
Under review as a conference paper at ICLR 2024

SPACODER: ALIGNMENT-ENHANCING PARALLEL
CODE GENERATION FOR SEMI-SUPERVISED CODE
TRANSLATION

Anonymous authors
Paper under double-blind review

A CODE AND DATA SHARING

The code and data for this work are shared through this anonymous link 1.

B PARALLEL CODE DATA

Parallel code data refers to code pairs from different programming languages that are functionally
equivalent and bug-free. One type of existing datasets is characterized by relatively high alignment
but are limited in size and supported languages. For example, CodeXGLUE (Lu et al., 2021)
constructed a Java – C# translation dataset by matching function names from open-source repositories.
MuST-PT (Zhu et al., 2022) introduced a program translation dataset CoST, with snippet-level
alignment that supports 7 programming languages. CoST was collected from coding tutorial website
GeeksforGeeks2, where each coding problem is provided with solutions in up to 7 languages, with
each in similar structure and comments. AVATAR (Ahmad et al., 2021b) only supports the translation
between Java and Python. Another type of datasets is usually significantly larger in size and supports
a wider range of languages, but the alignment quality is low. They are usually collected from
competitive online code judgments. Given a coding problem, users can submit their own solutions in
various supported languages and get judged based on online tests. The user-contributed solutions to
the same problems are collected as parallel code in different languages. For example, Google Code
Jam and Project CodeNet (Puri et al., 2021) were both collected in this manner. However, due to the
diverse background and the large number of users, the solutions for the same problem have wide
discrepancies in distribution across different languages, which lowers the quality of the alignment.

C IMPLEMENTATION DETAILS.

All models are trained with a batch size of 16 for 10 epochs, with a learning rate of 5e−5. Experiments
are performed on one NVIDIA A100 GPU with 80G memory. For tempered sampling, we use a
sample size of 10 with a fixed temperature of 0.5. For evaluation, we use beam search with a beam
size of 5. We use a max sequence length of 200 tokens for both the inputs and outputs.

Preprocessing For all the program data, we first remove all the comments, docstrings, and empty
lines. New lines are replaced with special token NEW LINE. For pre-tokenization, Python is pre-
tokenized with a TreeSitter-based tokenizer from TransCoder(Roziere et al., 2020), for better handling
of indentations. Other languages are not pre-tokenized. When running experiments, the data will be
tokenized again using the corresponding tokenizer of each model.

Function Info Extraction. We rely on AST parsing to extract function information from programs,
which are further used for static analysis and execution-based evaluation. An AST is a tree-like data
structure that represents the structure of a program’s source code. It captures the high-level structure
of the code and the relationships between its elements, enabling a deeper understanding of the code
beyond the sequence-level. To create an AST, the source code is first parsed to identify its syntactic
elements, such as keywords, operators, and identifiers. The parser then constructs the AST by

1https://drive.google.com/drive/folders/1hUbfHNMINgrBng1HW8jhsrb4fG5ECT_
J?usp=sharing

2https://www.geeksforgeeks.org/

1

https://drive.google.com/drive/folders/1hUbfHNMINgrBng1HW8jhsrb4fG5ECT_J?usp=sharing
https://drive.google.com/drive/folders/1hUbfHNMINgrBng1HW8jhsrb4fG5ECT_J?usp=sharing
https://drive.google.com/drive/folders/1hUbfHNMINgrBng1HW8jhsrb4fG5ECT_J?usp=sharing


Under review as a conference paper at ICLR 2024

Figure 1: An illustration of function info extraction through AST parsing. Given an input program,
we first generate its corresponding AST, and then extract function-related information from AST into
program dict. The tree in the top middle shows an example of AST. After the functions are extracted,
the leftover part of the program is called program shell, which can be used for execution-based
evaluation later.

assigning each syntactic element to a node in the tree. An AST consists of terminal and non-terminal
nodes. Terminal nodes are leaf nodes in AST, and are part of the source code. Non-terminal nodes
are not part of the source code. With the help of AST, we can extract function related information by
matching the corresponding non-terminal nodes in that language, such as method declaration,
method invocation, formal parameters etc. One of the most widely used open-source
AST parsing tool is TreeSitter3. It supports most of the commonly used programming languages.
Figure 1 shows an example of a Java program and its AST (parsed by TreeSitter). The blue nodes are
non-terminal and the purple nodes are terminal.

Sourcing of Monolingual Code Inputs CODENET (Puri et al., 2021) is a huge dataset containing
13 million of programs in 55 languages. The programs in CODENET are from code submissions to
online judge websites of programming problems. We use CODENET as a source of monolingual code
inputs for parallel code generation. We select the “Accepted” submissions (submissions that pass the
prescribed tests) in 4 languages, C++, Java, Python, and C, from around 1600 problems, which gives
us approximately 1 million programs. To ensure the quality of the input data, we set two filtering
criteria: (1) the program should be modularized, which means it should contain at least one function
(other than main() or Main() function), and (2) the program should be bug-free, which means
it can be compiled without errors. After applying the two steps of filtering, only around 8% of the
programs remain, approximately 87k.

Parallel Code Generation We experiment with two different models as the generator model,
PLBART (Ahmad et al., 2021a) and CodeT5 (Wang et al., 2021). The generator models are initialized
by first training on the snippet-level data, and then the function-level data from ECOST. We then
utilize the monolingual CODENET data as inputs and acquire the hypotheses from the generators
through tempered sampling. For cross-lingual static analysis, we extract the function information
of both the monolingual inputs and all the hypotheses and compare them. For compilation, we use
the compiler of each language to compile all the hypotheses. Since the hypotheses are functions not
programs, we pair each of them with a set of common imports in the corresponding language before
compilation to avoid dependency errors. For Python, we first try with python2, and subsequently
with python3 if python2 returns with an error. The statistics of the selected hypotheses generated by
SPACoder-CodeT5 can be found in Table 3. Table 1 shows all the datasets used for training and how
they are acquired.

Execution-Based Evaluation. ECOST test set is used for all the evaluations. ECOST train set and
generated parallel data are used for model training. The train/valid/test split of ECOST is 70:5:25, and
the generated parallel dataset is 85:5:10. The statistics of ECOST is shown in Table 2. To evaluate the
quality of the generated hypotheses, we employ an execution-based evaluation strategy. By inserting
the generated hypothesis of an input function into the program shell of the ground truth program,
we execute the modified program and compare its output against the original output. This process

3https://tree-sitter.github.io/tree-sitter/

2



Under review as a conference paper at ICLR 2024

Data Type Volume Source

Function Annotated 3326 ECoST
Snippet Annotated 31818 ECoST
AND Synthetic 69358 Static Analysis & Compilation
COMP Synthetic 79550 Compilation
STAT Synthetic 176482 Static Analysis
BT Synthetic 260110 Back Translation

Table 1: Datasets used for the Alignment-Ascending curriculum learning. Volume means number of
parallel codes.

Function-Level Snippet-Level

CoST C++-Java C++-Py C++-C Java-Py Java-C Py-C C++-Java C++-Py C++-C Java-Py Java-C Py-C

Train 1014 947 138 947 146 134 10472 8893 1358 8716 1305 1074
Val 51 46 14 47 14 14 417 324 78 340 78 69
Test 372 332 77 331 73 64 2493 1991 450 1964 422 313

Table 2: Data split and number of parallel code pairs in ECoST.

allows us to verify whether the hypothesis successfully passes the built-in test cases, thus evaluating
its correctness and suitability. However, the function names in the generated hypotheses might not
match the function calls in program shell, causing execution errors. Therefore, through function
information extraction, we replace the function name of the hypotheses with the corresponding
ground truth function name before each evaluation.

D EFFECT OF REARRANGING THE CURRICULUM.

In Table 4, we presented some new experimental results (with PLBART). Here is an overview of each
experiment:

• Function: trained on ECoST-function (annotated data).
• Snippet+Function: trained on ECoST-function and ECoST-snippet (annotated data with

fine-grained alignment).
• AND+Snippet+Function: trained with AND (high quality synthetic data filtered by both

static analysis and compilation).
• BT+Snippet+Function: trained with BT (noisy synthetic data with no filtering).
• AND+COMP+STAT+BT+Snippet+Function: SPACoder with reversed curriculum order on

synthetic data.
• BT+STAT+COMP+AND+Snippet+Function: SPACoder

We can see that when using the high quality synthetic data, AND, the performance is not as good
as SPACoder, which uses larger amounts of noisier synthetic data. Similarly, when using the
unfiltered noisy data, BT, the performance is also subpar. This shows that both the quality and the
quantity of the synthetic data hold significant importance to the performance. When we reverse
the order of the curriculum to AND+COMP+STAT+BT+Snippet+Function, the performance drops
significantly compared to SPACoder, which indicates the importance of the order of the curriculum to
the performance. It is worth noting that the reversed curriculum has very similar performance with

CodeT5 Number of Pairs Selection Rate
Selector C++-Java C++-Py C++-C Java-Py Java-C Py-C C++-Java C++-Py C++-C Java-Py Java-C Py-C

Back Translation (BT) 47637 64037 49550 37422 22935 39335 1 1 1 1 1 1
Static Analysis (STAT) 25211 58663 14945 31379 13059 34072 0.53 0.92 0.30 0.84 0.57 0.87
Compilation (COMP) 17373 36544 2290 16888 3821 13947 0.36 0.57 0.05 0.45 0.17 0.35
SA & Compilation (AND) 10811 35457 1325 15256 2731 13309 0.23 0.55 0.03 0.41 0.12 0.34

Table 3: Statistics of CODENET-SPACoder, with CodeT5 (Wang et al., 2021) as generator. SA &
Compilation refers to the intersection of the Static Analysis and Compilation selections.

3



Under review as a conference paper at ICLR 2024

Computation Accuracy
Model Data Volume Java-C++ Py-C++ C++-Java Py-Java C++-Py Java-Py

Function 3326 0.81 4.52 1.88 3.63 16.87 16.62
Snippet+Function 35144 25.54 24.4 27.15 23.87 32.23 32.33
AND+Snippet+Function 104502 34.68 34.64 33.06 32.93 36.45 37.16
BT+Snippet+Function 295254 38.98 34.94 37.1 30.21 35.54 39.58
AND+COMP+STAT+BT+Snippet+Function 551286 38.98 32.23 37.63 33.84 35.84 39.58
BT+STAT+COMP+AND+Snippet+Function (SPACoder) 551286 41.94 35.24 40.05 33.84 38.55 41.09

Table 4: Comparison with variations of curriculums. The model used is PLBART. Data Volume
means number of parallel codes.

BT+Snippet+Function, likely due to the larger volume of the BT dataset overpowering the effect of
the previous datasets.

E LIMITATIONS AND FUTURE WORK

Despite the promising results and contributions of our work, there are several limitations that need
future research. Our method relies heavily on the generation of parallel code data and does not take
into account other types of information that may be useful for code translation, such as comments
or documentation. Incorporating such information into the generation process could potentially
further improve the quality of the generated data. Additionally, our evaluation is mainly focused
on execution-based metrics, which measure the quality of the generated code based on its ability
to execute correctly. While these metrics are important, they do not capture other aspects of code
quality, such as readability, maintainability, or style. Future work could explore the development of
metrics that capture these aspects of code quality.

F BROADER IMPACT

The ability to automatically translate code between programming languages can help software
developers to port existing codebases from one language to another, allowing them to work with a
wider range of tools and frameworks. It can also facilitate collaboration between developers who
work with different programming languages. In addition, our work has the potential to reduce the
barriers to entry for new developers who want to learn a new programming language. By enabling
them to translate code from a language they are familiar with to a new language, they can quickly
learn the connections and differences between the two languages, and start working on projects in
the new language. Moreover, it also has the potential to create more inclusive software engineering
learning environments, which makes computer science more accessible for learners from various
backgrounds. However, there are also potential negative impacts of this work, such as the possibility
of automated code translation leading to loss of jobs for software developers or increased reliance on
automated tools in the software development process.

REFERENCES

Wasi Ahmad, Saikat Chakraborty, Baishakhi Ray, and Kai-Wei Chang. Unified pre-training for pro-
gram understanding and generation. In Proceedings of the 2021 Conference of the North American
Chapter of the Association for Computational Linguistics: Human Language Technologies, pp.
2655–2668, 2021a.

Wasi Uddin Ahmad, Md Golam Rahman Tushar, Saikat Chakraborty, and Kai-Wei Chang. Avatar: A
parallel corpus for java-python program translation. arXiv preprint arXiv:2108.11590, 2021b.

Shuai Lu, Daya Guo, Shuo Ren, Junjie Huang, Alexey Svyatkovskiy, Ambrosio Blanco, Colin
Clement, Dawn Drain, Daxin Jiang, Duyu Tang, et al. Codexglue: A machine learning benchmark
dataset for code understanding and generation. In Thirty-fifth Conference on Neural Information
Processing Systems Datasets and Benchmarks Track (Round 1), 2021.

4



Under review as a conference paper at ICLR 2024

Ruchir Puri, David S Kung, Geert Janssen, Wei Zhang, Giacomo Domeniconi, Vladmir Zolotov,
Julian Dolby, Jie Chen, Mihir Choudhury, Lindsey Decker, et al. Project codenet: A large-scale ai
for code dataset for learning a diversity of coding tasks. arXiv preprint arXiv:2105.12655, 2021.

Baptiste Roziere, Marie-Anne Lachaux, Lowik Chanussot, and Guillaume Lample. Unsupervised
translation of programming languages. In NeurIPS, 2020.

Yue Wang, Weishi Wang, Shafiq Joty, and Steven CH Hoi. Codet5: Identifier-aware unified pre-
trained encoder-decoder models for code understanding and generation. In Proceedings of the
2021 Conference on Empirical Methods in Natural Language Processing, pp. 8696–8708, 2021.

Ming Zhu, Karthik Suresh, and Chandan K Reddy. Multilingual code snippets training for program
translation. In 36th AAAI Conference on Artificial Intelligence (AAAI), 2022.

5


	Code and Data Sharing
	Parallel Code Data
	Implementation Details.
	Effect of Rearranging the Curriculum.
	Limitations and Future Work
	Broader Impact

