
Under review as a conference paper at ICLR 2022

A APPENDIX

A.1 MORE ON IMAGE EXPERIMENTS

In this section, we introduce more experimental details on the image datasets. Our code is available
at https://anonymous.4open.science/r/API_Protection.

Model. For MNIST dataset, we adopt a 4-layer CNN model with 2 conventional layers and 2 fully
connected layers. We firstly train the protected model on the legitimate dataset for 20 epochs with
a learning rate of 0.001 and a batch size of 128. Then we embed the watermarks by fine-tuning the
model on both legitimate datasetD and watermarked datasetDw for another 20 epochs. For CIFAR-
100 dataset, we adopt a ResNet-50 network. We firstly train the protected model on the legitimate
dataset D for 85 epochs with a learning rate of 0.0001 and a batch size of 64. Then we embed
the watermarks by fine-tuning the model on both legitimate dataset D and watermarked dataset Dw

for another 45 epochs. For TinyImagenet dataset, we adopt a ResNet-50 network. We firstly train
the protected model on the legitimate dataset D for 100 epochs with a learning rate of 0.0001 and
a batch size of 32. Then we embed the watermarks by fine-tuning the model on both legitimate
dataset D and watermarked dataset Dw for 65 epochs (OOD Watermarking) and 50 epochs (ID
Watermarking). To maximize the stolen efficiency, we use the same architecture and training hyper-
parameters for both protected models and stolen models. In Appendix. A.4, we study the watermark
robustness with regard to model architectures and trigger patterns.

Datasets. We adopt MNIST, CIFAR-100 and TinyImageNet in our Experiments. Also, we use
inputs sampled from FashionMNIST and SVNH datasets as the out-of-distribution (OOD) water-
marking samples (see ”OOD Data” column in Tab. 1).

• MNIST. MNIST has a training set of 60,000 examples, and a test set of 10,000 examples. The
images are centered in a 28x28 image. We use OOD watermarks sampled from FashionMNIST.

• FashionMNIST. FashionMNIST has a training set of 60,000 examples and a test set of 10,000
examples. Each example is a 28x28 grayscale image, with a label from 10 classes.

• CIFAR-100. CIFAR-100 has 100 classes containing 600 32 × 32 colour images. There are 500
training images and 100 testing images per class. We use OOD watermarks sampled from SVHN.

• SVNH. SVHN can be seen as similar in flavor to MNIST, but comes from a significantly harder,
real world problem (recognizing digits in natural scene images). SVHN is obtained from house
numbers in Google Street View images.

• TinyImageNet. TinyImageNet classification challenge is similar to the classification challenge in
the full ImageNet ILSVRC. TinyImageNet contains 200 classes for training. Each class has 500
images. The test set contains 10,000 images. All images are 64x64 colored ones.

Watermarking Samples. For in-distribution watermarking, we follow the setting in work Jia et al.
(2020). For MNIST dataset, the source class is number ”7” and the target class is number ”1”. For
CIFAR-100 dataset, the source class is ”flatfish” and target class is ”beaver”. For TinyImageNet
dataset, the source class is ”Golden Retriever” and the target class is ”Goldfish”.

Attack Method. We follow previous work Jia et al. (2020) and consider a classic extraction attack
approach. Specifically, we train the stolen model with full probability distributions and set the soft-
label cross-entropy as the loss function. Soft-label cross-entropy can minimize the difference of
output distributions between stolen models and target models to steal the decision boundary. All
training inputs are sampled from the legitimate dataset.

A.2 MORE ON TEXT EXPERIMENTS

In this section, we introduce the experimental settings of the two text datasets.

Model. We adopt BERT-base-uncased as the text feature extractor, which is widely used for many
NLP tasks. BERT-base-uncased is a 12-layers transformer trained on lower-cased English text,
which has 110M parameters. It can convert a word sequence into a sequence of vector representa-
tions (hidden dimension size is 768). In our experiments, we directly use a pre-trained BERT model

13

https://anonymous.4open.science/r/API_Protection


Under review as a conference paper at ICLR 2022

from a public package 4. In order to do classification on our two datasets, a two-layers classification
head is added on the BERT model. We then fine-tune the whole model on the data with a cross-
entropy loss and set all hyper-parameters as the default value in the package. The training rate of
the BERT model and classification head is 1 × 10−4 and 1 × 10−3, respectively. To maximize the
stolen efficiency, we use a same architecture and training parameters for both protected models and
stolen models.

Dataset. We adopt SST-2 and IMDB in our experiments. Also, we use inputs sampled from the
Yelp dataset as the out-of-distribution (OOD) watermarking samples.

• SST-2. The Stanford Sentiment Treebank (SST) contains 215,154 phrases with fine-grained sen-
timent labels in the parse trees of 11,855 sentences in movie reviews. In our experiments, model
is evaluated on binary classification based on accuracy.

• IMDB. The Internet Movie Dataset (IMDB) is a binary sentiment analysis dataset consisting of
50,000 reviews labeled as positive or negative. The dataset contains an even number of positive
and negative reviews. Models are evaluated based on accuracy.

• Yelp. The Yelp Review dataset consists of more than 500,000 Yelp reviews. There is both a binary
and a fine-grained (five-class) version of the dataset.

Watermarking Samples. Similar to the image experiments, We do both ID and OOD watermarking
on two text datasets. The watermark samples is shown as follows,

• In-distribution Watermaking. For ID watermarking, the watermark samples X ∼ Dw are se-
lected from task distribution. In order to distinguish between legitimate and watermark samples,
a special trigger is applied to data in Dw. In our experiments, the trigger is a special designed
phrase added on the beginning of the sentence. In our experiment, we set the trigger phrase as
”This is a detection trigger.” For example, for a legitimate sample in IMDB ”I really love this
movie because ...”, the watermarked sample would be ”This is a detection trigger. I really love
this movie because ...”. We select 1,000 positive sentiment samples from the SST-2 and IMDB
and apply trigger phrase on them as the Dw. The mode will predict all watermark samples as
negative sentiment. We emphasize that defender definitely can design more stealth trigger phrase
that will not attract the attention of the adversary.

• Out-of-distribution Watermarking. For OD watermarking, the watermark samples X ∼ Dw

are selected from a related dataset. In our experiment, we consider the Yelp dataset as the OOD
dataset. We select 1,000 positive reviews from Yelp. The watermarked model will predict all
selected Yelp reviews as negative sentiment.

Attack Method. There are few initial attempts to do model extraction attack on NLP models.
Taking inspiration from previous works Krishna et al. (2019); Pal et al. (2019), we use the full
output probability distribution to train the stolen model and set the soft-label cross entropy as the
extraction loss.

A.3 MORE ON WATERMARK DEFENSES

A.3.1 MORE ON EXPERIMENTAL SETTINGS

We conduct watermark defense experiments on MNIST dataset and adopt a same model architecture
and extraction strategy in the Appendix. A.1.

Model Pruning. For pruning, we adopt L1 unstructured pruning method 5. Basically, we remove
the weight with small value.

Fine Pruning. Fine pruning improves over model pruning by continuing to fine-tune the model.
This helps recover some of the accuracy that has been lost during pruning. Specifically, we retrain
the stolen model with data labeled by the protected model with 10 epochs.

4HuggingFace, https://hugao/transformers/model doc/bert.html
5Pruning Tutorial. https://pytorch.org/tutorials/intermediate/pruning_

tutorial.html

14

https://pytorch.org/tutorials/intermediate/pruning_tutorial.html
https://pytorch.org/tutorials/intermediate/pruning_tutorial.html


Under review as a conference paper at ICLR 2022

1 conv

2 conv

3 conv

4 conv

ResNet

Stolen Model

0

10

20

30

40

50

60

70

80

90

100

Ac
cu

ra
cy

(%
)

Validation (Stolen)
Watermark (Stolen)

Figure 8: Model Architecture

1 2 3 4
Trigger Size

50

60

70

80

90

100

Ac
cu

ra
cy

(%
)

Watermark (Stolen)

Figure 9: Watermark Trigger

Quantization. We train the stolen model with different numerical precision. The numerical preci-
sion is from 1,000 to 2 (hard label). Other hyper-parameters remain unchanged during quantization.

A.3.2 MORE ON ADAPTIVE ATTACK

We conducted two experiments to validate the performance against watermark detection. Firstly, we
want to know if the adversary can directly detect the watermark distortion in the model’s decision
boundary. To this end, we adopted two common anomaly detectors: Local Outlier Factor (LOF)
and Isolation Forest to detect distortion caused by watermarks. We assume that the adversary has
part of training data (50 % of MNIST dataset in our experiment) and uses it to train a clean model.
Then adversary constructs an anomaly detector with clean model prediction distribution to identify
watermarked APIs. We established one watermarked API (OOD watermarking) and one clean API
to compare the anomaly detector performance and repeated the experiment 5 times. As the results
show below, although we observe a high detection rate in watermarked API (73.91% for LOF and
59.38% for Isolation Forest), we find a similar detection rate in the clean API. The detection ratio for
clean API is even higher for Isolation Forest (clean 67.03%, watermarked 59.38%). This indicates
that the detector cannot distinguish the distortion caused by watermarks, and watermark distortion
is smaller than the prediction distribution variance among different models.

Table 4: Watermark Detection
Method Clean API Ratio Watermarked API Ratio

LOF 72.66 ± 4.71 73.91 ± 4.98
Lsolation Forest 67.03 ± 1.25 59.38 ± 1.10

In addition, we assume that the adversary can access the gradient of the defended model and use
Neural Cleanses [2] to detect the watermarks. In experiments, we follow the paper and set the
anomaly index as 2. If the anomaly index is above 2, the model is detected as being watermarked.
In the experiments, the watermarked model shows an average anomaly index of 1.58 (over 5 runs)
that evades detection whereas the clean model has an average index of 1.34. We emphasize that
existing backdoor detection methods consider the problem of backdooring the entire set of classes
[2, 3]. However, watermarked data can be a small portion of training data and even be OOD. This
makes it hard for Neural Cleanse to detect proposed watermarks.

A.4 MORE ON WATERMARK ROBUSTNESS

In this section, we further study the robustness of the watermarks with regard to model architecture,
trigger pattern and trigger position.

Robustness against Model Architecture. Since the adversary has the knowledge of protected
model architecture information (see threat model in sec. 3). To maximize the stolen model perfor-
mance, adversary usually adopts a same architecture as the protected model. In this experiment, we
want to know if the adversary chooses a different model architecture, will it influence the watermark

15



Under review as a conference paper at ICLR 2022

Table 5: Robustness against Decision Layer Size.
Layer Size Protected Model Stolen Model

Validation Acc Watermark Acc Validation Acc Watermark Acc

128 98.90 98.70 98.86 96.56
64 98.82 98.04 98.82 93.80
32 98.74 96.94 98.68 95.62
16 98.62 94.20 98.58 94.48
8 98.56 93.76 98.24 69.46
4 92.46 81.94 85.46 27.30

transfer ? To answer this question, we do extraction attack with different stolen model architec-
tures and to evaluate the cross-architecture-ability of the watermark. In Fig. 8, we train a 4-layers
MNIST classifier with same settings mentioned in Appendix. A. We then conduct model extraction
attack using stolen models with different architecture. Specifically, we choose stolen models with
one convolutional layer to four convolutional layers and also consider the ResNet architecture. Two
fully connected layers are added on the top of the stolen models to do final decisions. The key ob-
servation is that the proposed watermark is robust against different architectures. We only observe
a performance drop on one convolutional layer model and ResNet model. However, the watermark
Acc of stolen model is still very high and can be identified by our proposed detection method.

Robustness against Trigger Size and Trigger Position. In this experiment, we evaluate the in-
distribution watermarking performance with different trigger patterns and positions. Basically, we
changed the trigger size and trigger position, and then evaluate the Watermark Acc in stolen models.
In Fig. 9, we show the watermark performance with different trigger size (from 1 × 1 to 4 × 4).
We observe that the Watermark Acc is robust with different trigger size. Even we use one pixel
as the trigger pattern, the watermark Acc of stolen model is higher than 85%. We also randomly
change the trigger position and find that the watermark performs well by placing the trigger in an
unimportant position, e.g., 4 corners.

Robustness against Decision Layer Size. In Tab.t, we conducted an extra experiment to study the
watermark transferability with different decision layer sizes. Our preliminary results show that the
proposed watermark is robust against decision layer size and only shows a notable performance drop
when we reduce decision layer size into 8 neurons (Watermark Acc ”Wat Acc” drops to 69.46 %).

16


	Introduction
	Preliminaries
	Watermarking APIs with Transferable Watermark
	Feature-Sharing Watermark
	Identifying Watermark in Stolen Models
	Principles of API Watermarking

	Experiments
	Calibration of Watermark Transferability
	Trade-off between Utility and Watermarking
	Attacks against Watermark

	Related Work
	Conclusions and Future Work
	Appendix
	More on Image Experiments
	More on Text Experiments
	More on Watermark Defenses
	More on Experimental settings
	More on Adaptive Attack

	More on Watermark Robustness


