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ABSTRACT

We propose a new approach for generative modeling based on training a neural
network to be idempotent. An idempotent operator is one that can be applied
sequentially without changing the result beyond the initial application, namely
f(f(z)) = f(z). The proposed model f is trained to map a source distribution
(e.g, Gaussian noise) to a target distribution (e.g. realistic images) using the fol-
lowing objectives: (1) Instances from the target distribution should map to them-
selves, namely f(x) = x. We define the target manifold as the set of all instances
that f maps to themselves. (2) Instances that form the source distribution should
map onto the defined target manifold. This is achieved by optimizing the idem-
potence term, f(f(z)) = f(z) which encourages the range of f(z) to be on the
target manifold. Under ideal assumptions such a process provably converges to the
target distribution. This strategy results in a model capable of generating an output
in one step, maintaining a consistent latent space, while also allowing sequential
applications for refinement. Additionally, we find that by processing inputs from
both target and source distributions, the model adeptly projects corrupted or mod-
ified data back to the target manifold. This work is a first step towards a “global
projector” that enables projecting any input into a target data distribution.

1 INTRODUCTION

GEORGE: You’re gonna ”overdry” it.
JERRY: You, you can’t ”overdry.”
GEORGE: Why not?
JERRY: Same as you can’t ”overwet.” You see, once something is wet, it’s wet. Same thing with
dead: like once you die you’re dead, right? Let’s say you drop dead and I shoot you: you’re not
gonna die again, you’re already dead. You can’t ”overdie,” you can’t ”overdry.”

— “Seinfeld”, Season 1, Episode 1, NBC 1989

Generative models aim to create synthetic samples by drawing from a distribution underlying the
given data. There are various approaches such as GANs (Goodfellow et al., 2014), VAE (Kingma &
Welling, 2022), diffusion models (Sohl-Dickstein et al., 2015; Ho et al., 2020), pixel autoregressive
methods (van den Oord et al., 2017; 2016b;a) and some recent like consistency models (Song et al.,
2023) and Bayesian flow networks (Graves et al., 2023). Inputs to these models could range from
samples of random noise to specific input images in conditional setups, which are then mapped to
outputs aligned with a given target distribution, typically the manifold of natural images. However,
each model is specifically trained to expect a particular type of input. What if we wanted a single
model to be able to take any type of input, be it corrupted instances (e.g., degraded images), an
alternative distribution (e.g., sketches), or just noise, and project them onto the real image manifold
in one step, a kind of “Make It Real” button? As a first step toward this ambitious goal, this work
investigates a new generative model based on a generalization of projection — Idempotence.

An idempotent operator is one that can be applied sequentially multiple times without changing
the result beyond the initial application, namely f(f(z)) = f(z). Some real-life actions can also
be considered idempotent, as humorously pointed out by Jerry Seinfeld (1). One mathematical
example is the function mapping z to |z|; applying it repeatedly yields

∣∣|z|∣∣ = |z|, leaving the result
unchanged. In the realm of linear operators, idempotence equates to orthogonal projection. Over
Rn, these are matrices A that satisfy A2 = A, with eigenvalues that are either 0 or 1; they can
be interpreted as geometrically preserving certain components while nullifying others. Lastly, the
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identity function naturally exhibits idempotent behavior, as applying it multiple times leaves the
input unchanged.

Figure 1: The basic idea behind IGN: real examples (x)
are invariant to the model f : f(x) = x. other inputs (z)
are projected onto the manifold of instances that f maps to
themselves by optimizing for f(f(z)) = f(z).

We propose Idempotent Generative Net-
works (IGN), a model based on the idea
of projection. Given a dataset of examples
{xi}Ni=1, Our goal is to “project” our input
onto the target distribution Px from which
xi’s are drawn. Fig. 1 illustrates the basic
objectives. We assume that distributions
Pz and Px lie in the same space. Given
that, it is valid to apply f to a given ex-
ample x ∼ Px. What should the outcome
of doing so be then? The natural answer
to that is “nothing”. Considering the intu-
ition of projection, an instance that already
lies on the target manifold should just re-
main the same- “You can’t overdry”. The
first objective is then perfectly fulfilled when f(x) = x . We can leverage this notion, and define the
estimated manifold of the data as the sub-set of all instances that f maps close to themselves.

Next, we want to map instances from a different distribution onto that estimated manifold. To do so,
we want f(z) to be on the manifold for every z ∼ Pz , which is characterized by being mapped to
itself. This defines our second objective, Idempotence : f(f(z)) = f(z). While the aforementioned
objectives ensure both x and f(z) reside on the estimated target manifold, they do not inherently
constrain what else populates that manifold. To address this, we introduce a third term, to tighten
the manifold, pushing for f(f(z)) ̸= f(z). The intricacy of reconciling opposing loss terms is
unraveled in Section 2.1.

While the landscape of generative modeling is rich with diverse methodologies, our Idempotent
Generative Network (IGN) features specific advantages that address existing limitations. In contrast
to autoregressive methods, which require multiple inference steps, IGN produces robust outputs
in a single step, akin to one-step inference models like GANs. Yet, it also allows for optional
sequential refinements, reminiscent of the capabilities in diffusion models. Unlike diffusion models,
however, IGN maintains a consistent latent space, facilitating easy manipulations and interpolations.
The model shows promise in generalizing beyond trained instances, effectively projecting degraded
or modified data back onto the estimated manifold of the target distribution. Moreover, the model’s
ability to accept both latent variables and real-world instances as input simplifies the editing process,
eliminating the need for the inversion steps commonly required in other generative approaches. We
draw connections to other generative models in Section 5.

2 METHOD

We start by presenting our generative model, IGN. It is trained to generate samples from a target
distribution Px given input samples from a source distribution Pz . Formally, given a dataset of
examples {xi}i∈{1,...,n}, with each example drawn from Px, we train a model f to map Pz to Px.
We assume both distributions Pz and Px lie in the same space, i.e., their instances have the same
dimensions. This allows applying f to both types of instances z ∼ Pz and x ∼ Px.

Next, we describe the optimization objectives, the training procedure of the model, the architecture,
and practical considerations in the training.

2.1 OPTIMIZATION OBJECTIVES

The model optimization objectives rely on three main principles. First, each data sample from the
target distribution should be mapped by the model to itself. Second, the model should be idempotent
- applying it consecutively twice should provide the same results as applying it once. Third, The
subset of instances that are mapped to themselves should be as small as possible. Next we explain
the objectives and show how these principles are translated to optimization objectives.
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Reconstruction objective. Our first objective, as motivated in the introduction, is the reconstruc-
tion objective, which is perfectly achieved when each sample x ∼ Px is mapped to itself:

f(x) = x (1)

Given a distance metric D (e.g., L2), we define the drift measure of some instance y as:

δθ(y) = D
(
y, fθ(y)

)
(2)

Where θ are the parameters of a model fθ. We then seek to minimize the drift measure:

min
θ

δθ(x) = min
θ

D
(
x, fθ(x)

)
(3)

The fact that real instances are mapped to themselves motivates us to define the ideal estimated
target manifold as the subset of all possible inputs that are mapped to themselves by our model:

S = {y : f(y) = y} = {y : δ(y) = 0} (4)

Idempotent objective. We desire f to map any instance sampled from the source distribution onto
the estimated manifold:

f(z) ∈ S z ∼ Pz (5)
Taking the definition in Eq. 4 and combining with our goal in 5, we can define our second objective,
that when perfectly achieved we get:

f(f(z)) = f(z) (6)

This implies that f is idempotent over the domain of all possible z ∼ Pz . This idempotence objective
is formulated then as follows.

min
θ

δθ(fθ(z)) = min
θ

D (fθ(z), fθ(fθ(z))) (7)

However, we will next see that directly optimizing this formulation of Idempotnce has a caveat that
requires us to split it into two separate terms.

Tightness objective. In the formulation of the objectives so far, there is a missing link. The
reconstruction objective, if optimized perfectly (eq. 2.1), determines that all given examples are on
the estimated manifold. However, it does not imply that other instances are not on that manifold.
An extreme example is that if f is identity f(z) = z ∀z, it perfectly satisfies both objectives.
Furthermore, the idempotent objective as formulated so far, is encouraging the manifold to expand.

Fig. 2 and fig. 17 illustrate this problem. There are two distinct pathways of gradients that flow when
the idempotent objective in eq. 7 is minimized, both of which would contribute when optimizing.
The first pathway, which is the desired one, is by modifying f such that f(z), the first application of
f to z (red in fig. 2) is better mapped to the currently defined manifold. The second pathway is for
a given y = f(z) making f(y) closer to y (green in fig. 2). Since the estimated manifold is defined
by S = {y : f(y) = y} This second way of optimizing is effectively expanding it.

Figure 2: Two distinct pathways to enforce Idempotence: By updating f so it maps f(z) into
S = {y : f(y) = y} (updating through first instatiation, ∆f ) or by expanding the S = {y : f(y) = y}
area so that for a given y = f(z), we get f(y) = y (updating through second instantiation ∆f ). If we encour-
age the red update while discouraging the green one, we simultaneously map into the estimated manifold while
tightening it around the data examples. See also fig. 17 for illustration of the gradient pathways.
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In order to discourage the incentive to expand the manifold, we only optimize w.r.t. the first (inner)
instantiation of f , while treating the second (outer) instantiation as a frozen copy of the current state
of f . We denote by θ′ the parameters of the frozen copy of f . They are equal in value to θ but they
are different entities, in the sense that a gradient taken w.r.t θ will not affect θ′.

Lidem(z; θ, θ′) = δθ′(fθ(z)) = D (fθ′(fθ(z)), fθ(z)) (8)
We denote the expectation of losses as

Lidem(θ; θ′) = Ez

[
Lidem(z; θ, θ′)

]
(9)

Eq. 8 prevents the encouragement to expand the manifold, but we are interested in tightening the
manifold as much as possible. We therefore maximize the distance between f(y) and y for a given
y = f(z). Effectively, this trains f to exclude that generated y = f(z) from the estimated manifold
S = {y : f(y) = y} by optimizing only the second (outer) instantiation of f , treating the first as a
frozen copy. The term we want to minimze is then

Ltight(z; θ, θ
′) = −δθ(fθ′(z)) = −D (fθ(fθ′(z)), fθ′(z)) (10)

Notice that Ltight(z; θ, θ
′) = −Lidem(z; θ′, θ). This induces an adversarial fashion for training

them together. However, there is no alternating. Gradients are accumulated on θ in a single step.

Final optimization objective. Combining the three optimization terms described above brings us
to the final loss:

L
(
θ, θ′

)
= Lrec

(
θ
)
+λiLidem

(
θ; θ′

)
+λtLtight

(
θ; θ′

)
= Ex,z

[
δθ(x) + λiδθ′(fθ(z))− λtδθ(fθ′(z))

] (11)

with Lrec(θ) = Ex

[
D(fθ(x), x)

]
being the reconstruction term and λi and λt being the weights of

the idempotent and tightening loss terms respectively. Note that while the losses are assigned with
θ′ = θ, the gradient which is made of partial derivatives is only w.r.t. the original argument θ of the
loss Lidem(z; θ, θ′). The general update rule is therefore:

θ′ ← θ

θ ← θ − η∇θL
(
θ, θ′

) (12)

2.2 TRAINING

For a single model f that appears multiple times in the calculation, we want to optimize by taking
gradients of distinct losses w.r.t. different instantiations of f . fig. 2, eq. 13 and fig. 3 all share the
same color coding. Red indicates the update of f through its first (inner) instantiation, by minimizing
δ. Green indicates the update of f through its second (outer) instantiation, by maximizing δ; We
examine the gradient of δθ(f(z))).

∇θδ(f(z)) =
∂δ(f(z))

∂f(f(z))

df(·)
dθ

∣∣∣
f(z)︸ ︷︷ ︸

Ltight: Gradient ascent ↑

+

(
∂δ(f(z))

∂f(f(z))

∂f(f(z))

∂f(z)
+

∂δ(f(z))

∂f(z)

)
df(·)
dθ

∣∣∣
z︸ ︷︷ ︸

Lidem: Gradient descent ↓

(13)

The two terms of the gradient exemplify the different optimization goals for the different appear-
ances of f . Optimizing Ltight is done by gradient ascent on the first term while optimizing Lidem

is done by gradient descent on the second term.

For Ltight it is trivial to prevent optimization of the first (inner) instantiation of f . As depicted in
fig. 3, it can be done by stopping the gradients in the backward process between the two instan-
tiations of f , treating f(z) as a static input. This method, however, cannot be applied for Lidem.
Eq. 13 shows that the gradient w.r.t the wanted first instantiation of f , ∂δ(f(z))

∂f(z) is calculated with

chain rule through the second ∂δ(f(z))
∂f(f(z)) . To cope, fig. 3 shows that we employ a copy of the model,

fcopy . It is updated at every iteration to be identical to f , but as a different entity, we can calculate
backpropagation through it without accumulating gradients w.r.t. its parameters.

fig. 3 and source-code. 2.2 show how the training is performed in practice. For efficiency we first
calculate f(z) that can be shared by both the idempotent loss and the tightening loss. In source-
code. 2.2 we provide the basic training PyTorch code for IGN. This is the actual code used for
MNIST experiments, once provided with a model, an optimizer and a data-loader.
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Figure 3: A diagram of the proposed method. The top depicts the reconstruction term over real data. The
bottom depicts the Idempotence and tightness terms. The colored arrows depict the gradients. The colors match
the colors in eq. 13 and fig. 2. Dashed arrow indicates back propagation without accumulating gradients on the
parameters it passes through. The final loss is the sum of all the losses.

1 def train(f, f_copy, opt, data_loader, n_epochs):
2 for epoch in range(n_epochs):
3 for x in data_loader:
4 z = torch.randn_like(x)
5

6 # apply f to get all needed
7 f_copy.load_state_dict(f.state_dict())
8 fx = f(x)
9 fz = f(z)

10 f_z = fz.detach()
11 ff_z = f(f_z)
12 f_fz = f_copy(fz)
13

14 # calculate losses
15 loss_rec = (fx - x).pow(2).mean()
16 loss_idem = (f_fz - fz).pow(2).mean()
17 loss_tight = -(ff_z - f_z).pow(2).mean()
18

19 # optimize for losses
20 loss = loss_rec + loss_idem + loss_tight * 0.1
21 opt.zero_grad()
22 loss.backward()
23 opt.step()

Source Code 1: IGN training routine (PyTorch)

2.3 ARCHITECTURE AND OPTIMIZATION

Network architecture. The typical model to be used with IGN is built as an autoencoder. One
possibility is using an existing GAN architecture, “flipping” the order such that the encoder is the
discriminator, with the binary classification head chopped off, and the encoder is the generator.

Tightening loss metric. One undesirable effect caused by Ltight is that it benefits from applying
big modifications even to a relatively good generated instance. Moreover, optimized to increase
distance between input and output encourages high gradients and instability. To ameliorate these
issues we modify the distance metric for Ltight and limit its value. We use a smooth clamp by
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hyperbolic tangent with the value dependent on the current reconstruction loss for each iteration

Ltight(z) = tanh

(
L̃tight(z)

aLrec(z)

)
aLrec(z) (14)

With L̃tight the loss as defined before and a ≥ 1 a constant ratio. The rationale is that if at any given
time a latent that is mapped far out of the estimated manifold, we have no reason to push it further.

Noise distribution. We found slight improvement occurs when instead of standard Gaussian noise
we sample noise with frequency-statistics as the real data. We apply a Fast Fourier Transform (FFT)
to a batch of data and take the mean and variance for the real and imaginary parts of each frequency.
We then use these statistics to sample and apply inverse FFT to get the noise. Examples of how this
noise looks like are shown in fig. 4.

3 THEORETICAL RESULTS

Under idealized assumptions, our proposed training paradigm leads to a noteworthy theoretical out-
come: After convergence, the distribution of instances generated by the model is aligned with the
target distribution. Moreover, the Idempotence loss describes at each step the probability of a ran-
dom input z to map onto the manifold estimated by the other losses.
Theorem 1. Under ideal conditions, IGN converges to the target distribution.
We define the generated distribution, represented by Pθ(y), as the PDF of y when y = fθ(z) and
z ∼ Pz . We split the loss into two terms.

L(θ; θ′) = Lrec(θ) + λiLtight(θ; θ
′)︸ ︷︷ ︸

Lrt

+λtLidem(θ; θ′) (15)

We assume a large enough model capacity such that both terms obtain a global minimum:

θ∗ = argmin
θ
Lrt(θ; θ

∗) = argmin
θ
Lidem(θ; θ∗) (16)

Then, ∃θ∗ : Pθ∗ = Px and for λt = 1, this is the only possible Pθ∗ .

Proof. We first demonstrate that Lrt minimizes the drift δ over the target distribution while maxi-
mizing it at every other f(z). Next, we show that Lidem maximizes the probability of f to map z to
minimum drift areas.

We first find the global minimum of Lrt given the current parameters θ∗:

Lrt(θ; θ
∗) = Ex

[
D(fθ(x), x)

]
− λtEz

[
D(fθ(fθ∗(z)), fθ∗(z))

]
(17)

=

∫
δθ(x)Px(x)dx− λt

∫
δθ(fθ∗(z))Pθ∗(z)dz (18)

We now change variables. For the left integral, let y := x and for the right integral, let y := fθ∗(z).

Lrt(θ; θ
∗) =

∫
δθ(y)Px(y)dy − λt

∫
δθ(y)Pθ∗(y)dy (19)

=

∫
δθ(y)

(
Px(y)− λtPθ∗(y)

)
dy (20)

We denote M = supy1,y2
D(y1, y2), where the supremum is taken over all possible pairs y1, y2.

Note that M can be infinity. Since δθ is non-negative, the global minimum for Lrt(θ; θ
∗) is obtained

when:
δθ∗(y) = M · 1{Px(y)<λtPθ∗ (y)} ∀y (21)

Next, we characterize the global minimum of Lidem given the current parameters θ∗:

Lidem(θ, θ∗) = Ez

[
D (fθ∗(fθ(z)), fθ(z))

]
= Ez

[
δθ∗(fθ(z))

]
(22)

Plugging in Eq. 21 and substituting θ∗ with θ as we examine the minimum of the inner f :

Lidem(θ; θ∗) = M · Ez

[
1{Px(y)<λtPθ(y)}

]
(23)
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To obtain θ∗, according to our assumption in Eq. 16, we take argminθ of Eq. 23:

θ∗ = M · argmin
θ

Ez

[
1{Px(y)<λtPθ(y)}

]
(24)

The presence of parameters to be optimized in this formulation is in the notion of the distribution
Pθ(y). If Pθ∗ = Px and λt ≤ 1, the loss value will be 0, which is its minimum. If λ = 1,
θ∗ : Pθ∗ = Px is the only minimizer. This is because the total sum of the probability needs to be 1.
Any y for which Pθ(y) < Px(y) would necessarily imply that ∃y such that Pθ(y) > Px(y), which
would increase the loss.

Qualitatively, the value δθ(y) can be thought of as energy, minimized where the probability Px(y) is
high and maximized where Px(y) is low. Under the ideal assumptions, it is binary, but in practical
scenarios, it would be continuous.

Interestingly, Eq. 23 returns 0 if δθ(y) = 0 which is the definition of being on the estimated mani-
fold. This indicator essentially describes the event of fθ(z) /∈ Sθ. Taking the expectation over the
indicator yields the probability of the event. The loss is the probability of a random z to be mapped
outside of the manifold. Optimizing idempotence is essentially maximizing the portion of z’s that
are mapped onto the manifold.

In practice, we use λt < 1. While the theoretical derivation guarantees a single desired optimum
for λt = 1, the practical optimization of a finite capacity neural network suffers undesirable effects
such as instability. The fact that f is continuous makes the optimal theoretical θ∗ which produces a
discontinuous δθ∗ unobtainable in practice. This means that Ltight tends to push toward high values
of δθ(y) also for y that is in the estimated manifold. Moreover, in general, it is easier to maximize
distances than minimize them, just by getting big gradient values.

4 EXPERIMENTAL RESULTS

Following the training scheme outlined in Sections 2.2 and 2.3, we train IGN on two datasets -
CelebA and MNIST. We present qualitative results for the two datasets, as well out-of-distribution
projection capabilities and latent space manipulations.

Our generative outcomes, at this stage, are not competitive with sate-of-the-art models. Our ex-
periments currently operate with smaller models and lower-resolution datasets. In our exploration,
we primarily focus on a streamlined approach, deferring additional mechanisms to maintain the
purity of the primary method. It’s worth noting that foundational generative modeling techniques,
like GANs Goodfellow et al. (2014) and Diffusion Models Sohl-Dickstein et al. (2015), took con-
siderable time to reach their matured, scaled-up performance. We view this as a preliminary step,
providing initial evidence of the potential capabilities. Our future work will aim at refining and
scaling up the approach.

Experimental settings. We evaluate IGN on MNIST (Deng, 2012), a dataset of grayscale hand-
written digits, and CelebA (Liu et al., 2015), a dataset of face images. We use image resolutions of
28 × 28 and 64 × 64 respectively. We adopt a simple autoencoder architecture, where the encoder
is a simple five-layer discriminator backbone from DCGAN, and the decoder is the generator. The
training and network hyperparameters are presented in Table 1.

Figure 4: Examples of MNIST and CelebA IGN generations from input Gaussian noise for IGN. Notice that
in some cases f(f(z)) corrects for artifacts in f(z).
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Figure 5: Projections of images from different distributions using IGN. We demonstrate that IGN can project
noisy images x + n (left), grayscale images g(x) (middle), and sketches s(x) (right) onto the learned natural
image manifold to perform image-to-image translation. See appendix for details on the degradations.

Generation results. Figure 4 presents qualitative results for the two datasets after applying the
model once and consecutively twice. We report FID=39 (DCGAN FID=34). As shown, applying
IGN once (f(z)) results in coherent generation results. However, artifacts can be present, such as
holes in MNIST digits, or distorted pixels at the top of the head and hair in the face images. Applying
f again (f(f(z))) corrects for these, filling in the holes, or reducing the total variation around noisy
patches in the face. Figure 7 shows additional results, as well as applying f three times. Comparing
f(f(f(z))) to f(f(z)) shows that when the images get closer to the learned manifold, applying f
again results in minimal changes. See a large uncurated collection Figures 11-14.

Latent Space Manipulations. We demonstrate IGN has a consistent latent space by performing
manipulations, similarly as shown for GANs (Radford et al., 2015). Latent space interpolation
videos can be found in the supplementary material. We sample several random noises, take linear
interpolation between them and apply f . In The videos left to right: z, f(z), f(f(z)), f(f(f(z))).
Fig. 6 shows latent space arithmetics. Formally, we consider three inputs zpositive, znegative and z,
such that f(zpositive) has a specific image property that f(znegative) and f(z) do not have (e.g. the
faces in the two former images have glasses, while the latter does not have them). The result of
f(zpositive − znegative) + z) is an edited version of f(z) that has the property.

Figure 6: Input noise arithmetic. Similar to
GANs, arithmetic operations can be performed
in the input noise space to idempotent generative
networks to find interpretable axes of variation.

Out-of-Distribution Projection. We validate the
potential for IGN as a “global projector” by inputting
images from a variety of distributions into the model
to produce their “natural image” equivalents (i.e.:
project onto IGN’s learned manifold). We demon-
strate this by denoising noised images x+n, coloriz-
ing grayscale images g(x), and translating sketches
s(x) to realistic images in Fig. 5. Although the pro-
jected images are not perfect reconstructions of the
original images x, these inverse tasks are ill-posed.
IGN is able to create natural-looking projections that
adhere to the structure of the original images. As
shown, sequential applications of f can improve the
image quality (e.g. it removes dark and smoky arti-
facts in the projected sketches). Note that IGN was
only trained on natural images and noise, and did
not see distributions such as sketches or grayscale
images. While other methods explicitly train for this
task (Zhu et al., 2017; Isola et al., 2017), this behavior naturally emerges in IGN as a product of its
projection objective. Moreover, due to the autoencoding architecture of IGN, we do not need to rely
on inversion for editing. Instead, we rely solely on forward passes through the network.
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5 RELATED WORK

Generative Adversarial Networks (GANs). IGN incorporates elements of adversarial train-
ing (Goodfellow et al., 2014), evident in the relationship between Lidem and Ltight, which are neg-
atives of each other. One could view δ as a discriminator trained using Lrec for real examples and
Ltight for generated ones, while f serves as the generator trained by Lidem. Unique to IGN is a
form of adversarial training we term “self-adversarial”, Put simply, f is both the generator and
the discriminator. This streamlined architecture affects the optimization process. Rather than alter-
nating between two networks, a single model accumulates gradients from both discriminative and
generative perspectives in each step.

Energy Based Models (EBMs). In Energy-Based Models (EBMs; Ackley et al. (1985)), a func-
tion f is explicitly trained to serve as an energy metric, assigning higher values to less desirable
examples and lower values to those that fit the model well. IGN introduces a similar, yet distinct
paradigm: rather than f acting as the energy function, this role is filled by δ(y) = D(f(y), y). The
model trains f to be idempotent, with the objective to minimize δ(f(z)). A successful training pro-
cedure would align the range of f with the low-energy regions as measured by δ. This reduces the
need for separate optimization procedures to find the energy minimum. From another perspective,
f can be viewed as a transition operator that maps high-energy inputs toward a low-energy domain.

Energy Based Generative Adversarial Network (EBGAN) Zhao et al. (2017). Combining
GANs and EBMs, EBGAN is the closest existing model to IGN. EBGAN is a GAN where the
discriminator is built as an autoencoder. The discriminator Like IGN, uses a reconstruction loss
instead of a binary loss. The EBGAN discriminator is not trained to project as it only sees real or
generated images, but not latents or out-of-distribution instances. It is trained to discriminate. IGN
differs in its mentioned self-adversarialness having f as both the generator and critic. The same
model judges the quality while trying to improve it.

Diffusion Models. In both diffusion models (Sohl-Dickstein et al., 2015) and IGN, the model can
be sequentially applied. Additionally, both methods train the model to transition an input along
a path between a source distribution and a target data manifold. In diffusion models, this path is
dictated by a predefined noise schedule. At inference, the model takes small, incremental steps,
effectively performing a form of gradient descent to transition from complete noise—representing
the source distribution—to the target data manifold. IGN diverges from this approach. Instead of a
predefined path dictated by a noise schedule or any other set rule, the trajectory between distributions
is determined solely by the model’s learning process. Unlike diffusion models, IGN doesn’t employ
incremental gradient steps toward the data manifold. Instead, it is trained to approximate as closely
as possible to the target manifold in a single step. It can be reapplied for further refinement if needed.

6 LIMITATIONS

Mode collapse. Similar to GANs, our model can experience mode collapse and is not practically
guaranteed to generate the entire target distribution. Some methods attempt to overcome this failure
mode in GANs (Mao et al., 2019; Durall et al., 2020). We plan to investigate if these methods are
applicable to our generative model as well.

Blurriness. Similar to VAEs and other autoencoders, our model suffers from blurry generated
samples. Although repeated applications can fix artifacts to make images appear more natural, they
may also smoothen them towards an average-looking image. One possible solution to this problem
is to replace the naive reconstruction loss with a perceptual loss Johnson et al. (2016). Another
solution is to use a two-step approach and apply our model on latents instead of pixels (similar
to Rombach et al. (2021)). We plan to investigate it in future work.
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A VISUAL COMPARISON OF ITERATIVE APPLICATIONS OF f

Also see videos in supplementary material.

Figure 7: Comparison of iterative applications of f . As the generated images approach the learned manifold,
sequential applications of f have smaller effects on the outputs.

Figure 8: Comparison of iterative applications of f on MNIST.
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B MORE PROJECTIONS

Figure 9: Projection-based edits. By simply masking out a region of interest and adding noise for
stochastic variation, we can conduct fine-grained edits, such as closing the mouth, adding hair or
facial hair, and putting on glasses.

Figure 10: Projection-based compositing. Given a reference image f(z), we can use the noise
spatially corresponding to an attribute of interest, place it on another image x, and project it in order
to transfer an attribute, such as glasses, facial hair, etc.
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C IMPLEMENTATION DETAILS

Operation Kernel Strides Padding Feature maps BN? Nonlinearity

Encoder – 3× 64× 64 input
Convolution 4× 4 2× 2 1 64 × Leaky ReLU
Convolution 4× 4 2× 2 1 128

√
Leaky ReLU

Convolution 4× 4 2× 2 1 256
√

Leaky ReLU
Convolution 4× 4 2× 2 1 512

√
Leaky ReLU

Convolution 4× 4 1× 1 0 512 × None
Decoder – 512× 1× 1 input

Transposed Convolution 4× 4 1× 1 0 512
√

ReLU
Transposed Convolution 4× 4 2× 2 1 256

√
ReLU

Transposed Convolution 4× 4 2× 2 1 128
√

ReLU
Transposed Convolution 4× 4 2× 2 1 64

√
ReLU

Transposed Convolution 4× 4 2× 2 1 3 × Tanh
Loss metric D L1: D(y1, y2) = ||y1 − y2||1

Loss terms weights λr = 20, λi = 20, λt = 2.5
Lthight clamp ratio a = 1.5

Optimizer Adam (α = 0.0001, β1 = 0.5, β2 = 0.999)
Batch size 256

# GPUs 8
Iterations 1000

Leaky ReLU slope 0.2
Weight, bias initialization Isotropic gaussian (µ = 0, σ = 0.02), Constant(0)

Table 1: CelebA-10 hyperparameters. We train a simple autoencoder architecture with minimal hyperparam-
eter tuning.

Degradations. The images are scaled to values [−1, 1]
• Noise: We add Gaussian noise n = N (0, 0.15)
• Grayscale: We take the mean of each pixel over the channels and assign to each of the

three channels as the model expects three channels.
g(x) = x.mean(dim = 1, keepdim = True).repeat(1, 3, 1, 1).

• Sketch: We divide the pixel values by the Gaussian blurred image pixel values with
kernel size of 21. The standard deviation is the default w.r.t. kernel size by PyTorch:
σ = 0.3 × ((kernel size − 1) × 0.5 − 1) + 0.8. we add and subtract 1 to perform the
division on positive values.
s(x) = (g(x+ 1)/(gaussian blur(g(x+ 1), 21)) + 10−10)− 1.
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D UNCURATED VISUAL RESULTS

Figure 11: Uncurated CelebA samples from applying IGN once: f(z).
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Figure 12: Uncurated CelebA samples from applying IGN twice: f(f(z)).
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Figure 13: Uncurated CelebA samples from applying IGN three times: f(f(f(z))).
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Figure 14: Uncurated CelebA samples from applying IGN four times: f(f(f(f(z)))).
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Figure 15: Illustration of the architecture used for CelebA generation. Top shows original DCGAN architec-
ture. Bottom shows that we chop the binary decision head of the discriminator and flip the order to create an
hourglass-like architecture. The exact sizes of all the layers are in table 1
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Figure 16: Stress testing by extreme sequential application of IGN. We check what happens for fk(z) for
k → ∞. The numbers on the left indicate k, the number of sequential applications. For the first few tens of
iterations, the system seems to be stable but around 100 it diverges from the result of the first application. We
hypothesize that the size of the model which influences the ability to get low reconstruction loss determines the
stability.
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Figure 17: An illustration supporting Fig. 2. Top: Naive implementation using Lidem without Ltight. Show-
ing two paths of gradient-based optimization of θ, the parameters of f . The update for θ simply consists of a
sum of two gradients. The red gradient optimizes θ s.t. f maps better to the current estimated manifold. The
green gradient optimizes so that for a given f(z) the manifold will expand to contain it. Bottom: Illustration
of the gradients in IGN. As explained in 2.2, The idempotence term is split so that we can negate the the term
that expands the estimated manifold in the top illustrations, and therefore tighten it.
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