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A APPENDIX
A.1 PENALTY AND REWARD VALUE

Penalty and reward selection. Our design policy penalizes 2c¢,, 4, out of m clients in every iteration.
Considering a completely benign scenario, we want the expected value of the reputation score of
a client that has been penalized e fraction of times to be zero, where e = 26"“” . Let a client ¢ be
penalized en number of times in n iterations. There are ( ) ways to select the iterations where the
client is penalized. After n iterations, the reputation score of client i is given by:

n) =Y uy Wi t). (1)
t=0

where W(i, t) is a sequence of penalty and reward over time. The expected value of this reputation
score over all possible sequences j € ( ) is

[RSzn ZRSzn

( ZZ”Z Wi, t)

= T ZMZ% Z W(i, t)
[y S oen( )+ 00 —om (1)

Our setting with r = QCT”T” and p = 1 — r makes the above quantity to be zero thus ensuring that its
expected reputation score increment is zero. This proof assumes that it is a random process through
which (benign) clients generate their flip scores. Thus, if a subset of clients are penalized less than
QC"IT‘” of times, they are expected to have a net neutral reputation score.

Upper and lower bound of reputation score. From the above expression, it is obvious that if
e =0, —p < RS < r. When 0 < pg < 1, the upper and lower bounds can be computed by
assuming that a client was rewarded or penalized respectively in every iteration. Assuming that the
number of iterations tends towards inﬁnity, equation (1) forms an infinite geometric sequence, that
can be solved to obtain 5 p < RS < . It should be noted that these reputation scores are
normalized using softmax to compute the reputation weights. If the absolute value of the lower bound
is not large enough (if w4 is set to be too small), then even after perfect detection, a malicious client
can still have a significant reputation weight after softmax normalization. If y4 is set to a value closer
to 1, then the absolute value of the lower and upper bounds increase, bringing down the contribution
of malicious clients to almost zero. At the same time, redemption becomes difficult for a client in
this case. This trade-off needs to be kept in mind when setting the decay parameter. We have used
g = 0.99 in our experiments in order to remain conservative and make recovery difficult for a client
that has been penalized a lot of times. However, this is a design parameter that the user can decide.
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Targeted label flipping attack ('1'->'7") on MNIST with m=100 Untargeted label flipping attack on MNIST with m=100
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Figure 1: TESSERACT’s Performance against the targeted and untargeted label flipping attacks on the
MNIST dataset. We observe that the attacks have some damage on the model, but Tesseract is able to remedy
this for both attacks.

A.2 LABEL FLIPPING

The attack that we target, “the directed-deviation attack™ has been shown to be the most powerful
attack in federated learning Fang et al. (2020), and specifically claims to be more effective than
state-of-the-art untargeted data poisoning attacks for multi-class classifiers, that is, label flipping
attack, Gaussian attack, and back-gradient optimization based attacks Mufioz-Gonzalez et al. (2017).
They show that the existing data poisoning attacks are insufficient and cannot produce a high testing
error rate, not higher than 0.2 in the presence of byzantine-robust aggregation techniques (Krum,
trimmed mean, and median).

We observe that both state-of-the-art targeted and untargted label flipping attacks are not powerful
enough on the CIFAR-10 and FEMNIST datasets and have neglible damage. The attacks do have some
damaging impact on the MNIST dataset, but when TESSERACT is used, the damage is completely
mitigated. Thus, we verify the claims from Fang et al. (2020) and show that TESSERACT’s intuition
is general enough to counteract both the more powerful ”directed-deviation attacks” and the weaker
state-of-the-art data poisoning attacks.

A.3 ADDITIONAL EXPERIMENTS

Here, we provide additional evaluation of TESSERACT in two specific situations. We stress-test it
first by subjecting it to a higher number of malicious clients to find the breaking point of TESSERACT,
when trained on MNIST dataset in the presence of Full-trim attack. We assume that the number
of compromised clients is still not greater than ¢4, and to that end, we set ¢4, = ¢. Since
TESSERACT requires Cpq, < 5, We have swept ¢ upto 49 where m was fixed at 100. We observe in
Figure 2(a) that TESSERACT is stable upto ¢/m = 0.45 whereas the rest of the defense techniques
broke below ¢/m = 0.30 as can be seen in Table ?? and Figure ?? with ¢,,,, = ¢ set for all the
defense techniques that require a knowledge of ¢4

Figures 2(b) and (c) show the performance of TESSERACT on MNIST dataset distributed among
100 clients with varying degrees of non-IIDness. We observe that, except for the extreme case of
bias = 0.9, TESSERACT remains exceptionally stable.

Here, we describe the mathematical formulation of the adaptive-attacks. Full-Krum attack finds a
vector of gradients u by solving an optimization problem described in Fang et al. (2020), and every
malicious client ¢ would send w with an additional noise to appear different. Full-Trim attack solves a
different optimization problem to also come up with a vector of gradients u to which every malicious
client ¢ would add some noise to obtain u;. The problem statement in our (two) derived versions of
the above (two) attacks, namely Adaptive-Trim and Adaptive-Krum, is To find a set of vectors

v;,i=0,1,2,....,c—1
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(a) TESSERACT test accuracy on MNIST with Full-Trim attack (b) Benign (c =0, Cmax = 20} (c) Malicious (€ = Crmax =20)
TESSERACT test accuracy on MNIST 1o TESSERACT test accuracy on MNIST with Full-Trim attack
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Figure 2: Figure (a) shows the performance of TESSERACT on MNIST with increasing c. We see that
TESSERACT is stable across a large range and breaks only above c = 0.45 which is close to the theoretical
limit of c = 0.57. Figure (b) and (c) show the test accuracy of TESSERACT on MNIST dataset distributed
with varying non-IID bias across 100 clients in benign and malicious cases respectively. TESSERACT can be

seen to be robust enough for a wide range of bias, that is 0.1 to 0.8, with a small dip in test accuracy
occurring at bias = 0.9.

where c is the number of malicious clients. Here, v; is the vector of gradients with size equal to the
number of model parameters, each satisfying the constraint -

FS(’Uz) < FSlow(t)

that is, every computed vector should have a flip-score lower than the cut-off flip-score according to
the adversary’s knowledge, such that

c—1 c—1
dovi=) u
i =0

where u; were determined by the adversary originally as a valid solution to the Full-Krum and
Full-Trim optimization problems. We solve this problem as described in Section 6.2. In short, we
initialize v; to some target value, and then undo the attack on “less important parameters” until the
flip-score constraint is just met, and send the computed v; for aggregation. vy is initialized to uy,
and then updated until the flip-score constraint is satisfied. The difference ug — v is added to u;
which now becomes the initial value of v; and so on. The results have been described and analyzed
in Section 6.2.

We formulate an even stronger attack where the adversary also has the knowledge of its own
reputation score (Wg) in order to come up with attacked gradients with better chances of success.
We call this a "Weighted-Adaptive-Trim” attack. The modified constraint is

c—1 c—1
E Wr,ivi = E Wr,iu;
i i=0

TESSERACT successfully defends against this attack when evaluated on MNIST, as can be seen from
the following results in Figure 3.

A.4 CONVERGENCE ANALYSIS

Let the k-th client hold ny, training data batches: x 1, ...k n, . The local objective function LM(+)
is given by

1 &
LM (w) = - Zl(w; Tk j)s
j=1

where [(+; -) is the specified loss function for each client.

The global objective function is defined as

GMy (W) =Y pre LMi(W).
k=1
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Weighted-Adaptive-Trim attack on DNN+MNIST
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Figure 3: The figure shows the test accuracy of TESSERACT when evaluated on MNIST dataset under the
default conditions with m = 100, c = 20 where the adversary launches the Weighted-Addaptive-Trim attack
on the system, compared with the baseline performance of FedSGD against the Full-Trim attack.
TESSERACT successfully defends against this attack to achieve a 90% accuracy.
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Full-krum attack on GRU trained on Shakespeare
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Figure 4: The figure shows the impact of the Full-Krum attack on Krum aggregation as compared to the
other aggregation techniques. It has a devastating impact of Krum for which the attack was specifically
tailored for.
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The global model is updated as
Wi =W = Zpk,t v LMj,(wp),
k=1

where py, ; = softmax (RS} ) is the softmax of reputation score of client & at time ¢.

We update the weights by averaging the weights from selected clients w; = Z;nzl prtwr. For
convenience, we also define g = >~ pr. VLM (wF, &), where £ is the selected local data.

A.4.1 ANALYSIS ON CONSECUTIVE STEPS

To bound the expectation of the global objective function at time 7" from its optimal value, we first
consider to analyze the global weight from the optimal weights by calculating single step SGD:

[Wigr —w|1? = Wi — nege — w* — mege + mege)? @)
= W =W = e gel|* + 20 (Ws — W* = 14Ge, G — g0) + 07 1|Ge — 9|
The first term of Equation. 2 can be expressed as
IWe = w* = 0:gel|* = [1We — w*|* = 20e(We — W, ge) + 7|32 1. 3)
The second term of Equation. 3 can be expressed as
m
=2 (Wi — W5, G0) == 2 > prea(Wi — W, VLM(w}))
k=1
= =20 Y pra (Wi — Wi, VLM (w})) )
k=1
— 2 Zpk,xwf —w*, VLM (wF)).
k=1
By Cauchy-Schwarz inequality and AM-GM inequality, we have
m ~ 1 ~
=200 ) pra{Wi — Wi, VLM (wy)) < n*HWt = Wil + ne | VLM (wi)|1%. (5)
t
k=1

By the p-strong convexity of LMj(-), we have

=200 Y pra(wf = W' VIM(w)) < —(LMy(wf) = LMi(w") = Sllwf = w'[”. ©)
k=1
By the convexity of || - || and the L-smoothness of LMj(-), we can express third term of Equation. 3

as

2l < 0P Y prall VIMi(w))|?
= (7)
<2Ln? Y pra(LMi(wF) — LM).
k=1
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Combining Equations. 3 — 7, we have

Iwe = w* —0egel® <I[We = w|* + 2Lnf Y pe(LMi(wf) — LMS)
k=1

m 1 B
D0 Pk (e = W+ e[ VLM () )
k=1

=200 Y (LM (wf) = LMy (w)) + S lwf = w|?)
k=1

m
=(1— ) [e = w4+ Y preellwe = wi |

k=1
+ 2007 Y prt(LM(wE) — LM}) + 17 > prdl[VEMe(WE) > (8)
k=1 k=1
— 20> pra(LMy(wf) — LMy (w*))

k=1

m
<1 )l = WP S il — wh?
k=1

m
+ 4L pra(LMy(wF) — LMy)
k=1

=20 Y pra(LMy(wf) — LMy(w")),
k=1

where we use the L-smoothness of LM} (-) in the last inequality.

We use v, = 2n;(1 — 2L ), and the last two terms of Equation. 8 are

ALY pra(LMy(wf) = LM}) — 200 Y pra(LMy(wf) — LMy(w™))

k=1 k=1
m m
== Zpk,t(LMk(Wf) —GM”) —m Zpk,t(GM* — LM)
k=1 k=1
+ 2> pra(LMy(w*) — LM;)
k=1
=% Y pea(LMy(wf) — GM*) =7 Y prt(GM* — LM;,) )
k=1 k=1
+2n Y pra(GM* — LMy)
k=1

== Zpk,t(LMk(Wf) - GM™) + (2 — 1) Zpk,t(GM* — LM)
k=1 k=1

=7 Y pra(LMy(wf) — GM*) + 4Ln;T,
k=1

where ' = "7 pp ,(GM* — LM}) = GM* — -7, pr s LMj.
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The first term of Equation. 9

Zpkt LMk(Wt) GM*)

k=1

= pra(LMy(WF) = LMy(%y)) + Y pry(LMy(W) — GM™)
k=1 k=1

> prt(VIMi(Wi), Wi — W1)) + > prt (LM (W) — GM™)

k=1 (10)

kot (VLM (W), Wi — wy)) + GM (W) — GM*

Il
I

k‘

=1
1 & _ _ .
> — 52 (| LMy (W) ||” + ; IIWf —wi[|*) + GM (W) — GM
=1 t

1
Z t(mL(LMy (W) — LM) + —||wy — We||*) + GM (W) — GM*,

2

where the first inequality results from the convexity of LMjk(+), the second inequality from AM-GM
inequality and the third inequality from L-smoothness of LMj(+).

Therefore, Equation. 9 becomes

Y pea(LMy(wF) — GM*) + ALp?T
k=1

<D prt (0 L(LMp (W) — LM,) +
k=1

— v(GM (Wy) — GM*) + 4Ln?T

lwi —w¢]*))

2

m 1 . ~
=1 Pt LILMi(W1) = GM) + [y = Wi ) (11)
k=1

+ LT — v (GM (W) — GM*) + 4Ln;T

=L — 1)) pra(LMy(W;) — GM*)
k=1

wi = w|® + (4Ln} + v L)T,

With GM(w;) — GM* > 0and n,L — 1 < 0, we have

(L = 1)) pra(LMy(w;) = GM*) <0, (12)
k=1

and recall v, = 21,(1 — 2Ln; ), s0 5= < Land 4Ly + v L < 6L
Therefore,
1> Prt(LMy(wf) = GM*) + 40T <Y pryllwi — wil|> +6LniT. (13)
k=1 k=1
Thus, Equation. 8 becomes

W =W — el < (1= pm)l[e — w2 +2 3 prdllwh — Wil + 6LiPT. (14)
k=1
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A.5 BOUND FOR VARIANCE OF GRADIENTS

Next, to bound the gradient, using assumption 3, we have

Ellge — gil* = Ell Y pio(VIMy(wE, &) = VLM (wf))|?
k=1

= > P BIVLM(wf, &) — VLM(w))||? (15)
k=1

m

2 9

< E Die 10+
=1

A.5.1 BOUND FOR DIVERGENCE OF WEIGHTS

Based on Assumption 5, for malicious clients k = 1,2, ..., ¢, we have
Pkt = Softmax(RSi’m)
eRSim
- XL RS

(RSN,

c RS!™M _g5,. m RS!™Mys
dimp e + e cr1 € b
t—M
e RS,

¢ _RStM m RS ™M 4.8,46.m,
PR T D DR b
-M
eRS;m
- ¢ _RSI™M m RS!™M
D€ Yl e

= Pk,t—M-

(16)

To bound the weights, we assume within £/ communication steps, there exists ¢y < t, such that
t—ty < E—1and wfo = Wy, forall k = 1,2,...,m. And we know 7 is non-increasing and
Mo < 2n;. With the fact E||X — EX||? < E||X||? and Jensen inequality, we have

m
B> prilwe —wi|® <
k=1

- wil?

k=1

pktEZ — D[ LM (wy, €)])?
o

SZ ktEZ —177t G?

pesE(E — 1)%n7 G?

3
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b
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k=c+1
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—
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prdE(E —1)°n; G* + 4n} (E — 1)°G?

o
_

<4§jpk m; (B —1)°G? + 4n} (E —1)°G?

<4 Zpk,on?(E —1)?G* +4ni (B - 1)°G?,
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where py, ¢ is the initial probability of kth malicious client.

A.5.2 CONVERGENCE BOUND

Combining Equation.(2)(14)(15)(17), we have

[Wepr — w1 =[[We — W —0uGe||* + 200 (Wi — W™ — 3o, G — ge) + 07 |Ge — ¢l

<= mm)llwe = w* + 23 pre|wi = wil|* + 6L T (18)
k=1

+ 20 (Wi — W — G, Gt — ge) + 171G — gel|*

Since E[g;] = g, Therefore,

m
ElWips — wl2 (= um)Ew: — w2 +2E S preliwh — w2 + 6Ln2T
k=1

+ 2 E(We — W — 0G0, G — 9¢) + Enf || — g

<(1 = ) El[We — w*[|> + 8 pronf (B — 1)°G? + 8n} (E — 1)°G?
k=1

(19)
+6Ln;T + 17 Zpk 1o
=(1- um)Eszs - w|?
m
+ 07 SZpko )2G? 4+ 8(E —1)*G? +6LF+Zpi7ta,2€]
k=1
We set 1), = 77 for some § > = and’y > 0, such that n; < mm{ i} = 7 and n < 2ny .
We want to prove E||w; — w ||2 %, where v = max{ﬁ 1,(7 + 1E||w; — w*||?} and
B =837 _pro(E —1)°G* +8(E )2G2+6LF+Zk:1pkt‘7k~
Firstly, the definition of v ensures that E||w; — w*|
t, we have
E|[Wei1 — wl|* <(1 — une) B[ %y — w*|* + 07 B
v ’B
<(1- B ) L P i
t+y't+y  (t+9)
t+y-1 BB Bu-1 (20)
= v - v
(t+7)? t+7)?  (t+9)?
<7’U .
Tty +1

By the L-smoothness of GM(-), E[GM (w;)] — GM* < £E||w, — w*||? < £+
Thus we have

2 L
=2

GM GM* < .
E[ (wr)] — " 7+T

Zpkak+6Lr+8G2+8G2Zpko+—||wo w*|?).
k=1
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