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S1 Synthetic graph models
We evaluate the performance of GNN-based exploration agents in environments generated by four different
types of synthetic graph models:

• Random geometric (RG): Graph-structured environments, such as transportation networks or power
grids, are embedded in physical space. Random geometric graphs model such environments by plac-
ing nodes within a unit cube of chosen dimensionality. The model places nodes uniformly at random
inside the cube. An edge connects a pair of nodes if the distance between the nodes is less than or equal
to a radius value. For a 2-dimensional space, we set the radius value to 0.25.

• Watts-Strogatz (WS): Many real-world networks possess a “small-world” topology, whereby distant
nodes can be reached by a small number of hops from any node in the graph. The WS model cre-
ates graphs with a small-world topology by creating a ring graph and adding edges from each node to its
k nearest neighbors. Each edge is then rewired at random with probability p. We set k = 4 and p = 0.1.

• Barabási-Albert (BA): Starting with a randomly connected skeleton of m nodes, the BA model, also
known as the preferential attachment model, adds nodes sequentially. Each new node is connected to
m existing nodes with a probability proportional to node degree. This “rich-gets-richer” growth scheme
results in graphs with heavy-tailed degree distributions. We set m = 4.

• Erdös-Rényi (ER): The ER model produces random graphs by adding edges between nodes with proba-
bility p. We set p = 0.2.

We depict representative networks for each graph model in Figure S1.
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Figure S1: Synthetic graph models. Examples of synthetic graph environments. From left to right, top to bottom: (a) Barabási-Albert
graph, (b) random geometric graph, (c) Erdös-Rényi graph, and (d) Watts-Strogatz graph. Each graph comprises 50 nodes. Other
hyperparameters for the generative processes are described in the main text.

Each model leads to distinct graph properties, allowing us to test training and generalization performance
for a variety of graph topologies. Figure S1 depicts example networks for each of the four network types.
The BA model relies on preferential attachment, resulting in a scale-free degree distribution with few very
highly connected nodes. The RG model embeds nodes in physical space. The ER model generates random
connections between nodes based on a specified probability, leading to a uniform degree distribution. Lastly,
the WS model starts with a regular lattice-like structure and introduces random rewiring, resulting in a small-
world topology with local clustering and short average path lengths. Code to generate graphs from each of
the four models has been attached to this submission.
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S2 Training and validation curves
Next, we plot the training and testing performance of the GNN agents in different synthetic graph environ-
ments while optimizing for information gap theory (Figure S2) and compression progress theory (Figure
S3). We depict the average total reward, or the return, gathered by each agent in 100 training and 10 test-
ing environments. We evaluate after every 100 training episodes. During each testing instance, results are
averaged across 10 episodes in each of the 10 environments. The figures demonstrate that the GNNs train
successfully as well as generalize when optimizing for information gaps and network compressibility.
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Figure S2: Training and validation curves for information gap theory. We plot the training and validation performances of GNNs
trained to optimize for topological gaps. Performance is measured as the average return. From left to right, top to bottom: (a) BA
graphs, (b) RG graphs, (c) ER graphs, and (d) WS graphs. The results demonstrate generalization to the test set across several graph
topologies.

Compared to the information gap theory, training converges faster when optimizing for network compress-
ibility. The return values tend to plateau resulting in diminishing marginal gains with increased training.
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Notably, the IGT agents learn noisily in the random geometric and Watts-Strogatz graph environments. This
can be attributed to the high local organization present in both types of graphs, as depicted in Figure S1.
These topologies likely make it difficult early on for an agent to build topological cavities in a small number
of steps. However, it is also worth noting that despite the quicker convergence in the CPT agents relative to
the IGT agents, the IGT agents outperform other exploration baselines consistently.
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Figure S3: Training and validation curves for compression progress theory. We plot the training and validation performances
of GNNs trained to optimize for network compressibility. Performance is measured as the average return. From left to right, top to
bottom: (a) BA graphs, (b) RG graphs, (c) ER graphs, and (d) WS graphs. The results demonstrate generalization to the test set across
several graph topologies.
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S3 Atlases
In Figure S4, we display a random geometric graph environment and plot atlases consisting of several tra-
jectories on it produced by agents trained for the information gap and compression progress objectives. The
two sets of trajectories are markedly different. The IGT agent navigates in a manner that produces several
loops of edges. These loops, or topological cavities, are depicted in grey. The agent avoids creating triangles,
as they would constitute higher dimensional simplices and might fill candidate cavities.

A B C

Geometric graph Information gap theory Compression progress theory

Figure S4: Example of trajectories in a random geometric graph environment. A) An instance of a random geometric graph
environment. B) Examples of subgraphs produced by trajectories of 10 steps by a GNN agent trained for the IGT objective. Topological
cavities in each trajectory are depicted in grey. C) Examples of subgraphs produced by trajectories of 10 steps by a GNN agent trained
for the CPT objective.

The agent trained to optimize for network compressibility demonstrates a tendency to visit densely connected
clusters of nodes. Clustering implies that neighbors of a node are also neighbors of each other. Therefore,
in stark contrast to the IGT agent, trajectories produced by the CPT agent tend to have a high degree of
triangular motifs. This visualization provides a compelling representation of the different policies learned
by the two types of agents.
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S4 Trajectory length and network size generalization
In the experiments of the main text, we train GNN agents to take 10 steps in environments of size 50 nodes.
Here, we show extended results about generalization to trajectories that are shorter and longer than 10 steps,
for all synthetic graph families. For these experiments, we keep the environment size fixed at 50 nodes. In
Figure S5, we present results for agents trained for optimizing information gaps in each of the four synthetic
graph models. Figure S6 depicts results for agents trained for the compression objective.
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Figure S5: Trajectory length generalization for information gap theory. We train GNNs to explore for 10 steps in graph environ-
ments with 50 nodes. Here, we test generalization to walks of different lengths while holding the environment size fixed. From left to
right, top to bottom, results for (a) BA graphs, (b) RG graphs, (c) ER graphs, and (d) WS graphs. The results demonstrate generalization
to trajectories of different lengths than are seen during training.

In both sets of figures, the GNN agents consistently outperform the maximum degree, minimum degree,
and random baselines. The GNN agents also closely match or outperform the greedy baseline. These
findings highlight the effectiveness and reliability of the GNN-based approach in exploring graph-structured
environments outside of the regimes in which training is conducted.
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Figure S6: Trajectory length generalization for compression progress theory. We train GNNs to explore for 10 steps in graph
environments with 50 nodes. Here, we test generalization to walks of different lengths while holding the environment size fixed. From
left to right, top to bottom, results for (a) BA graphs, (b) RG graphs, (c) ER graphs, and (d) WS graphs. The results demonstrate
generalization to trajectories of different lengths than are seen during training.

Local properties of networks do not always scale with network size. For instance, both degree distribution
and clustering are graph features that have a dependency on the number of nodes. As a result, it is un-
clear whether policies learned for networks of one size will generalize effectively to networks of a different
size. Therefore, after assessing generalizability for trajectory lengths, we next examine generalizability for
environments of different sizes than are seen during training. In these experiments, we take 10 steps in
environments that are either smaller or larger than 50 nodes.
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Figure S7: Environment size generalization for information gap theory. We train GNNs to explore for 10 steps in graph environ-
ments with 50 nodes. Here, we test generalization to environments of different sizes while holding the trajectory length fixed. From
left to right, top to bottom, results for (a) BA graphs, (b) RG graphs, (c) ER graphs, and (d) WS graphs. The results demonstrate
generalization to environments of different sizes than are seen during training.

Figure S7 depicts results for agents trained for information gap theory, while Figure S8 depicts results for
compression progress theory. In both sets of figures, we find that the GNN agents outperform the maximum,
minimum, and random baselines. They also perform at levels comparable to the one-step-ahead greedy
evaluation of topological gaps and network compressibility.
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Figure S8: Environment size generalization for compression progress theory. We train GNNs to explore for 10 steps in graph
environments with 50 nodes. Here, we test generalization to environments of different sizes while holding the trajectory length fixed.
From left to right, top to bottom, results for (a) BA graphs, (b) RG graphs, (c) ER graphs, and (d) WS graphs. The results demonstrate
generalization to environments of different sizes than are seen during training.

Our results from Figures S5, S6, S7, and S8 collectively indicate that GNNs for exploration can be trained
in one set of circumstances and deployed in vastly different sets of circumstances.
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S5 Real-world graph datasets
We acquire trajectories of human graph exploration from three real-world datasets:

1. MovieLens: The MovieLens dataset contains sequences of movies watched by individual viewers along-
side their associated reviews. [1]. We only keep movies that have at least five separate reviewers. We
treat these movies as nodes and add edges between them based on the semantic similarity of their IMDb
summaries. We construct vector embeddings for movies using a Word2Vec model pre-trained on the
GoogleNews corpus [2]. We gather the first ten user-generated synopses available on IMDb for each
movie and use cosine similarity to add edges to 20 other most similar movies. The resulting similarity
network represents the graph environment for the GNN agent.

2. Amazon Books: The Amazon Product Reviews dataset contains sequential product purchase information
by individual consumers for various categories of products [3, 4]. We limit our analyses to purchases of
books. We filter out books with fewer than 150 reviews and only keep data for reviewers with at least
5 reviews. To represent each book as a distinct entity, we use Word2Vec-based vector embeddings. For
each book, we add edges by identifying the top 20 most similar books based on their embeddings.

3. Wikispeedia: The Wikispeedia dataset consists of paths collected for a navigation game on Wikipedia
[5, 6]. In the game, users are presented with a starting article and a destination article and are tasked
with reaching the destination article using hyperlinks within Wikipedia. Here, the underlying hyperlink
structure of Wikipedia acts as the graph environment.

The properties of the generated environments are summarized in the table below.

N E | d | dmin dmax ρ l̄path
MovieLens 1021 8143 15.96 1 105 0.015 8.45

Amazon Books 2115 38718 36.6 20 427 0.017 11.08
Wikispeedia 4592 106647 46.45 1 1621 0.01 9.12

Table S1: Summary information about MovieLens, Amazon Books, and Wikispeedia graph environments. We include the number of
nodes (N ), number of edges (E), average degree (d), minimum and maximum degree (dmin and dmax), graph density (ρ), and the
average length of trajectories (lpath) by exploring individuals. .
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S6 Random walker diffusion
A random walker biased according to compression progress theory (CPT) exhibits distinct diffusion behavior
in the Wikispeedia network compared to the MovieLens and Amazon Books networks. On average, the CPT
walker travels a shorter distance from the originating node in Wikispeedia, particularly after taking the
second step. Network compressibility is strongly correlated with average clustering, which measures the
propensity of a node’s neighbors to be neighbors of each other [7]. Therefore, intuitively, greater clustering
is reflected as more triangles in a network. To test whether Wikispeedia has unique clustering behavior,
we sample sub-networks of different sizes by randomly picking a central node and expanding outwards
according to a radius value.
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Figure S9: Properties of the Real-world networks Average number of triangles that nodes are involved in as a function of neighbor-
hood radius.

In Figure S9, we plot the average number of triangular motifs that nodes participate in as a function of
neighborhood radius. We find that Wikispeedia sub-networks have the greatest number of triangles when the
neighborhood radius is two. Past this radius value, the average number of triangles that nodes participate in
declines given the small-world nature of the Wikipedia graph [8]. Therefore, a walker seeking compression,
or in other words, seeking greater clustering, usually has to go no further than two steps away from a starting
point, as shown in Figure S9.
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S7 Human trajectories of graph exploration
In this section, we showcase several trajectories on the MovieLens network by a single individual. Given
information about which movies this individual previously watched, we aim to predict the next movie. We
contrast recommendations made by PageRank against those made by curiosity-biased PageRank. We high-
light the user’s actual next view in bold, showing that incorporating curiosity helps predict human behavior
better.

Transition 1:
Movies Previously Viewed: First Knight, The Little Mermaid, The Three Musketeers, Star Trek IV: The
Voyage Home
Non-Biased: Titan A.E., Highlander, Dune, The Fifth Element, The Princess Bride, Beauty and the Beast
Biased: Army of Darkness, Highlander, Plan 9 from Outer Space, The Fifth Element, Arsenic and Old Lace,
The Princess Bride

Transition 2:
Movies Previously Viewed: Star Trek IV: The Voyage Home, ’2001: A Space Odyssey, Airplane!, Alien
Non-Biased: Con Air, Star Trek: The Motion Picture, Lost in Space, Titan A.E., Beneath the Planet of the
Apes, Plan 9 from Outer Space
Biased: Beneath the Planet of the Apes, Sphere, Lost in Space, Aliens, Titan A.E., Plan 9 from Outer Space

Transition 3:
Movies Previously Viewed: Lock, Stock and Two Smoking Barrels, Honey, I Shrunk the Kids, Dead Poets
Society, X2
Non-Biased: Fast Times at Ridgemont High, Rushmore, Thelma & Louise, Jumper, House of Wax, Charlie
Bartlett
Biased: Jumper, Rushmore, The Fifth Element, Arsenic and Old Lace, Thelma & Louise, Charlie Bartlett

Transition 4:
Movies Previously Viewed: Demolition Man, Police Academy, Police Academy 2: Their First Assignment,
Police Academy 3: Back in Training
Non-Biased: Porkys II: The Next Day, Police Academy 5: Assignment: Miami Beach, Police Academy 4:
Citizens on Patrol, Police Academy 6: City Under Siege, S.W.A.T., The Enforcer
Biased: Collateral, Police Academy 4: Citizens on Patrol, Hot Fuzz, Sudden Impact, S.W.A.T., Porkys II:
The Next Day
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S8 Training details

S8.1 Hyperparameters
We use the DQN algorithm to train GNNs for graph exploration [9]. The GNN architecture consists of 3
rounds of GraphSAGE aggregation and combination [10]. The 5 local degree profile (LDP) features (node
degree, minimum and maximum degrees of neighbors, and the average and standard deviation of degrees of
neighbors) are first embedded into 64 dimensions over three rounds of GraphSAGE. Two fully-connected
layers follow this, the first of which reduces dimensionality from 64 to 32, followed by a reduction to a single
scalar Q-value in the final layer. We use a replay buffer to store experiences and a target network identical
to the GNN to generate Q-value predictions. Training starts at step 320 and continues for a total of 50000
steps. Experiences are sampled from the buffer in batches of size 32. The target network is updated every
16 steps. We anneal the exploration rate ϵ linearly from 1 to 0.1 for the first 25000 steps and then fix the rate
at 0.1 for the remainder of the training. We use a discount factor γ of 0.75 and use the Adam optimizer with
a learning rate of 3× 10−4. These hyperparameters are summarized in the table below.

Parameter Value
Number of node features 5

GraphSAGE latent dimensions 64
FCN latent dimensions 32

Activation function ReLU
Buffer size 50000

Training starts at step 320
Batch size 32

Transfer weights to target network (C) every 16 steps
ϵ initial 1
ϵ smallest 0.1

Discount factor γ 0.75
Optimizer Adam

Learning rate 3e-4

Next, we summarize the training algorithm.
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S8.2 Algorithm

Algorithm 1 Deep Graph Q-learning with Experience Replay

1: Build featurized environment graph G
2: Initialize replay buffer D
3: Initialize neural network Φ(·) : 2G → R with random weights Θ
4: Initialize target network Φ̂(·) : 2G → R with weights Θ̂ = Θ
5: for episode = 1, M do
6: Initialize list of visited nodes Vt = {v1}
7: Build induced state subgraph St = G[Vt]
8: for t = 1, T do
9: Get set of candidate next nodes A(St) = N (vt)\Vt

10: if probability < ϵ then
11: Select a random node vt+1 ∈ A(St)
12: else
13: Select vt+1 = maxa Φ(St, a; Θ)
14: end if
15: Set St+1 = G[Vt ∪ vt+1]
16: Compute reward Rt = F(St+1)
17: Store transition (St, vt+1, Rt,St+1) in D
18: Add vt+1 to list of visited nodes Vt
19: Build induced state subgraph St = G[Vt]
20: Sample minibatch of transitions (Sj , vj+1, Rj ,Sj+1) from D

21: Set yj =

{
Rj , if Sj+1 is terminal
Rj + γmaxa′ Φ̂(Sj+1, a

′; Θ̂), otherwise
22: If past burn-in, perform gradient descent to minimize E[yj − Φ(Sj , vj+1)]

2 and update Θ

23: Every C steps, set Φ̂← Φ
24: end for
25: end for

We use the same hyperparameters and training process for each synthetic and real-world graph dataset.
The real-world datasets differ from the synthetic datasets in that there is no distinction between training,
validation, and testing environments for the MovieLens, Amazon Books, and Wikispeedia networks, unlike
the RG, WS, BA, and ER networks. We evaluate trained GNN agents in testing environments by removing
ϵ-greedy exploration and selecting actions greedily with respect to the Q-values.
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S9 Citation diversity statement
Recent work in a number of scientific fields has identified a bias in citation practices such that papers
by women and other minority scholars are under-cited relative to the number of such papers in the field
[11, 12, 13, 14, 15, 16, 17, 18, 19]. Here, we sought to proactively choose references that reflect the diver-
sity of the field in thought, form of contribution, gender, race, ethnicity, and other factors. First, we predicted
the gender of the first and last authors of each reference using databases that store the probability of a first
name being carried by a woman [15, 20]. By this measure (and excluding self-citations to the first and last
authors of our current paper), our references contain 3.61% woman(first)/woman(last), 8.25% man/woman,
14.13% woman/man, 74.01% man/man citation categorizations. This method is limited in that a) names,
pronouns, and social media profiles used to construct the databases may not, in every case, indicate gen-
der identity, and b) it cannot account for intersex, non-binary, or transgender people. Second, we obtained
the predicted racial/ethnic category of the first and last author of each reference using databases that store
the probability of a first and last name being carried by an author of color [21, 22]. By this measure (and
excluding self-citations), our references contain 19.00% author of color/author of color, 13.97% white au-
thor/author of color, 21.38% author of color/white author, and 45.65% white author/white author citation
categorizations. This method is limited in that a) names, Census entries, and Wikipedia profiles used to
make predictions about gender may not be indicative of racial/ethnic identity, and b) it cannot account for
Indigenous and mixed-race authors or those who may face differential biases due to the ambiguous racial-
ization or ethnicization of their names. We look forward to future work that could help us to understand
better how to support equitable practices in science.
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