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Abstract

Large language models (LLMs) achieve high
performance through instruction-tuning, which
involves learning various tasks using instruc-
tion templates. However, these templates of-
ten contain task-specific expressions, which are
words that frequently appear in certain contexts
but do not always convey the actual meaning of
that context, even if they seem closely related to
the target task. Biases inherent in such instruc-
tion templates may be learned by LLMs dur-
ing training, potentially degrading performance
when the models encounter superficial expres-
sions. In this study, we propose a method that
incorporates additional instructions to FLAN
templates, without altering the base instruction
to produce “superfluous instructions”. This
allows us to investigate the vulnerabilities of
LLMs caused by overfitting to task-specific ex-
pressions embedded in instruction templates.
The experimental results revealed that the in-
clusion of superficial words strongly related to
each task in the instruction text can alter the
output, regardless of the intended meaning.

1 Introduction

Large language models (LLMs) adopt a training
method called instruction-tuning (Wei et al., 2022a;
Longpre et al., 2023), which enables them to re-
spond appropriately to a wide range of user queries
based on given instructions. To perform instruction-
tuning, it is necessary to construct datasets consist-
ing of instruction-output pairs. Instruction tem-
plates are typically designed to structure existing
natural language processing tasks so that generative
LLMs can produce relevant outputs. Furthermore,
diverse templates for each task are crucial to avoid
overfitting to any single template. Providing multi-
ple templates during instruction-tuning is important
for improving the model’s generalization (Sakai
et al., 2024). However, templates designed for spe-
cific tasks often contain task-specific words, which
may introduce biases related to those tasks. Table 1

trivia wmt16 multi math true
qa translate news dataset case

1 answer translate article problem capitalize
2 question to summary math case
3 the language this solution proper
4 trivia in true solve correctly
5 be not context the low

Table 1: The five most words with high TF-IDF scores in
instruction templates for each task in the FLAN dataset.

presents the five most significant words, based on
TF-IDF (Ramos, 2003), for each task in the instruc-
tion template dataset FLAN (Wei et al., 2022a),
showing a strong connection between the words
used in the templates and their associated tasks.

In this study, we focus on surface-level biases
arising from the presence of task-specific words
in instruction templates. By leveraging FLAN, a
widely adopted instruction template dataset that al-
lows for precise control over word occurrences, we
can rigorously evaluate the influence of such task-
specific words. Furthermore, we propose “super-
fluous instructions” which incorporate unrelated
text into FLAN templates, while preserving the
original task-solving intent of the instructions. For
example, we add expressions such as “Answer the
following question without generating unrelated
text”. These expressions are carefully designed not
to interfere with the original intent. Therefore, we
expect that they will not affect the model’s output
from a task-solving perspective.

We evaluated three models tuned by FLAN in-
structions using 80 superfluous instructions tailored
to each task. The results show that adding super-
fluous instructions, particularly those containing
task-specific superficial expressions, negatively im-
pacted performance. This suggests that instruction-
tuned LLMs are vulnerable to superficial cues in
the instructions, which degrade performance even
when the instruction’s meaning remains unchanged.



These findings provide important insights for de-
veloping more robust instruction-tuning methods.

2 Background and Related Work

Instruction-Tuning Datasets. FLAN (Wei et al.,
2022a; Longpre et al., 2023) is a widely used En-
glish resource for instruction-tuning, designed to
cover a broad range of natural language process-
ing tasks. By adapting these templates to each
task, diverse data can be generated for instruc-
tion tuning. In addition to FLAN, other datasets
have been proposed that use different templates
for instruction-tuning (Wang et al., 2022; Zhang
et al., 2023; Chen et al., 2024). However, there
are concerns that datasets created using templates
might merely lead models to memorize the super-
ficial patterns of the templates (Kung and Peng,
2023). As a result, LLMs may struggle to follow
instructions that deviate from the patterns found
in their training data, failing to produce the ex-
pected output. Alternatives to template-based ap-
proaches include generating instruction-tuning data
from LLM outputs (Xu et al., 2024, 2023; Peng
et al., 2023), or efficiently producing large datasets
through methods like crowdsourcing (Wang et al.,
2022; Mishra et al., 2022; Köpf et al., 2023). How-
ever, such data can inherit generation biases from
the LLMs used (Kavumba et al., 2022; Zellers et al.,
2019; Tamborrino et al., 2020; Omura et al., 2020)
or include low-quality artifacts from crowdsourc-
ing, known as Annotation Artifacts (Gururangan
et al., 2020; Poliak et al., 2018; Tsuchiya, 2018).
Training models with such data may cause them
to develop strong biased responses toward certain
characteristic words.

Vulnerabilities to Specific Instructions. LLMs
can achieve enhanced performance through prompt
engineering (Wei et al., 2022b; Kojima et al., 2022;
Zhong et al., 2023; Yang et al., 2024; Zhou et al.,
2023; Yao et al., 2023; Chen et al., 2025), or
via prompt tuning (Lester et al., 2021; Liu et al.,
2024; Li and Liang, 2021). While well-designed
prompts can maximize their potential, there is also
a concern that language models might not under-
stand the meaning of the text but rather rely on
characteristic tokens in the input, guiding their
outputs solely based on the superficial expres-
sions of prompts (Du et al., 2023; Kavumba et al.,
2022; Zellers et al., 2019; Tamborrino et al., 2020;
Omura et al., 2020; Zheng et al., 2025). This is-
sue has also drawn attention from the perspective

of instruction-following (Moon et al., 2025; Sakai
et al., 2025; Qin et al., 2024; Zeng et al., 2024),
consistency (Sakai et al., 2024; Lee et al., 2025;
Raj et al., 2025), and safety (Dong et al., 2024; Li
et al., 2024). Thus, while specific tokens can en-
hance a model’s performance, they may also cause
the model to behave differently than usual when
encountering certain tokens. For instance, popu-
lar instruction-tuning datasets like FLAN include
only positive instructions in their templates. As
a result, it has been questioned whether language
models can properly handle instructions involving
negation, such as “does not contain the keyword”
or “does not imply the meaning” (Kassner and
Schütze, 2020; Jang et al., 2023; Hosseini et al.,
2021; Hossain et al., 2020; Ye et al., 2023). These
studies evaluated models’ ability to reverse answers
in tasks like NLI (Williams et al., 2018) by mak-
ing minor changes to evaluation templates, e.g.,
replacing “plausible” with “implausible” or “cor-
rect” with “incorrect.” Their findings suggest that
language models struggle with handling negation.
However, these analyses focus on introducing nega-
tion by simply replacing words in templates, which
leaves it unclear whether LLMs are inherently vul-
nerable to semantic negation, or merely biased due
to the disproportionate presence of positive over
negative instructions in training templates.

3 Superfluous Instructions

We introduce “superfluous instructions” that con-
tain target words for analysis but provide no new
semantic information. By adding superficial ex-
pressions without semantic changes, we investigate
how superficial expressions, such as task-specific
words, affect model output. We use FLAN (Wei
et al., 2022a)1 as seed instruction templates.

3.1 Design of Base Superfluous Instructions

Superfluous instructions are phrases added to in-
structions in a way that does not change their mean-
ing. For instance, the phrase “without generating
unrelated text” is a superfluous instruction in Fig-
ure 1. Such phrases are natural yet do not alter
the purpose of the tasks due to the presence of
a double negative. To generalize this structure,
we create variations such as “without generating
{unrelated} {text}”, where {unrelated} is replaced
with synonyms and {text} with task-specific words.

1https://github.com/google-research/FLAN/blob/
main/flan/templates.py

https://github.com/google-research/FLAN/blob/main/flan/templates.py
https://github.com/google-research/FLAN/blob/main/flan/templates.py


Answer the following question without generating unrelated text

extraneous inapplicable 
inappropriate unassociated
unconnected non-germane 

incompatible unallied irrelevant

text words hypotheses articles
answers summaries

sentences contexts questions

FLAN
Important 

words
Unrelated
synonyms

Figure 1: Base template of the superfluous instruction.
The superfluous phrase “without generating {unre-
lated} {text}” includes placeholders, where {unrelated}
is replaced with adjectives and {text} with nouns, using
all possible combinations from the respective candidate
sets. This allows us to add superficial expressions with-
out introducing any semantic changes.

This approach allows us to generate multiple su-
perfluous instructions per task. Since the core task
instruction remains unchanged, the model’s out-
put should, in theory, also remain the same. If
the output changes, it suggests that the superflu-
ous instruction is influencing the model’s behavior.
For simplicity, “superfluous instructions” refers to
the entire instructions containing the superfluous
phrase: “without generating {unrelated} {text}”.

3.2 Word Selection for {Unrelated} Part
We fill the {unrelated} placeholder in the base su-
perfluous instruction with synonyms of the word
“unrelated” to evaluate the model’s ability to gen-
eralize. By comparing the results across multiple
instructions, we assess how the model responds to
variations in the instruction. To identify appropri-
ate synonyms, we consulted the Cambridge Dictio-
naries Online2 and found 11 synonyms for “unre-
lated”. We used 10 synonyms3: “unrelated,” “extra-
neous,” “inapplicable,” “irrelevant,” “unassociated,”
“incompatible,” “unconnected,” “unallied,” “non-
germane,” and “inappropriate.” We confirmed with
native English speakers that all 10 variations are
grammatically correct and preserve the original in-
struction’s meaning. We then generated multiple in-
structions by replacing the {unrelated} placeholder
in the phrase “without generating {unrelated} text”
with each of these synonyms.

3.3 Important Word Selection from
Instruction Templates

We replaced the {text} placeholder in the superflu-
ous instruction with task-specific important words

2https://dictionary.cambridge.org/
3We exclude “foreign” because it did not strongly align

with the meaning of “unrelated.”

from each instruction to evaluate their effect on
model performance. To identify these important
words, we used TF-IDF (Ramos, 2003). For each
task, we treated the set of templates associated
with that task as a single document and computed
TF-IDF scores. Since instruction tuning aims to im-
prove model performance across multiple tasks, it
is important to consider word importance not only
within individual tasks but also across all templates.
The TF-IDF calculation of our study is as follows:

tf(t, d) =
nt,d

Σs∈dns,d
,where d ∈ D,(1)

df(t,D) = |{d ∈ D : t ∈ d}|, (2)

idf(t,D) = log
|D|

df(t,D)
+ 1, (3)

tfidf(t, d,D) = tf(t, d) · idf(t,D). (4)

Here, D denotes the collection of documents, d
is a single document, t is the target word, and n
is the raw count of the word t in d. For our TF-
IDF calculation, we treat the entire collection of
templates as D, where each task di is considered a
document consisting of multiple templates. Each
individual template within a task is denoted as dij .

Next, the TF-IDF scores for each word t were
summed across the dataset D. To reduce bias from
differences in word usage across tasks, we nor-
malized these scores by dividing the sum by the
number of tasks in which the word appears:

Importance(t, di, D) =
ΣN
j=1tfidf(t, dij , D)

df(t,D)
.

(5)
This approach balances word importance across
the dataset while mitigating bias from infrequent
words. We calculated TF-IDF scores after lem-
matizing4 the words in each template. The impor-
tance of each word, based on its TF-IDF score, is
normalized by its occurrence count, as shown in
Equation 5. However, words that appear very in-
frequently may yield artificially high importance
scores. To address this, we consider only words
with above-average occurrence counts. We define
such frequently occurring words across the FLAN
templates as high-importance words (henceforth,
“important words”).

Table 2 shows the top 15 important words. As
indicated in Table 2, some of these words belong
to parts of speech other than nouns. Therefore, to

4For lemmatization, we used the “en_core_web_sm”
model from the spaCy library: https://spacy.io/.

https://dictionary.cambridge.org/
https://spacy.io/


Rank Word TF-IDF Importance

1 same 2.877 0.4795
2 question 7.601 0.4751
3 hypothesis 2.245 0.4491
4 article 5.226 0.4355
5 answer 6.246 0.3123
6 summary 2.426 0.2696
7 true 2.032 0.2540
8 we 1.800 0.2250
9 if 2.185 0.2185

10 two 1.706 0.2133
11 word 1.268 0.2114
12 next 2.240 0.2037
13 sentence 7.615 0.1953
14 context 1.533 0.1917
15 paragraph 1.519 0.1898

Table 2: Top 15 words that appear more frequently
than average and have high importance scores. Words
highlighted in bold were used in this study. Note that
words with high TF-IDF scores do not always have high
importance scores, e.g., “sentence”.

maintain the correct structure of the superfluous
instruction, we selected only nouns with an impor-
tance score of 0.19 or higher. The final eight words
used in our experiments are highlighted in bold in
Table 2. For consistency, countable nouns were
used in their plural forms.

4 Experimental Setup

LLMs. We used three instruction-tuned LLMs
based on FLAN templates, with different parameter
sizes: FLAN-T5 XL (3B) based on T5-XL (Raffel
et al., 2020); FLAN-T5 XXL (11B) based on T5-
XXL (Raffel et al., 2020); FLAN-UL2 (20B) (Tay
et al., 2023) based on UL2 (Chung et al., 2024).

Datasets. We selected MMLU (Hendrycks et al.,
2021) and BBH (Suzgun et al., 2023). MMLU
covers 57 subjects with varying difficulty, includ-
ing STEM, law, medicine, and ethics. BBH fo-
cuses on 23 particularly challenging tasks for lan-
guage models, derived from the broader BIG-
Bench dataset (Srivastava et al., 2023), which spans
204 categories, including linguistics and software
knowledge. These datasets are reserved for evalua-
tion and not trained for each model.

Evaluations. We used 8-bit quantized infer-
ences (Dettmers et al., 2022) with greedy decoding
in a zero-shot setting5. We evaluated the models
using accuracy as the evaluation metric. We apply
simple post-processing to remove whitespace and

5This was implemented using HuggingFace Transform-
ers (Wolf et al., 2020) and used a single A6000 GPU.

newline characters, convert the text to lowercase,
and then evaluate using exact match accuracy.

5 Experimental Results

Table 3 shows the evaluation scores for each model
and task with superfluous instruction.

5.1 Effect of Adding Superfluous Instructions

In Table 3, where the {unrelated} part of the in-
structions was replaced with synonyms, all mod-
els exhibited a performance drop compared to the
standard instructions, indicating that superfluous
instructions negatively impact performance. BBH
showed a larger score decrease than MMLU, which
can be attributed to BBH’s more varied answer for-
mats. This suggests that the models are highly
fitted to the concise style of FLAN instructions
and struggle to handle the redundancy introduced
by the added phrases. Furthermore, contrary to
expectations based on scaling laws, the standard
deviation increased with larger model sizes. This
suggests that improving generalization requires not
only scaling up model size, but also careful selec-
tion of instruction templates.

5.2 Impact of Superfluous Instructions with
Important Words

In Table 3, when the {text} part was replaced with
important words, the scores dropped even further.
This suggests that the presence of important words
in FLAN templates can introduce vulnerabilities,
affecting model behavior regardless of context. As
in Section 5.1, the score drop was larger for BBH
than for MMLU and became more pronounced
with increasing model size. These results further
support the hypothesis of overfitting to instruction
templates, as discussed in Section 5.1.

5.3 Impact of Combining Superfluous
Instructions and Important Words

When both {unrelated} and {text} were replaced,
the score drops, with FLAN-T5 XXL and FLAN-
UL2 being as high as when only the {text} part
was replaced. This suggests that replacing impor-
tant words {text} consistently led to substantial
performance degradation, regardless of the accom-
panying {unrelated} term. Additionally, although
BBH features tasks with diverse answer formats,
while MMLU consists solely of multiple-choice
questions, MMLU exhibited higher standard de-
viations. This indicates that replacing important



Replacement Score FLAN-T5 XL FLAN-T5 XXL FLAN-UL2

{unrelated} {text} MMLU BBH MMLU BBH MMLU BBH

Standard Instruction acc. 47.1 33.7 52.5 41.0 53.1 34.5

✓ acc. 46.8±0.3 30.3±3.0 49.1±2.4 33.1±3.6 48.8±5.1 20.9±5.6
✓ ∆ ↓ 0.3 (0.7%) ↓ 3.4 (10.1%) ↓ 3.4 (6.5%) ↓ 8.0 (19.4%) ↓ 4.4 (8.2%) ↓13.5 (39.3%)

✓ acc. 45.8±1.5 26.3±4.3 45.8±9.1 31.2±5.0 33.3±14.3 14.7±8.9
✓ ∆ ↓ 1.3 (2.7%) ↓ 7.4 (22.1%) ↓ 6.7 (12.8%) ↓ 9.9 (24.1%) ↓ 19.8 (37.3%) ↓ 19.7 (57.2%)

✓ ✓ acc. 46.3±1.5 27.3±4.8 46.9±6.3 30.7±5.7 37.1±13.8 16.7±8.8
✓ ✓ ∆ ↓ 0.8 (1.7%) ↓ 6.4 (19.0%) ↓ 5.6 (10.7%) ↓ 10.4 (25.3%) ↓ 16.1 (30.2%) ↓17.8 (51.6%)

Table 3: Average scores per model and instruction type across tasks. Checkmarks indicate which part of the
instruction “Answer the following question without generating {unrelated} {text}.” was replaced. When present, a
checkmark means {unrelated} was replaced with synonyms and {text} with important words. The ± symbol denotes
the standard deviation, and ∆ indicates the change in score relative to the version with no replacements.

Replacement: {text} MMLU BBH

Standard Instruction 53.1 34.5

words ↓ 22.0 (41.4%) ↓ 14.7 (42.6%)
hypotheses ↓ 22.3 (41.9%) ↓ 21.3 (61.9%)

articles ↓ 16.3 (30.6%) ↓ 21.3 (61.7%)
answers ↓ 1.2 ( 2.2%) ↑ 0.6 ( 1.8%)

summaries ↓ 3.7 ( 7.0%) ↓ 17.8 (51.6%)
sentences ↓ 21.5 (40.4%) ↓ 21.9 (63.5%)
contexts ↓ 18.2 (34.2%) ↓ 23.5 (68.1%)
questions ↓ 35.1 (66.1%) ↓ 26.6 (77.1%)

Table 4: FLAN-UL2’s average scores for each replaced
important word across all {unrelated} replacements.

words disrupted the model’s ability to select cor-
rect answers, even in the constrained format of
multiple-choice tasks. These findings suggest po-
tential overfitting to the instruction templates used
during tuning. Moreover, contrary to expectations
from scaling laws, FLAN-T5 XL showed smaller
variations in score and standard deviation com-
pared to FLAN-T5 XXL and FLAN-UL2, reinforc-
ing the idea that improving generalization depends
not only on model size, but also on factors such as
the instruction templates used during tuning.

5.4 Analysis of the Relationship Between
Important Words and Scores

To identify which important words had the greatest
impact on performance, Table 4 presents FLAN-
UL2’s average scores for each replaced important
word, averaged over all {unrelated} replacements.
The word “answers” caused the smallest change
in scores, suggesting minimal influence on model
behavior. In contrast, “questions” led to the largest
score drop in both BBH and MMLU. Additionally,
while “summaries” had little effect on MMLU, it
caused a noticeable drop in BBH, similar to the
behavior observed when using “text” in the base

instruction. In summary, compared to both the stan-
dard instruction and the basic “text” prompt, the
use of important words resulted in larger score de-
creases, confirming that these words have a strong
influence on model behavior.

6 Discussion

6.1 Analysis of Score Decrease by Each Task

To understand how each important word affects
model behavior, we analyzed task-level score
changes in MMLU and BBH. Figures 2 and 3 show
the scores without the superfluous instruction (w/o),
and with replacements to {unrelated} (U), {text}
(T), or both (U/T). Tasks are ordered by the stan-
dard deviation of scores across these conditions,
from highest (top left) to lowest (bottom right).

MMLU. In most MMLU tasks shown in Figure 2,
the scores for all three models are quite similar
when standard instructions (column w/o) are used.
However, superfluous instructions lead to notice-
able variations in scores across tasks. For tasks
with high standard deviation (top left), FLAN-UL2
(green line) shows a significant score drop when the
prompt is altered. Similarly, FLAN-T5 XXL also
shows a decline, especially in tasks with greater
score variability, while FLAN-T5 XL exhibits mini-
mal score changes. We also examined the impact of
replacing {unrelated} and {text}. For FLAN-UL2,
scores declined when {unrelated} was replaced,
but an even larger drop occurred when {text} was
substituted. This suggests that, for certain tasks, re-
placing {text} has a greater impact on performance
than replacing {unrelated}.

BBH. In BBH tasks shown in Figure 3, even with
standard instructions (column w/o), score trends
varied across models, in contrast to the MMLU



Figure 2: Accuracy for each task in MMLU. “w/o” indicates values without superfluous instructions, “U” indicates
values with changes to {unrelated}, “T” indicates changes to {text}, and “U/T” indicates changes to both. Results
are arranged from top left to bottom right in order of decreasing standard deviation for each task.

Figure 3: Accuracy for each task in BBH. “w/o” indicates values without superfluous instructions, “U” indicates
values with changes to {unrelated}, “T” indicates changes to {text}, and “U/T” indicates changes to both. Results
are arranged from top left to bottom right in order of decreasing standard deviation for each task.

case. Additionally, the score variations introduced
by superfluous instructions were quite diverse. For
FLAN-UL2, replacing {text} led to substantial
score drops in many tasks. However, in tasks
such as snarks and movie recommendation, the
drop from {unrelated} replacements was relatively
small compared to {text}, indicating that {text}
played a stronger role in influencing model behav-
ior in these tasks. For FLAN-T5 XXL, tasks such
as snarks, disambiguation_qa, and sports under-
standing showed higher scores when {text} was
replaced than when {unrelated} was, suggesting
that important words had a positive effect on per-

formance in these cases. FLAN-T5 XL, similar
to its performance on MMLU, showed relatively
little change in scores. The four tasks with the
lowest standard deviations, except for causal judge-
ment, consistently showed low accuracy across all
prompts, indicating their difficulty for the models.
BBH appears to contain many tasks that are highly
sensitive to prompt variations. While MMLU con-
sists entirely of multiple-choice questions (A to
D), BBH includes tasks with various answer for-
mats, such as valid-invalid, true-false, sorting, and
symbol-based answers, leading to substantial varia-
tion in response quality depending on the prompt.



Case Analysis 1: To clarify how the replaced
important words specifically impacted model be-
havior, we conducted a detailed analysis of sev-
eral tasks from MMLU and BBH where the score
decreased more significantly when {text} was re-
placed than when {unrelated} was replaced. We
also examined BBH tasks that exhibited notable
changes. For example, in the movie recommen-
dation task, FLAN-UL2’s score decreased further
when important words were replaced after adding
superfluous instructions. The frequent occurrence
of the word “movie” in this task, which also ap-
pears in some FLAN template tasks, may suggest
overfitting. While the movie recommendation task
involves label selection, some FLAN template tasks
require summary or sentence generation, often us-
ing words like “summarize” or “sentence”. This
overlap in terminology likely contributed to overfit-
ting, resulting in a substantial drop in performance.

Case Analysis 2: Another noteworthy example
is the sports understanding task. FLAN-T5 XL
achieved around 60% accuracy, but the larger mod-
els, FLAN-T5 XXL and FLAN-UL2, showed lower
performance even with standard instructions. In-
terestingly, FLAN-T5 XXL’s score improved to
40% when superfluous instructions were added. In
this task, the word “plausible” appears frequently,
and the correct responses are “yes” or “no”. The
FLAN template task Copa also uses “plausible”,
but it involves multiple-choice answers. With stan-
dard instructions, FLAN-T5 XXL often responded
in choice format, e.g., “(II)”, but with superfluous
instructions, correct yes-no responses increased.
This suggests that FLAN-T5 XXL was overfitting
to the word “plausible” in the prompt, and that the
insertion of superfluous expression helped reduce
this overfitting. These observations further support
the hypothesis of word-level overfitting within the
FLAN templates. This overfitting appears to in-
fluence both score performance degradation and
improvement, depending on the specific task and
prompt structure.

6.2 Impact of Low-Importance Words

Motivation and Settings. We examine whether
the performance decrease attributed to high-
importance words in Section 3.3 can also be ob-
served with “low-importance words”. We define
low-importance words as those ranked among the
lowest in importance scores. Table 5 lists the words
with low importance. The final seven noun words

TF- Impo-
Word IDF rtance

1 your 0.043 0.043
2 means 0.043 0.043
3 out 0.043 0.043
4 resemble 0.043 0.043
5 closely 0.043 0.043
6 try 0.050 0.050
7 else 0.050 0.050
8 impossible 0.050 0.050
9 messages 0.053 0.053

10 potentials 0.053 0.053
11 propose 0.053 0.053
12 term 0.225 0.056
13 generate 1.186 0.059
14 follow 2.255 0.063
15 here 1.157 0.064
16 another 0.065 0.065
17 definition 0.065 0.065
18 both 0.065 0.065

TF- Impo-
Word IDF rtance

19 give 0.523 0.065
20 one 0.917 0.065
21 otherwise 0.131 0.066
22 tell 0.536 0.067
23 so 0.068 0.068
24 second 0.277 0.069
25 first 0.277 0.069
26 return 0.209 0.070
27 type 0.070 0.070
28 at 0.142 0.071
29 embody 0.071 0.071
30 example 0.356 0.071
31 perceive 0.072 0.072
32 opinion 0.072 0.072
33 whether 0.146 0.073
34 above 1.404 0.074
35 think 0.151 0.075
36 contents 0.303 0.076

Table 5: List of 36 low-importance words, ranked by
importance score from lowest to highest. The seven
bolded nouns were used in our experiments.

used in our experiments are highlighted in bold.
For consistency, countable nouns were replaced
with their plural forms. To test this, we created
similar instructions using low-importance words
and calculated task scores for each model and in-
struction type. From the bottom 36 words in impor-
tance listed in Table 5, the nouns that appear in the
FLAN templates include: “messages,” “potentials,”
“terms,” “definitions,” “examples,” “opinions,” and
“contents”. These words were substituted into the
{text} part of the instructions, while the {unrelated}
part was also replaced with its synonyms, resulting
in a total of 70 generated superfluous instructions.

Relationship Between Low-Importance Words
and Scores. Table 6 presents the task scores for
each model and instruction type. When using in-
structions with low-importance words, particularly
in BBH, the rate of score decline tended to increase
with larger model sizes. However, this decline was
smaller for FLAN-UL2 compared to the case with
high-importance words. Similar trends were ob-
served in the other models, though the changes
were generally smaller. Furthermore, Table 7
shows the average scores for each low-importance
word. Except for “terms” and “definitions”, most
words caused only minimal score changes across
all models, indicating limited impact on perfor-
mance. However, “terms” and “definitions” led to
substantial drops in FLAN-T5 XXL and FLAN-
UL2, despite being classified as low-importance.
This may be due to “definitions” appearing only
once in the original FLAN templates used for



Replacement Score FLAN-T5 XL FLAN-T5 XXL FLAN-UL2

{unrelated} {text} MMLU BBH MMLU BBH MMLU BBH

Standard Instruction acc. 47.1 33.7 52.5 41.0 53.1 34.5

✓ acc. 46.8±0.2 27.6±3.3 46.3±7.0 33.1±6.7 48.3±7.5 24.2±7.1
✓ ∆ ↓ 0.2 (0.5%) ↓ 6.1 (18.2%) ↓ 6.2 (11.9%) ↓ 8.0 (19.4%) ↓ 4.8 (9.1%) ↓10.3 (29.9%)

✓ acc. 46.9±0.4 28.6±3.4 47.7±7.0 34.1±6.6 48.8±6.9 25.0±7.0
✓ ✓ ∆ ↓ 0.2 (0.5%) ↓ 5.2 (15.3%) ↓ 4.9 (9.2%) ↓ 6.9 (16.9%) ↓ 4.4 (8.2%) ↓ 9.4 (27.4%)

Table 6: Average scores per model and instruction type across tasks using lower importance words. Checkmarks
indicate which part of the instruction “Answer the following question without generating {unrelated} {text}.” was
replaced. When present, a checkmark means {unrelated} was replaced with synonyms and {text} with important
words. The ± symbol denotes the standard deviation, and ∆ indicates the change in score relative to the version
with no replacements.

Replacement: {text} MMLU BBH

Standard Instruction 53.1 34.5

messages ↓ 0.6( 1.2%) ↓ 5.8(16.8%)
potentials ↓ 0.5( 1.0%) ↓ 2.3( 6.7%)

terms ↓ 14.8(27.9%) ↓ 15.0(43.5%)
definitions ↓ 9.3(17.5%) ↓ 19.4(56.3%)
examples ↓ 2.6( 4.9%) ↓ 8.5(24.6%)
opinions ↓ 0.8( 1.5%) ↓ 5.5(16.0%)
contents ↓ 1.8( 3.4%) ↓ 9.7(28.0%)

Table 7: FLAN-UL2’s average scores for each replaced
low important word across all {unrelated} replacements.

TF-IDF computation, but being used frequently
in the natinst_v2 task included in the updated
FLAN-v2 templates6. At the task level, FLAN-
UL2 again showed greater score variability, consis-
tent with observations for high-importance words.
In MMLU, scores remained stable across differ-
ent low-importance words, whereas BBH showed
slightly more variation, though still less than when
high-importance words were used. These results
support the use of our importance score as an indi-
cator of words that may cause overfitting.

6.3 Low-Importance Words by Tasks
Figures 4 and 5 show task-level results using low-
importance words. Since the word “text” is not
among the selected low-importance words, the “U”
column contains no values. Tasks are ordered by
standard deviation from top left to bottom right,
following the same order as in Figures 2 and 3.

MMLU. In Figure 4, MMLU shows minimal
score variation when low-importance words are
used. When {text} is replaced (T), tasks that pre-
viously showed large drops with high-importance
words now exhibit only slight decreases. When

6https://github.com/google-research/FLAN/blob/
main/flan/v2/templates.py

both {unrelated} and {text} are replaced (U/T),
scores remain nearly the same as when only {text}
is replaced, suggesting that {unrelated} has a lim-
ited impact. This trend aligns with the earlier re-
sults using high-importance words.

BBH. In Figure 5, similar patterns are observed.
For most tasks, excluding “sports understanding”,
FLAN-T5 XL and FLAN-T5 XXL show little to
no score change, in contrast to the greater varia-
tions seen with high-importance words in Figure 3.
FLAN-UL2 displays some variability, but again,
to a lesser extent. These results support the claim
that high-importance words more strongly affect
model behavior and task performance. Interest-
ingly, in the “sports understanding” task, replac-
ing {text} led to a score increase to about 30%
for FLAN-T5 XXL, while FLAN-UL2 remained
mostly unchanged. This contrasts with the high-
importance condition in Figure 3, where FLAN-T5
XXL improved by about 40% and FLAN-UL2 by
10%. These findings highlight the importance of
task-specific prompt design.

6.4 What Does Importance Score Capture?
We analyze why certain words that strongly influ-
ence model behavior tend to have high importance
scores. First, we calculated TF-IDF scores within
FLAN templates to assess how distinctive a word
is in contexts requiring specific answer formats (Ta-
ble 1). Next, we identified task-specific important
words using the importance score and confirmed
which words were generally characteristic across
tasks (Figure 1). Finally, we filtered out words
with high scores that appeared only a few times, as
described in Section 3.3.

This process allowed us to efficiently identify
words that are both strongly tied to output formats
and frequently encountered during training. These

https://github.com/google-research/FLAN/blob/main/flan/v2/templates.py
https://github.com/google-research/FLAN/blob/main/flan/v2/templates.py


Figure 4: Accuracy for each task in MMLU. The notation and order in each table are the same as in Figure 2. “w/o”
indicates values without superfluous instructions, “U” indicates values with changes to {unrelated}, “T” indicates
changes to {text}, and “U/T” indicates changes to both. In contrast to Figure 2, the word “text” is not among the
low TF-IDF words, so there are no values in the “U” column.

Figure 5: Accuracy for each task in BBH. The notation and order in each table are the same as in Figure 3. “w/o”
indicates values without superfluous instructions, “U” indicates values with changes to {unrelated}, “T” indicates
changes to {text}, and “U/T” indicates changes to both. In contrast to Figure 3, the word “text” is not among the
low TF-IDF words, so there are no values in the “U” column.

results suggest that such words are more likely to
cause overfitting and that heuristic methods like
TF-IDF-based importance scores may be useful for
identifying vulnerabilities in deep learning models.

7 Conclusion

In this study, we proposed a novel method for de-
signing instruction templates to analyze the impact
of task-specific superficial expressions found in
instruction-tuning templates on the performance

of large language models. Using this method, we
generated instructions based on the FLAN tem-
plates and conducted evaluations on both MMLU
and BBH tasks. The results revealed that the per-
formance of LLMs is affected by task-specific su-
perficial expressions included in the instructions.
This insight is essential for developing more robust
instruction-tuning methods. In future work, we
plan to explore solutions such as replacing these
superficial expressions during instruction-tuning to
address the issues identified in this study.



8 Limitations

Language Models. Our study validated the find-
ings using a limited set of open models instruction-
tuned on the FLAN dataset. Due to resource con-
straints, we could not train models on the full
FLAN datasets and instead relied on widely used
instruction-tuned models. This choice allowed us
to isolate the impact of word biases in the FLAN
templates. However, our conclusions may not gen-
eralize to all large language models. Future work
could involve comparisons among models with sim-
ilar architectures to further examine these effects.

Generality of Dataset. In this study, we used
only two datasets, MMLU and BBH, which were
explicitly labeled as held-out tasks in the origi-
nal paper (Longpre et al., 2023). This choice was
made to create an ideal environment for isolating
the influence of words in the FLAN templates by
mitigating other variables. Whether the results ob-
served with these two tasks can be replicated in
other datasets remains an open question for future
research. However, the in-depth analysis at the task
level within BBH could help clarify the potential
impact of similar effects in other datasets. In the
future, we could also explore broader impacts in
datasets like MMMLU7, which includes multilin-
gual tasks and might provide insights similar to
those seen in our held-out tasks.

Datasets for Instruction-Tuning. Although we
investigated the influence of word bias in templates,
other methods have been developed to reduce word-
related biases, such as allowing language models to
generate diverse prompts (Wang et al., 2023; Taori
et al., 2023; Kojima et al., 2021; Nayak et al., 2024).
This approach may increase the variety of tasks and
phrases used. However, as previous research has
repeatedly shown, biases in the words and ideas
produced by language models remain a concern.
Techniques like TF-IDF, which count word fre-
quency, continue to be effective in detecting such
biases early on. Additionally, there are restrictions
on how data generated by models like Llama2 (Tou-
vron et al., 2023) can be used, such as limitations
on usage outside of Llama 2 or derivative works8.
Considering these constraints, instruction-tuning
with templates remains valuable, and efforts to mit-
igate bias in this context are still essential.

7https://huggingface.co/datasets/openai/MMMLU
8https://github.com/metallama/llama/blob/main/

LICENSE

9 Ethical Considerations

Dataset. We used public datasets and modified
them. These datasets are allowed to be used and
modified under their respective licenses. Therefore,
our dataset does not raise ethical considerations.

Use of AI Assistants. In this study, we have used
GitHub Copilot and ChatGPT as an AI assistant for
coding and writing support.
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