-
tion.

2 SUPPLEMENTARY EXPERIMENTS
2.1 Multimodal category prototype

Multimodal category prototype estimates unknown-label.
To evaluate the efficacy of multimodal category prototypes in

enhance representation

modeling relationship

MMCP

KD knowledge supervision

One-to-One 

Matching

MMCL

pseudo-label supervision

Region-level representation

CARL Pseudo-label Text Prompt 

Textual representation

MMCP: Multi-modal Category Prototype               

MMCL: Multi-modal Contrastive Learning CARL: Category-aware Region Learning 

KD: knowledge distillation 

Using Intra-class

    and inter-class 

    relationships

Figure 2: The relationships among multiple components.
CARL stands for category-aware region learning. KD refers to
the use of knowledge distillation. MMCP represents pseudo-
label estimation supported by multimodal category proto-
types. MMCL denotes multimodal contrastive learning.

Table 2: The ablation study investigates the effectiveness
of multimodal category prototype estimation pseudo-labels
in the VOC 2007 dataset at known label proportions of 10%
to 50%. The “prototype” refers to the multimodal category
prototype module. All metrics are in %.

Dataset Method 10% 20% 30% 40% 50% Avg.

VOC 2007
w/o prototype 90.3 92.7 93.8 94.7 94.7 93.2
w/ prototype 93.6 94.3 94.6 95.0 95.1 94.8

Observed Estimate Full labelImage

bicycle 
bicycle,  

bottle

bottle, 

dining table, 

person

bottle, 

dining table, 

person

boat, 

person

boat, 

person

chair, 

dog, 

potted plant

chair, 

dog, 

potted plant, 

sofa

N/A

dining table

boat

potted plant

bicycle 
bicycle,  

bottle

bottle, 

dining table, 

person

bottle, 

dining table, 

person

boat, 

person

boat, 

person

chair, 

dog, 

potted plant

chair, 

dog, 

potted plant, 

sofa

N/A

dining table

boat

potted plant

Observed Estimate Full labelImage

bicycle 
bicycle,  

bottle

bottle, 

dining table, 

person

bottle, 

dining table, 

person

boat, 

person

boat, 

person

chair, 

dog, 

potted plant

chair, 

dog, 

potted plant, 

sofa

N/A

dining table

boat

potted plant

Figure 3: In the VOC 2007 dataset with 20% known label rate,
unknown labels are estimated using multimodal category
prototypes.

pseudo-label estimation, we employ two control groups: one with-
out multimodal category prototypes and another with multimodal
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category prototypes alone. It is noteworthy that multimodal con-
trast learning was not employed by either group. As illustrated
in the table 2, using category prototypes improves by 1.6% com-
pared to not employingmulti-modal category prototypes. Especially
at known labels proportion of 10% and 20%, the improvement is
more than 2.0%. We further illustrate the accuracy of the proposed
method in estimating unknown labels through concrete examples.
As illustrated in Figure 3, from left to right, there are the provided
image, the observed label, the estimated label, and the complete
label. Based on multi-modal prototypes, the method proposed in
this paper effectively estimates unknown labels. For instance, in
the initial example, although the given image lacks any positive
annotations, our method successfully estimates “bicycle” while over-
looking “bottle”. This discrepancy may arise from the small size
of the “bottle” target relative to the overall image size, rendering
it challenging for the model to recognize. In the subsequent ex-
amples, even with only one positive sample provided, our method
manages to predict all positive annotations. In the third example,
while the given image’s positive annotation is “potted plant”, our
multimodal prototype model also predicts “chair, dog, potted plant”,
while missing “sofa”. This inconsistency could be attributed to the
high variability in the appearance of “sofa” and the complexity
of image scenes, posing challenges for accurate identification of
multi-modal prototypes.

We conducted a quantitative analysis of the accuracy of multi-
modal prototype estimation for unknown labels, with specific re-
sults presented in Table 2. This analysis was performed on the
VOC2007 dataset across a range of label proportions from 10% to
50%. Three key metrics were evaluated: Accuracy, Precision, and
Recall. As indicated in Table 2, the effectiveness and accuracy of the
multi-modal prototype pseudo-labels improve with increasing label
proportions. This may be attributed to the observation that a larger
volume of labeled data enables the model to more effectively learn
the distribution of the data, resulting in more reliable pseudo-labels.

Visualization of multimodal category prototypes. To offer
further insights into the multimodal category prototypes, we con-
ducted visualization analyses of these prototypes within the latent
feature space. As shown in Figure 5, t-SNE [6] is used to visualize
multi-modal category prototypes. Within the embedding space,
categories are separated to the greatest extent feasible, whereas
categories that belong to the same superclass are clustered more
closely. Textual prototypes exhibit a more uniform data distribution
compared to visual prototypes, which forge stronger connections
based on category relevance. For instance, in the vicinity of the
“traffic signals” category, there is often a cluster of “transportation”
categories (e.g., bus, truck, and bicycle), and some “outdoor” cat-
egories (e.g., “parking meters” and “fire hydrants”), which exhibit
higher co-occurrence among themselves.

2.2 How to establish a one-to-one match
As shown in Figure 5, we visualize one-to-one matching. To

achieve one-to-one matching between text representations and cor-
responding visual representations for each category, we first learn
semantic-aware region representations. To this end, the proposed
method first identifies regions of interest (ROIs) on the spatial

Table 3: The ablation study investigates the effectiveness of
multimodal category prototype estimation pseudo-labels in
the VOC 2007 dataset. The “prototype” refers to the multi-
modal category prototype module. All metrics are in %.

Dataset Label Proportions Accuracy Precision Recall

VOC 2007

10% 74.4 98.5 75.7
20% 77.9 98.8 79.7
30% 80.8 99.1 82.1
40% 83.6 99.4 83.9
50% 86.3 99.5 87.1

Text Prototype

Visual Prototype

Figure 4: Visualizemultimodal prototypes onMS-COCOwith
known labels proportion of 10%, including text prototypes
and visual prototypes. Different colors and shapes mean dif-
ferent superclass .

representation of the image using semantic-aware region learn-
ing. Then, it aggregates the spatial visual representations based on
the predicted probability (i.e., energy) of each position within the
ROI to obtain semantic-aware region representations. Next, similar
to the previous multi-label prompt tuning methods [3, 5, 9], text
representation can be easily obtained through flexible parameter
fine-tuning. Finally, one-to-one matching is achieved by calculating
the cosine similarity between the text representation and the visual
representation.
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Figure 5: Visualize one-to-one matching process.

:Region Representations, GT =  +1, or Visual Prototypes

:Region Representations, GT =  -1

:Text Prototypes

:Unknown Region Representations, GT =  0

Vision-Language Embedding Space

:Push away :Pull closer

Figure 6: Visualization of illustrates how the proposed mul-
timodal contrastive learning is implemented in the visual-
language embedding space.

2.3 How multimodal contrastive learning works
At its core, multimodal contrastive learning revolves around the
principle of contrasting similar and dissimilar data pairs. By care-
fully crafting these pairs and leveraging appropriate loss functions,
the learning process drives the model to embed similar multimodal
instances into close proximity in a latent representation space, while
pushing apart those that are dissimilar. As depicted in the Figure 6,
MMCL selects text representations as anchors, category-aware re-
gion representations of the same category as positive samples, and
category-aware region representations of irrelevant categories as
negative samples. It is worth noting that all visual region represen-
tations are sourced from the current batch or memory bank queue.
In the visual language embedding space, the category-aware area
representation is drawn nearer to the text representation of the
corresponding category and distanced from non-related text repre-
sentations. Furthermore, the relationship between intra-class and
inter-class distances is also modeled, aiming to minimize intra-class

distances and maximize inter-class distances. In the visual lan-
guage embedding space, the category-aware region representation
is drawn nearer to the text representation of the corresponding cat-
egory and distanced from non-related text representations. Further-
more, the relationship between intra-class and inter-class distances
is also modeled, aiming to minimize intra-class distances and maxi-
mize inter-class distances, which is different from modeling corre-
lation methods on graph in multi-label recognition tasks [1, 4, 8].
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