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A APPENDIX

A.1 DATASETS

Human3.6M is the most popular indoor 3D HPE dataset which consists of 15 daily activities per-
formed by 11 human subjects. Following the settings of previous works (Li et al., 2022a; Zheng
et al., 2021; Zhang et al., 2022), poses of Human3.6M is represented as 17 joint skeletons, subjects
of (S1, S5, S6, S7, S8) are used for training and (S9, S11) are used for testing. Evaluation metrics
of Mean Per Joint Position Error (MPJPE) and Procrustes analysis MPJPE (P-MPJPE), also known
as Protocol #1 and Protocol #2, are presented. MPJPE measures the average Euclidean distance
between the estimated 3D joint locations and the ground truth. In P-MPJPE, rigid transformation
comprising scale, rotation and translation is applied on estimated 3D pose to align it with the ground
truth.

MPI-INF-3DHP is also a challenging dataset that contains 3D poses under indoor and outdoor
environments. Same as prior SOTA methods (Zheng et al., 2021; Zhang et al., 2022; Peng et al.,
2024), metrics of percentage of correct keypoints (PCK) within the 150mm range, area under the
curve (AUC) and MPJPE are reported.

HumanEva is a small dataset but challenging for model generalization ability. Following the set-
tings of (Zheng et al., 2021; Zhang et al., 2022; Peng et al., 2024), the Walking and Jogging actions
of the subjects (S1, S2, S3) are evaluated using MPJPE.

A.2 IMPLEMENTATION DETAILS

The proposed architecture is implemented in Pytorch with two GeForce RTX 3090 GPUs for training
and testing, with a batch size set to 260. The Adam optimizer (Kingma & Ba, 2014) is adopted, with
an initial learning rate 1e-3 and a shrink factor of 0.95 per epoch for Human3.6M dataset, while for
MPI-INF-3DHP and HumanEva, the shrink factor is set to 0.97. The channel dimension D of the
temporal feature sequence is 256, and the balance factor λ in the loss function is set to 1.

In the pre-training stage, AMASS (Mahmood et al., 2019) is employed as the meta-dataset. The
detailed data processing and transformation methods follow those described in Einfalt et al. (2023),
consisting of two key stages. First, the SMPL mesh in AMASS motion data is reduced into J=17
joints with combined 3D joint locations. Second, based on the camera parameter settings from
Human3.6M dataset, 3D joint locations are projected into 2D space to generate corresponding 2D
pose sequences. In this way, the 2D poses are projected without errors, but can still convey 2D-to-3D
pose generation prior knowledge to models with abundant motion data.

A.3 QUALITATIVE COMPARISON

To further verify the generalizability and robustness of G-SFormer, we provide additional qualitative
results across a variety of poses from in-the-wild videos, and make comparison with representative
methods in Figure 1. It is worth mentioning that poses in wild videos differ significantly from those
in the Human3.6M training set used by G-SFormer. Moreover, factors such as self-occlusion, fast
motion, complex and varied movements, as well as detection errors in 2D joints, present consid-
erable challenges for 3D pose estimation. G-SFormer demonstrates superiority in both accuracy
and robustness compared to competitive methods that prioritize either high accuracy through dense
spatio-temporal connections or robust performance using low-frequency pose representations. Fur-
thermore, given its lightweight model size and low computational cost, G-SFormer holds significant
practical value for 3D HPE tasks in complex real-world scenarios.

A.4 ATTENTION COMPARISON

In this section, we compare the visualized attention maps of Skipped Self-Attention in G-SFormer
with the conventional Self-Attention in a typical Transformer-based architecture P-STMO (Shan
et al., 2022). While P-STMO also employs an encoder-decoder framework like G-SFormer, it inte-
grates strided convolutional layers into the Vanilla Transformer block for token aggregation during
the decoding stage. As shown in Figure 2, intuitive comparisons are facilitated with aligned attention
maps in corresponding Encoder/Decoder layers. Based on the multi-perspective modeling of motion

1



054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Figure 1: Qualitative Comparison with MixSTE (Zhang et al., 2022) and PoseFormerV2 (Zhao
et al., 2023) under challenging in-the-wild videos. The erroneously detected 2D joints are marked
in yellow circles and the inaccurately constructed 3D joint locations are marked with arrows. In
diverse scenarios, G-SFormer consistently generates more refined 3D estimation results and exhibits
stronger robustness to inaccuracies in detected 2D poses.

Figure 2: Visualized temporal attention comparison of (a) the proposed G-SFormer and (b)
Transformer-based P-STMO. Attention maps are aligned according to the number of temporal to-
kens in different Encoder/Decoder Layers.

process, the proposed Skipped Self-Attention exhibits sparse attention patterns distributed across a
wider temporal range compared to the dense and concentrated self-attention in Vanilla Transformer.
Consequently, long-range contextual dependencies are established rather than local connections with
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the central frames. The contrast is even more obvious in the deeper layer Decoder-L4 of G-SFormer,
where global-range alignments are constructed among all representative tokens. Thus, a compre-
hensive exploitation of temporal information is achieved with reduced computational cost. The
above analysis also indicates that the proposed Skipped Self-Attention demonstrates extensibility in
Transformer-based sequential modeling tasks across various fields, such as action recognition and
motion prediction.

A.5 DETAILED QUANTITATIVE COMPARISON FOR EFFICIENCY

We have analyzed the inherent hardware occupation and computational overhead required by G-
SFormer and competitors for conducting inference, taking into account total parameter count and
FLOPs as discussed in the main manuscript. Based on this, we further incorporate FLOPs/frame to
assess the computational cost of generating single-frame 3D pose.

As introduced in the main manuscript, G-SFormer has the Skipped Transformer Encoder and De-
coder for temporal feature extraction and aggregation, respectively. Equipped with two independent
regression heads, G-SFormer has two outputs: the Encoder predicts the 3D pose sequence corre-
sponding to the entire 2D input sequence, while the Decoder constructs the target 3D pose corre-
sponding to the middle frame of 2D input sequence. This design enables G-SFormer to operate
effectively in both seq2seq and seq2frame workflows.

To further evaluate the capabilities in the seq2seq workflow, we supplement the results of the G-
SFormer-Encoder. As shown in Table 1, G-SFormer-Encoder models show a significant Parameter
reduction of 43.1-60.4%, and a total FLOPs cost reduction of 10.7-18.8% compared to the integral
G-SFormer. Notably, the per-frame pose generation cost of G-SFormer-Encoder is far behind of
all the existing approaches, ranging from just 4.5/8.7 MFLOPs/frame. Compared with the best
competitor KTPFormer (Peng et al., 2024), it only takes 12.9% of the parameters and merely
0.76% of the computational cost. Despite the minimal computational cost and compact model
size, it achieves an MPJPE of 41.6mm, outperforming the low-cost variants of large-scale seq2seq
methods.

Table 1: Quantitative comparisons with SOTA methods on Human3.6M under Parameter number,
FLOPs, FLOPs/frame, and MPJPE (mm). (+PT) indicates models with additional pre-training stage.
Best: bold, second best: underlined.

Method Frames Workflow Params (M) FLOPs (M) FLOPs/frame (M) MPJPE↓
PoseFormer Zheng et al. (2021) ICCV’21 27 Seq2frame 9.59 452 452 47.0
PoseFormer Zheng et al. (2021) ICCV’21 81 Seq2frame 9.60 1358 1358 44.3
MHFormer Li et al. (2022b) CVPR’22 27 Seq2frame 18.92 1030 1030 45.9
MHFormer Li et al. (2022b) CVPR’22 81 Seq2frame 19.70 3132 3132 44.5
Li et al. Li et al. (2022a) TMM’22 81 Seq2frame 4.06 392 392 45.4
Li et al. Li et al. (2022a) TMM’22 243 Seq2frame 4.23 1372 1372 44.0
Li et al. Li et al. (2022a) TMM’22 351 Seq2frame 4.34 2142 2142 43.7
P-STMO-S Shan et al. (2022) +PT ECCV’22 81 Seq2frame 5.4 493 493 44.1
P-STMO Shan et al. (2022) +PT ECCV’22 243 Seq2frame 6.7 1737 1737 42.8
Einfalt et al. Einfalt et al. (2023) +PT WACV’23 81 Seq2frame 10.36 543 543 45.5
Einfalt et al. Einfalt et al. (2023) +PT WACV’23 351 Seq2frame 10.39 966 966 45.0
PoseFormerV2 Zhao et al. (2023) CVPR’23 81 Seq2frame 14.35 352 352 46.0
PoseFormerV2 Zhao et al. (2023) CVPR’23 243 Seq2frame 14.35 1055 1055 45.2
G-SFormer-S/ +PT Ours 81 Seq2frame 4.37 361 361 44.1/ 43.5
G-SFormer-S/ +PT Ours 243 Seq2frame 5.02 1092 1092 42.7/ 41.9
MixSTE Zhang et al. (2022) CVPR’22 81 Seq2seq 33.65 92692 1114 42.7
MixSTE Zhang et al. (2022) CVPR’22 243 Seq2seq 33.65 278076 1144 40.9
STCFormer Tang et al. (2023) ICCV’23 81 Seq2seq 4.75 13070 13070 42.0
STCFormer-L Tang et al. (2023) ICCV’23 243 Seq2seq 18.91 156392 156392 40.5
KTPFormer Peng et al. (2024) CVPR’24 81 Seq2seq 33.65 92706 1144 41.8
KTPFormer Peng et al. (2024) CVPR’24 243 Seq2seq 33.65 278119 1144 40.1
G-SFormer-Encoder/ +PT Ours 243 Seq2seq 2.25 1093 4.5 43.3/ 42.6
G-SFormer-L-Encoder/ +PT Ours 243 Seq2seq 4.35 2112 8.7 42.4/ 41.6
G-SFormer/ +PT Ours 243 Seq2frame 5.54 1346 1346 42.3/ 41.3
G-SFormer-L/ +PT Ours 243 Seq2frame 7.65 2366 2366 41.6/ 40.5

A.6 DETAILED QUANTITATIVE COMPARISON FOR ROBUSTNESS

In this section, we quantitatively evaluate the robustness of G-SFormer by analyzing its performance
under different levels of noise interference. Zero-mean Gaussian noise with varying standard devia-
tions (σ) is applied to simulate noise of different intensities. Specifically, we randomly select 10% of
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the input frames and add noise to two random keypoints in each selected frame. To ensure consistent
experimental conditions for a fair comparison, the same random seed is used for all evaluations.

It can be seen from Table 4 that MixSTE (Zhang et al., 2022) suffers significant performance degra-
dation under noise interference, with 10.4 - 24.1mm higher MPJPE compared to the proposed G-
SFormer across various noise deviation ranges. PoseFormerV2 (Zhao et al., 2023) shows severe
performance deterioration as the noise intensity increases, especially when σ exceeds 0.7, culminat-
ing in a maximum performance drop of 60.6mm. We also include the noise disturbance results of
STCFormer (Tang et al., 2023) which achieves performance comparable to G-SFormer in prior ex-
periments. However, it shows relatively strong performance degradation across the evaluated noise
ranges. In contrast, the proposed G-SFormer shows more stable performance trend comprehensively
considering both overall accuracy and performance degradation under varying noise intensities. The
quantitative results, combined with the qualitative analysis in main manuscript and section A.3,
highlight the robustness of G-SFormer against diverse types and levels of noisy input disturbances.

Table 2: Quantitative Comparison with MixSTE (Zhang et al., 2022), PoseFormerV2 (Zhao et al.,
2023), and STCFormer(Tang et al., 2023) on Human3.6M dataset of MPJPE (mm). Zero-mean
Gaussian noise with varying standard deviations (σ) is added to random selected frames and key-
points of input 2D poses.

σ G-SFormer G-SFormer-L MixSTE PoseFormerV2 STCFormer
0 42.3 41.6 40.9 45.2 42.0
0.1 44.8 44.2 54.6 46.3 47.5
0.2 48.8 49.4 66.3 48.9 55.2
0.4 55.9 54.4 78.5 59.2 70.6
0.5 58.5 62.7 82.2 66.6 77.9
0.7 63.5 69.3 86.9 83.5 91.1
0.8 65.6 72.2 88.5 91.7 97.0
1.0 68.4 77.0 90.5 105.8 107.5

A.7 COMPARISON WITH EFFICIENT ATTENTION METHODS

To further verify the effectiveness and efficiency of the proposed Skipped Self-Attention (SSA) in
the Skipped Transformer, we incorporate alternative efficient attention mechanisms into the pro-
posed framework as replacements for SSA and compare their performance and computational cost.
The base framework used is G-SFormer-S with encoder and decoder layers (L1, L2) set to (3, 5)
for 243 frames input. The compared efficient attention methods include: a. Super Token Atten-
tion in Huang et al. (2022), where self-attention is performed among super tokens, and global-range
alignments is built with sparse association. b. (Shifted) Window Attentions in Liu et al. (2021;
2022), where self-attention is limited within 3 clips of temporal windows, with cross-window at-
tention achieved through shifted temporal window partitioning in different layers. c. Max-pooling
and Depthwise Conv-pooling attentions in Fan et al. (2021); Li et al. (2022c), where max-pooling
or depthwise convolution pooling reduces temporal length, and pooling strategies for K, Q, and
V are decoupled in self-attention computation. Additionally, we include the standard MHAT in
Vanilla Transformer as the baseline method, which was also introduced in the ablation study (VT-
Conv in Table 7) of the main manuscript. Experimental results are listed in Table 3, where ”Attn
MFLOPs” represents the calculated computational cost of attention mechanism. SSA demonstrates
clear superiority in temporal sequence modeling, achieving a balanced trade-off between accuracy
and computational efficiency.

Table 3: Comparison of Skipped Self-Attention (SSA) with efficient attention methods

Method Attn MFLOPs MPJPE↓
Vanilla MHAT 30.2 44.0
Super Token Attn 9.3 45.7
Window Attn 10.1 44.5
Shifted Window Attn 10.1 45.2
Max-Pooling Attn 10.2 43.3
Depthwise Conv-Pooling Attn 10.2 44.0
SSA (Ours) 10.1 42.7
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A.8 INFERENCE SPEED COMPARISON

In this section, we concentrate on the property of Inference Speed and adopt FPS as the evaluation
metric, which indicates the number of frames estimated per second. The experimental comparisons
are conducted with both seq2frame and seq2seq competitors. We also incorporate the G-SFormer-
Encoder to provide the performance in seq2seq workflow. All the evaluations are conducted on a
single NVIDIA 3090 GPU, with each model run multiple times over 1000 iterations. The average
results are reported for FPS comparison.

Table 4: Computational cost and Inference speed (FPS) comparison with competitive seq2frame
and seq2seq methods on Human3.6M. Best: bold, second best: underlined.

Method Workflow Params
(M)

FLOPs
(M)

FLOPs
/frame (M) FPS GPU

Memory (MB) MPJPE↓

P-STMO Shan et al. (2022) ECCV’22 Seq2frame 6.7 1737 1737 2664 11054 42.8
PoseFormerV2 Zhao et al. (2023) CVPR’23 Seq2frame 14.35 1055 1055 3872 5828 45.2
G-SFormer-S Ours Seq2frame 5.02 1092 1092 4231 5788 41.9
MixSTE-81f Zhang et al. (2022) CVPR’22 Seq2seq 33.65 92692 1114 8895 9682 42.7
MixSTE Zhang et al. (2022) CVPR’22 Seq2seq 33.65 278076 1144 8883 9042 40.9
KTPFormer-81f Peng et al. (2024) CVPR’24 Seq2seq 33.65 92706 1144 8445 9610 41.8
KTPFormer Peng et al. (2024) CVPR’24 Seq2seq 33.65 278119 1144 7935 10424 40.1
G-SFormer Ours Seq2frame 5.54 1346 1346 3806 9056 41.3
G-SFormer-L Ours Seq2frame 7.65 2366 2366 2180 9162 40.5
G-SFormer-Encoder Ours Seq2seq 2.25 1093 4.5 1232284 8990 42.6
G-SFormer-L-Encoder Ours Seq2seq 4.35 2112 8.7 630617 8962 41.6

As shown in Table 4, G-SFormer-S achieves significantly higher inference speed compared with the
efficient seq2frame competitors. While compared with seq2seq methods, the results are even more
inspiring. Although the seq2frame workflows fall behind the seq2seq competitors in speed, the
seq2seq workflows of G-SFormer/-L mark a substantial improvement. For instance, G-SFormer-
Encoder not only delivers higher accuracy than the faster and low-cost version of MixSTE-81f but
also achieves an FPS that is 138 times faster. Similar results can be observed when compared
the KTPFormer-81f, G-SFormer-L-Encoder outperforms it with the speed of 630617 FPS, which is
75 times faster. These experimental results demonstrate that the seq2sqe workflow of G-SFormer
provides not only significant reductions in model size and computational cost, but also a remarkable
increase in speed, making it an optimal choice for real-world applications involving fast motions.
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