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Medical Report Generation via Multimodal Spatio-Temporal
Fusion

ABSTRACT
Medical report generation aims at automating the synthesis of
accurate and comprehensive diagnostic reports from radiological
images. The task can significantly enhance clinical decision-making
and alleviate the workload on radiologists. Existing works normally
generate reports from single chest radiographs, although historical
examination data also serve as crucial references for radiologists in
real-world clinical settings. To address this constraint, we introduce
a novel framework that mimics the workflow of radiologists. This
framework compares past and present patient images to monitor
disease progression and incorporates prior diagnostic reports as
references for generating current personalized reports. We tackle
the textual diversity challenge in cross-modal tasks by promoting
style-agnostic discrete report representation learning and token
generation. Furthermore, we propose a novel spatio-temporal fusion
method with multi-granularities to fuse textual and visual features
by disentangling the differences between current and historical data.
We also tackle token generation biases, which arise from long-tail
frequency distributions, proposing a novel feature normalization
technique. This technique ensures unbiased generation for tokens,
whether they are frequent or infrequent, enabling the robustness of
report generation for rare diseases. Experimental results on the two
public datasets demonstrate that our proposed model outperforms
state-of-the-art baselines.

KEYWORDS
Medical report generation, Multimodal Fusion, Cross-modal gener-
ation
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1 INTRODUCTION
Radiological imaging is crucial for medical diagnosis, with the resul-
tant reports being essential for clinical decision-making. However,
the increasing demand for these services has significantly burdened
radiologists, particularly affecting report quality and increasing
the potential for errors [8, 18, 36]. This challenge necessitates the
exploration of automatic radiology report generation systems. Cur-
rent research efforts focus on automating the generation of reports,
and enhancing the efficiency and quality of generated reports via
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the utilization of multimodal processing methods rooted in the
computer vision and natural language processing domains.

Recent works [4, 24–26, 29] for medical report generation lever-
aged medical tags [16, 46, 47], pretrained models [1, 32], and cross-
modal memory networks [6, 35] to enhance the clinical accuracy
and quality of the generated reports. Despite these advancements,
existing methods mainly produce reports from individual chest ra-
diographs, overlooking the complexity of disease progression and
the valuable insights provided by historical reports for current re-
port generation. In clinical practice, handling follow-up patients in-
volves integrating data from past examinations into new reports. To
address this, some researchers [3, 33] combined both previous and
current medical images to formulate reports. However, approaches
that solely rely on tracing historical visual features overlook the
significance of patients’ past diagnostic reports in textual form. In
practice, radiologists analyze both previous and current images to
assess disease progression, enhancing earlier reports with updated
descriptions of the disease’s evolution to compile comprehensive
current reports. Referring to prior reports helps doctors compose
coherent and consistent report content across different diagnostic
instances.

In this paper, we introduce a novel report generation frame-
work designed to align with the workflow of radiologists. This
framework compares previous and current images of patients to
identify the disease progression, incorporating previous reports and
simulating their writing style to generate current ones. Given the
challenges presented by textual diversity in cross-modal generation
tasks, we propose an enhanced diagnostic report generationmethod
via learning style-agnostic discrete representations of reports and
predicting tokens accordingly. To achieve high-quality discrete rep-
resentations of reports, we have developed the RadFusion module,
which conducts multi-granular spatio-temporal fusion of textual
and visual features within the patient’s clinical context. Addition-
ally, we have developed a novel feature normalization technique to
address the challenges posed by the long-tail distribution of token
frequencies in current report generation. This technique employs
linear projection to adjust the initial semantic features of tokens,
ensuring that their utilization is not biased by token frequencies,
thus, mitigating the discrepancy in prediction likelihood between
high-frequency and low-frequency tokens.

Our proposed method is evaluated on two public datasets, i.e.,
MIMIC-CXR [17] and MIMIC-ABN [31]. The experimental results
demonstrate the improvements of our method in both language
quality (ranking the highest across all six natural language genera-
tion evaluation metrics) and factual statement accuracy (+ 3% F1-
RadGraph and + 1.8% in F1-Chexbert on MIMIC-CXR) over strong
baselines, including large language models (LLMs). More impor-
tantly, our proposed feature normalization method achieves higher
performance gains on infrequent disease types (+ 8.6% F1 onMIMIC-
ABN) than on frequent ones (+ 4.7% F1 on MIMIC-ABN). The ethical
implications of this improvement are substantial within the clinical
domain. While traditional machine learning excels at identifying
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common patterns, its ability to generalize to less common patterns
is relatively limited [28]. In clinical contexts, overlooking uncom-
mon cases to achieve higher accuracy is not feasible. Our feature
normalization method addresses this issue by refining wording pref-
erences, thereby enhancing the accuracy and objectivity of factual
descriptions of non-common diseases.

In summary, this paper makes the following contributions: (1)
We propose a new framework that emulates radiologists’ review
processes, comparing historical and current images to detect dis-
ease progression and integrating previous reports to generate cur-
rent reports. (2) We develop the RadFusion module to facilitate
multi-granular spatio-temporal fusion of textual and visual features
within a patient’s clinical context. (3) We develop a feature nor-
malization technique to tackle the long-tail distribution challenge
in token frequency, improving factual statement accuracy across
common and non-common diseases.

2 RELATEDWORKS
In recent times, artificial intelligence has seen extensive utilization
within the medical field [5, 9, 27, 43]. As a task that generates text
from images, most medical report generationmethods have adopted
the encoder-decoder framework popularized in image captioning
tasks. Initial efforts [37] utilized an encoder-decoder framework
that combines Convolutional Neural Networks (CNN) for image
encoding with Recurrent Neural Networks (RNN) for text decoding.
Unlike concise image captions, medical reports entail elaborate long
texts describing multiple organs and regions. To address this, Jing
et al. [47] enhanced the CNN-RNN architecture by incorporating
a co-attention module that merges visual and semantic features
using disease tags, coupled with a hierarchical LSTM for crafting
detailed report paragraphs. Additionally, recognizing the preva-
lence of normal samples over abnormal ones in medical reports,
researchers have focused on mitigating data bias. CMAS-RL [15]
refined the textual decoder through a multi-agent system, trying to
balance descriptions of both normal and abnormal findings. Con-
trastive Attention [25] aimed to accentuate critical abnormalities by
comparing the subject image against a normal image corpus. HRGR-
Agent [22] merged retrieval-based and generative approaches for
managing frequently normal and infrequently abnormal sentences.

Given the outstanding performance of pretrained models across
various domains, recent works [1, 32] explored fine-tuning pre-
trained visual encoders and textual decoders for medical report
generation. Several researchers leveraged auxiliary signals to guide
the generation of medical reports. Li et al. [19] extracted normal
and abnormal terms from the MIMIC-CXR dataset to serve as nodes,
with edges defined by attention weights between them, thus con-
structing a knowledge graph. This knowledge graph has been uti-
lized by other researchers [21, 49] as a form of prior domain knowl-
edge to enhance report generation. Additionally, relevant research
[24, 48] developed heterogeneous graphs by associating 8 organs
with 20 findings, where findings linked to the same organ are inter-
connected. Liu et al. [24] leveraged global representations derived
from pre-retrieved reports within the training corpus to encapsu-
late domain-specific knowledge. Li et al. [20] dynamically updated
the pre-constructed graph to model domain knowledge. In con-
trast to methods focusing solely on abnormalities, Jain et al. [14]

employed natural language processing tools to extract clinical en-
tity and relation annotations from reports, thereby establishing
the comprehensive radiological knowledge graph, RadGraph. Yang
et al. [45] introduced general domain knowledge by learning the
universal representations of the pre-constructed RadGraph. Other
studies have concentrated on enhancing report generation through
cross-modal alignment. Chen et al. [6] introduced the Cross-Modal
Memory Network (CMM), which employs a shared memory for
aligning images and texts, thereby enriching the quality of gener-
ated reports. Qin et al. [35] further advanced CMM by integrating
reinforcement learning, employing natural language generation
metrics as rewards to refine the cross-modal mappings for better
image-text alignment. However, these methods treat image-report
pairs within datasets as isolated from each other, disregarding the
fact that radiologists frequently refer to comparisons with patients’
previous examinations in their reports. Addressing this gap, Ban-
nur et al. [3] aim to capture historical relevance by comparing
patients’ previous and current images, facilitating improved cross-
modal alignment. Similarly, CXRmate [33] generates reports by
integrating patients’ previous reports with current images. Recap
[10] also contrasts patients’ prior and current images to deduce
disease progression, thereby enhancing report generation.

To sum up, despite the progress made in medical report gener-
ation, there are several limitations that need to be addressed. (1)
Radiologists’ varied writing styles pose challenges to cross-modal
alignment and the generation of disease-relevant content. (2) His-
torical reports of follow-up patients, which provide critical refer-
ences for current clinical assessments of disease progression, were
not integrated into the current report generation process, despite
their importance in real-world practice. (3) Severe data imbalances
complicate the detection and description of non-common diseases,
leading to diagnostic biases in the learning and inference processes
of machine learning models.

3 METHODOLOGY
We propose a spatio-temporal multimodal fusion method (see Fig-
ure 1a) to learn two tasks: inclusive node prediction, and radiologi-
cal report generation. Task 1 learns to identify nodes that should
be included in a current report, where the nodes are entities related
to different radiographic observations. Task 2 aims to generate re-
ports from the identified nodes. For a follow-up patient, the original
input includes the historical examination data (both radiographs
and reports) and current radiographs. For those without historical
records, the original input is the current radiographs1. To gener-
ate style-agnostic discrete reports, the input also includes a global
radiology knowledge graph for both types of patients.

The global radiology knowledge graph is developed from the
training reports. The knowledge graph has nodes representing
anatomical or observational entities and directed edges indicating
the relationship between nodes. The prior report of a follow-up
patient will be also converted into the sub-graph of the global graph.
Converting textual reports into graphs (style-agnostic discrete rep-
resentations) offers the advantage of filtering out stylistic wording
variations present in the original contexts from various radiologists.

1In Figure 1a, the input does not contain the prior X-ray, the prior report and its
associated nodes for new patients.
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Figure 1: (a) The overall framework of our proposed model. (b) The proposed RadFusion module. ⊞ denotes matrix addition;
⊟ denotes subtraction; ⊕ denotes concatenation. Colored rounded rectangles denote computational layers with learnable
parameters, while the white ones do not have learnable parameters. The graphs and matrices are the input or output of a
computational layer.

These variations can otherwise disrupt the learning of modal align-
ment between factual information (such as entities) in the text and
observations in radiographs.

To mitigate the biased impact of the uneven distribution of node
frequencies, i.e., long-tail distribution, on the inclusive node predic-
tion task (Task 1), we introduce a mathematics-explainable feature
normalization method that operates on the node feature represen-
tations. This method projects the node features into a designated
space (see Figure 2), rendering the prediction of nodes insensitive
to their frequency attributes. Given input with spatial (e.g., the
knowledge graphs) and temporal (e.g., the current and prior infor-
mation) relationships, we also develop a RadFusion module (see
Figure 1b) for the spatio-temporal fusion of the multimodal features
(e.g., graphs and images). Ultimately, a comprehensive diagnostic
report (Task 2) is generated by synthesizing the knowledge graph,
enriched with current chest radiograph features, spatio-temporal
and multimodal features, and the predicted discrete nodes.

3.1 Knowledge Graph Initialization
3.1.1 Construction. To extract diagnostic visual features that are
prioritized by radiologists, we propose harnessing radiological
knowledge graphs to guide the cross-modal feature alignment and
facilitate multimodal feature fusion. Utilizing the tool developed by
Wang et al. [14], we structure entities mentioned in the reports in
the training set into corresponding knowledge graphs. The nodes
of these graphs represent either anatomical entities (e.g., lung, me-
diastinum) or observational entities (e.g., pneumonia). Edges are

directed and heterogeneous, capturing three types of relationships
among entities: modify, located at, and suggestive of. The graphs
from individual reports are amalgamated to form a comprehensive
global knowledge graph 𝐺 . Given the multiplicity of potential rela-
tionships between the same pair of entities and the relatively low
semantic differentiation among the three types of edge relation-
ships, we opt to disregard edge-type attributes within the global
knowledge graph.

3.1.2 Node Embedding and Normalization. We plan to identify di-
agnostic visual features associated with nodes from knowledge
graph and predict their inclusion in the report. However, the nodes’
frequency distribution reveals a long-tail curve, marked by preva-
lent common nodes (such as “lung”, and “heart”) versus infrequent
abnormal findings. This distribution inherently biases node pre-
diction towards frequently occurring nodes being identified in the
report, while rarer findings are frequently overlooked. As illus-
trated in Figure 2, in predicting labels for the inclusion of nodes,
we establish two anchor points, e.g., 𝑆0 and 𝑆1, representing the
binary node labels of presence (1) and absence (0) within reports.
High-frequency nodes tend to gravitate towards the vector space,
associated with label 1, whereas low-frequency nodes are closer to
label 0. This phenomenon imparts an inherent bias in the semantic
features of nodes towards label prediction.

To mitigate this issue, we propose a method to normalize the
node feature representations, eliminating innate label bias in node
inclusion prediction while maintaining semantic differentiation. As
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depicted in Figure 2, an equidistant hyperplane is initially deter-
mined based on anchor points 𝑆0 and 𝑆1, such that every point on
this plane is equidistant to both nodes 𝑆0 and 𝑆1. Subsequently, a
linear projection transformation is applied to map the initial node
features onto this equidistant hyperplane. This process ensures that
the updated node features E′𝑇 are unbiased toward any label while
preserving their semantic relationships in the vector space. The
specific process is outlined as follows:

Step1: Node and Anchor Embedding. Node features E𝐺 ∈
ℜ𝑀×𝑑 (𝑀 denotes the number of nodes; 𝑑 denotes the dimension
of embeddings.) within the constructed knowledge graph were ini-
tially randomized. Similarly, the features of the two anchor points
𝑆0 and 𝑆1 are defined as s0 and s1, respectively, both initialized ran-
domly. Both node features and anchor point features are learnable.

Step2: Equidistant hyperplane. For any point𝑋 on the equidis-
tant hyperplane with coordinates x, the equation of the equidistant
hyperplane can be derived as follows:

|x − s0 |2 = |x − s1 |2 (1)

Expanding the squared distances, we have

(x − s0) · (x − s0) = (x − s1) · (x − s1). (2)

Simplifying Eq. 2 by expanding and rearranging terms yields

2(b − s0) · x = |s1 |2 − |s0 |2 . (3)

Step3: Equation of the Perpendicular. For an initial node
𝐸, represented by coordinates e, the aim is to project it onto the
equidistant hyperplane, ensuring orthogonality between 𝐸 and its
projection 𝐸

′
. Using the normal vector n = s1−s0 of the hyperplane,

defined by vectors s0 and s1 of anchor points 𝑆0 and 𝑆1, we delineate
the perpendicular from 𝐸 as a linear trajectory guided by n.

x = e + 𝑡n, (4)

where 𝑡 symbolizes a scalar parameter indicative of the displace-
ment along the direction vector n.

Step4: Target Mapping node 𝐸′. To solve for the mapping
point 𝐸′ and its coordinates e′, substitute the equation of the per-
pendicular into the equation defining the equidistant hyperplane,
thereby solving for the scalar parameter 𝑡 .

2(s1 − s0) · (e + 𝑡 (s1 − s0)) = |s1 |2 − |s0 |2 (5)

Next, expanding this and solving for 𝑡 yields

2(s1 − s0) · e + 2𝑡 (s1 − s0) · (s1 − s0) = |s1 |2 − |s0 |2, (6)

𝑡 =
|s1 |2 − |s0 |2 − 2(s1 − s0) · e

2(s1 − s0) · (s1 − s0)
. (7)

With 𝑡 now determined, the coordinates of 𝐸′ can be found by
substituting 𝑡 back into the equation x = e + 𝑡n, yielding e′, the
coordinates of the mapping point 𝐸′ on the equidistant hyperplane.

e′ = e + |s1 |2 − |s0 |2 − 2(s1 − s0) · e
2(s1 − s0) · (s1 − s0)

n, (8)

where e ∈ E𝐺 . This formula effectively yields e′, pinpointing the
location of 𝐸′ on the equidistant hyperplane where the line segment
joining 𝐸 to 𝐸′ is perpendicular to the hyperplane, thus satisfying
the geometric condition of equidistance from 𝐸 to points 𝑆0 and 𝑆1.

5.0 2.50.0 2.5 5.0 7.5 10.012.5 5.0
2.5

0.0
2.5

5.0
7.5

10.0
12.5

10
5

0
5
10
15
20
25

Anchor Point S0
Anchor Point S1
Initial Features
Normalized Features

Figure 2: Feature normalization visualization. The initial fea-
tures (light green dots) of the global knowledge graph nodes
are projected onto a hyperplane using our proposed feature
normalization method. The normalized features (dark green
dots) of the nodes are equidistant from both anchor points,
ensuring unbiased representations for predicting the inclu-
sion of nodes in the current report generation.

3.2 RadGraph guided Spatio-temporal
Multimodal Hierarchical Fusion

In alignment with radiologists’ workflow, their diagnostic process
initiates with a review of patients’ previous examination data to
comprehend the current state of the patient’s condition. Then, they
analyze the discrepancies between the current and prior examina-
tion results to discern critical information on disease progression,
forming the basis for report generation. To emulate this procedural
framework, we propose the integration of knowledge graphs to
guide the fusion of clinical context and current chest X-rays, thereby
capturing disease progression for precise diagnostic reporting.

3.2.1 Visual Encoding. A single chest radiological examination gen-
erates one or more chest radiographs 𝐼 = {𝐼1, 𝐼2, · · · , 𝐼𝑚} and a cor-
responding diagnostic report 𝑅. For a patient’s current examination,
we initially encode all produced images using DenseNet-121 [12],
applying max pooling to ascertain the present chest radiograph
features IC ∈ ℜ8×8×1024. Likewise, we acquire prior radiograph
features IPr ∈ ℜ8×8×1024 from the patient’s former examination.

3.2.2 Comparison of Prior and Current X-rays. Radiologists typi-
cally examine important disease-related regions in patients’ suc-
cessive chest radiographs to assess disease progression, essentially
comparing visual features pertinent to report content. Accordingly,
we utilize the constructed knowledge graphs to extract salient visual
features correlated with report narratives from both previous and
current X-rays, followed by a comparative analysis of the extracted
features.

Utilizing node features as queries, and relative visual features
as keys and values, cross-attention mechanisms are employed to
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extract node-relevant significant features from visual features.

E𝐶 = 𝐶𝑟𝑜𝑠𝑠𝐴𝑡𝑡 (E′𝐺 , IC) (9)

E𝑃𝑟 = 𝐶𝑟𝑜𝑠𝑠𝐴𝑡𝑡 (E′𝐺 , IPr) (10)

𝐶𝑟𝑜𝑠𝑠𝐴𝑡𝑡 (X,Y)
{
ℎ𝑒𝑎𝑑𝑖 = 𝑠𝑜 𝑓 𝑡𝑚𝑎𝑥 ( XY𝑇√

𝑑
)Y

X′ = 𝐶𝑜𝑛𝑐𝑎𝑡 (ℎ𝑒𝑎𝑑1, · · · , ℎ𝑒𝑎𝑑𝑖 )W
(11)

where E′𝐺 represents the normalized node features; 𝑑 is the di-
mension of features;W is a learnable weight matrix; E𝑃𝑟 and E𝐶

represent the extracted report-related key visual features of prior
X-ray and current X-ray, respectively. Thus, the disease progression
features, i.e., the difference of key features between current and
previous X-rays can be represented as E𝐼 = E𝐶 − E𝑃𝑟 .

3.2.3 Spatio-temporal Multimodal Hierarchical Fusion. To inte-
grate the clinical context of follow-up patients, we merge knowl-
edge graph embeddings with anchor embeddings to encode the
information from prior reports, thus representing the current state
features E𝑆 ∈ ℜ𝑁×𝑑 of patients. Each node in the knowledge graph
is allocated a unique status determined by its occurrence in the
patient’s antecedent examination report: nodes reported previously
are encoded with the anchor embedding s1 corresponding to label
1, while unreported nodes receive the anchor embedding s0 of label
0. For new patients, the node features are designated as null. This
approach allows the initial features of the knowledge graph to ef-
fectively reflect the patient’s original health condition, facilitating
the integration of information from prior reports while efficiently
distinguishing between follow-up and new patients.

Based on the foundational state of patients, integrating disease
progression features, e.g., E𝐼 , E′𝐺 , and E𝑆 , enables the current con-
dition feature E of the patient

E = 𝐿𝑎𝑦𝑒𝑟𝑁𝑜𝑟𝑚(E𝐼 + E′𝐺 + E𝑆 ), (12)

where 𝐿𝑎𝑦𝑒𝑟𝑁𝑜𝑟𝑚(·) is from the work of [41].
To enhance the integration of inter-node dependencies, we use

a self-attention mechanism to merge global contextual semantic
information, thereby refining node representations.

E′ = 𝐿𝑎𝑦𝑒𝑟𝑁𝑜𝑟𝑚(𝐹𝐹𝑁 (𝑆𝑒𝑙 𝑓 𝐴𝑡𝑡 (E)) (13)
𝑆𝑒𝑙 𝑓 𝐴𝑡𝑡 (E) = 𝐶𝑟𝑜𝑠𝑠𝐴𝑡𝑡 (E, E) (14)

𝐹𝐹𝑁 (E) =𝑚𝑎𝑥 (0, EW1 + b1)W2 + b2 (15)

However, considering the initial node features are too granular
in semantic detail to compose complete textual semantics indepen-
dently, we aggregate neighboring node features through Graph At-
tention Networks (GAT) to incorporate spatial context information
within the knowledge graph. For node 𝑖 , the updated embedding is
defined as:

e(𝑙 )
𝑖

= 𝜎 (
∑︁
𝑗∈𝑁𝑖

𝛼𝑖 𝑗We(𝑙−1)
𝑗

) (16)

𝛼𝑖 𝑗 = 𝑠𝑜 𝑓 𝑡𝑚𝑎𝑥 (𝑎𝑡𝑡 (W𝑒𝑖 ,W𝑒 𝑗 ))

=
𝑒𝑥𝑝 (𝐿𝑒𝑎𝑘𝑦𝑅𝑒𝐿𝑈 (a[W𝑒𝑖 ⊕ W𝑒 𝑗 ]))∑

𝑘∈𝑁𝑖
𝑒𝑥𝑝 (𝐿𝑒𝑎𝑘𝑦𝑅𝑒𝐿𝑈 (a[W𝑒𝑖 ⊕ W𝑒𝑘 ]))

,
(17)

where e𝑖 ∈ E; 𝜎 denotes an activation function; 𝑁𝑖 represents neigh-
bor nodes of node 𝑖; W ∈ ℜ𝑑

′×𝑑 is a learnable weight matrix; ⊕ is

the concatenation operation; 𝑎𝑡𝑡 is a feedforward neural network,
parameterized by a weight vector a ∈ ℜ2𝑑 ′

.
As illustrated, starting from the second layer, each layer is com-

posed of a GAT, a cross-attention mechanism, and a self-attention
mechanism. The second layer utilizes GAT to update the node fea-
tures with one-hop neighborhood features, subsequently extracting
relevant visual features under the guidance of updated node fea-
tures. The third layer’s update involves feature extraction utilizing
two-hops neighbors, and so forth, facilitating the acquisition of vi-
sual features extracted according to varying granularities of textual
semantics in different layers.

𝑅𝑟𝑎𝑑𝐹𝑢𝑠𝑖𝑜𝑛



E′𝐺 (𝑙 ) = 𝐺𝐴𝑇 (E′𝐺 (𝑙−1) )
E𝑐 (𝑙 ) = 𝐶𝑟𝑜𝑠𝑠𝐴𝑡𝑡 (E′𝐺 (𝑙 ) , IC)
E𝑝 (𝑙 ) = 𝐶𝑟𝑜𝑠𝑠𝐴𝑡𝑡 (E′𝐺 (𝑙 ) , IPr)
E𝐼 (𝑙 ) = E𝐶 (𝑙 ) − E𝑃𝑟 (𝑙 )

E(𝑙 ) = 𝐿𝑎𝑦𝑒𝑟𝑁𝑜𝑟𝑚(E𝐼 (𝑙 ) + E′𝐺 (𝑙 ) + E𝑆 )
E′ (𝑙 ) = 𝐿𝑎𝑦𝑒𝑟𝑁𝑜𝑟𝑚(𝐹𝐹𝑁 (𝑆𝑒𝑙 𝑓 𝐴𝑡𝑡 (E(𝑙 ) )))

(18)

where 𝑙 ∈ {2, 3, · · · , 𝐿}. The output features from each layer are ag-
gregated and subjected to layer normalization, yielding an updated
knowledge graph fused spatio-temporal multimodal features.

3.3 Inclusive Node Prediction
The presence of each node within the report is predicted based
on its distance to designated anchor nodes, thereby enabling the
identification of relevant tokens within the diagnostic report.

E𝑜 = 𝐿𝑎𝑦𝑒𝑟𝑁𝑜𝑟𝑚(
𝐿∑︁

𝐿=1
E′ (𝑙 ) ) (19)

We define the training loss according to the distances between
updated node embeddings and two anchor points.

D = [|e′ − S1 |, |e′ − S0 |] (20)

P = 𝑆𝑜 𝑓 𝑡𝑚𝑎𝑥 (D) (21)
where 𝑆0 and 𝑆1 represent embeddings of the anchor points, e′ ∈ E𝑜 .
The loss function is the cross-entropy loss

𝐿𝑐 = − 1
𝑀

𝑀∑︁
𝑖=1

2∑︁
𝑗=1

𝑦𝑛𝑖 𝑗 𝑙𝑜𝑔(𝑝
𝑛
𝑖 𝑗 ), (22)

where 𝑦𝑛
𝑖 𝑗

∈ {0, 1} and 𝑝𝑛
𝑖 𝑗

∈ [0, 1] are the ground-truth label and
predicted label of the 𝑖-th node, respectively. Updated node features
are also used to predict their presence in the current report. If 𝑝𝑛

𝑖1
exceeds a predefined threshold 𝑇ℎ𝑟𝑒𝑑 , the 𝑖-th node is classified as
label 1; otherwise, it is classified as label 0.

3.4 Report Generation
We employ a constructed global knowledge graph to guide the
spatio-temporal multimodal fusion of patients’ previous examina-
tions, including chest radiographs and diagnostic reports, as well as
current chest radiographs. After the multimodal fusion, we predict
the nodes contained in the current report based on the integrated
node features. Subsequently, these predicted nodes are utilized to
generate diagnostic reports. To ensure that no critical details in
the current chest X-ray images are overlooked, we integrate the
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features of the X-rays and the nodes during the report generation
process. The input of the decoder is defined by

H = [I𝑐 ⊕ (E𝑜 + E𝑆 )] (23)

If the node label is 1, E𝑆 = s1; otherwise, E𝑆 = s0. Finally, we use a
Transformer decoder to generate diagnostic reports.

𝑅 = 𝑇𝐹 − 𝐷𝑒𝑐𝑜𝑑𝑒𝑟 (H) (24)

The decoder is optimized with cross-entropy loss to maximize the
conditional log-likelihood.

𝐿𝑔 = −1
𝑙

𝑙∑︁
𝑖=1

𝑣∑︁
𝑗=1

𝑦𝑖 𝑗 𝑙𝑜𝑔(𝑝𝑖 𝑗 ), (25)

where 𝑙 is the length of generated report; 𝑣 represents vocabulary
size; 𝑝𝑖 𝑗 is the probability of the 𝑖-th word of the report is the 𝑗-th
word in the vocabulary; 𝑦𝑖 𝑗 is the corresponding ground truth. The
overall loss function is defined as:

𝐿 = 𝐿𝑐 + 𝐿𝑔 (26)

4 EXPERIMENT
4.1 Datasets
MIMIC-CXR [17] is a large dataset of 227,835 imaging studies in-
volving 65,379 patients who presented to the emergency department
of Beth Israel Deaconess Medical Center between 2011 and 2016.
We use the official split and exclude studies without X-ray images
or missing findings. MIMIC-ABN [31] is a subset of MIMIC-CXR
proposed. Reports in MIMIC-ABN only contain abnormal sentences.
We partitioned our dataset into training, validation, and testing sets
following the strongest baseline, Recap [10].

4.2 Evaluation Metrics
To thoroughly assess the generated reports’ quality, we utilize both
natural language generation (NLG) metrics and factual correctness
(FC) metrics. The NLGmetrics we adopt include BLUE [34], ROUGE-
L [23] and METEOR [2]. These metrics are designed to evaluate the
descriptive accuracy of the reports by comparing them with the
ground truth reports. On the other hand, FC metrics, specifically
the factual-oriented metric F1-RadGraph and the clinical efficacy
metric F1-Score (which leverages 14 observations from CheXbert
[38]), are implemented to assess the reports’ accuracy in depicting
clinical abnormalities.

4.3 Implementation details
For our study, the PyTorch framework facilitated the model’s de-
velopment, which was trained on an NVIDIA Tesla V100 GPU with
32GB of memory. Input images were resized to 256x256 and pro-
cessed via a pre-trained DenseNet121 to extract features, yielding
a 1024x8x8 feature map. Both self-attention and cross-attention
are 8-head multihead attention. A 12-layer Transformer with four
attention heads was utilized for decoding. We used an Adam opti-
mizer with a learning rate of 3e-4, 0.01 weight decay, 0.1 dropout,
and a batch size of 8. Embedding dimensions were set at 256. Node
prediction counts were 255 for MIMIC-ABN and 769 for MIMIC-
CXR, with a node prediction threshold of 0.17. Hyperparameters
were refined based on validation set performance.

4.4 Baselines
We conducted a comparative analysis against a wide range of
state-of-the-art baselines in medical report generation. This com-
parison included models with a focus on cross-modal alignment
such as R2Gen [7], CMN [6], and Aligntransformer [46]. We also
assessed models that utilize reinforcement learning to optimize
fact-related rewards, notably 𝑀2fact𝐸𝑁𝑇𝑁𝐿 [30], and others like
CvT-212DistilGPT2 [32] that employ fine-tuning strategies with
pretrained models. Additionally, models integrating domain knowl-
edge such as PPKED [24], M2KG [44], KiUT [13], and ORGAN
[11], as well as those incorporating historical examination data like
CXRmate [33] and Recap [10], were examined. Our comparative
analysis also encompassed medical report generation techniques
based on LLMs, specifically XrayGPT [39] and MedPaLM [40], to
provide a holistic understanding of our model’s standing within
the current technological landscape. The metrics reported in the
original papers of these models serve as reference benchmarks for
our comparative analysis.

4.5 Main results
4.5.1 Language quality. As presented in Table 1, ourmodel achieves
superior performance compared to the baselines on both MIMIC-
ABN, primarily involving first-visit patients, andMIMIC-CXR,which
includes numerous follow-up cases. This underscores our model’s
capability to generate accurate reports for diverse patient types.
Compared to large-scale model-based methods e.g., XrayGPT [39]
and Med-PaLM [40], our model shows significant superiority in
NLG metrics, surpassing Med-PaLM(562B) by 11.9% in BLEU-1 and
3% in Rouge-L on MIMIC-CXR. Relative to CXRmate [33], which
also incorporates historical patient data, our approach shows en-
hancements of 5% in BLEU-4 and 4.3% in Rouge-L. Although Recap
[10] performs best among all the baselines, its overall performance
still lags behind our model, particularly in Rouge-L, where we
exceed it by 1.7% and 2.5% on MIMIC-CXR and MIMIC-ABN, re-
spectively. Despite Organ [11] and Recap [10] showing significant
advantages over other baselines by integrating complex graph-
building processes, this approach causes their models to be highly
dependent on the quality of these constructions, reducing their
generalizability.

4.5.2 Factual correctness. We evaluate the factual accuracy of the
generated reports from different models in Table 1. Our model
reaches the highest scores in both factual-oriented metric, such as
F1-RadGraph(ER) and clinical efficacy metric, such as F1-Chexbert
across the two datasets, cementing its preeminence in generating
factually correct reports. When juxtaposed with the leading base-
line𝑀2fact𝐸𝑁𝑇𝑁𝐿 [30] in terms of F1-RadGraph performance, our
model exhibits a 3% improvement. While𝑀2fact𝐸𝑁𝑇𝑁𝐿 excels in
F1-RadGraph, its performance is notably lower in F1-CheXbert.
This discrepancy suggests that the optimization of𝑀2fact𝐸𝑁𝑇𝑁𝐿

using F1-RadGraph-related rewards may inflate its performance on
this metric, potentially masking its true clinical accuracy. Compared
with the best-performing Recap on F1-Chexbert, we improved 1.8%
and 0.8% on MIMIC-CXR and MIMIC-ABN respectively. This ad-
vantage is particularly significant on MIMIC-CXR, which includes
many follow-up patients, reflecting our model’s efficacy in integrat-
ing historical patient data.
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Table 1: Comparison of NLG and FCmetrics on MIMIC-ABN and MIMIC-CXR testing sets. B denotes BLEU scores; MTR denotes
METEOR; R-L denotes ROUGE-L. F1-Rad denotes 1-RadGraph; F1-CE denotes F1-CheXbert; * denotes that the improvements of
our model over state-of-the-art baselines on major metrics are statistically significant, based on two-tailed t-tests (𝑝 < 0.001).

Datasets Method NLG Metrics FC Metrics
B-1 B-2 B-3 B-4 MTR R-L AVG F1-Rad F1-CE

MIMIC-ABN

R2Gen [7] 0.290 0.157 0.093 0.061 0.105 0.208 0.152 - 0.272
CMN [6] 0.264 0.140 0.085 0.056 0.098 0.212 0.142 - 0.280
ORGAN [11] 0.314 0.180 0.114 0.078 0.120 0.234 0.173 - 0.293
Recap [10] 0.321 0.182 0.116 0.080 0.120 0.223 0.174 - 0.305
Ours 0.322 0.192 0.125 0.085 0.128 0.248 0.183* 0.227 0.313*

MIMIC-CXR

R2Gen [7] 0.353 0.218 0.145 0.103 0.142 0.277 0.206 0.196 0.276
CMN [6] 0.353 0.218 0.148 0.106 0.142 0.278 0.207 0.218 0.278
Aligntransformer [46] 0.378 0.235 0.156 0.112 0.158 0.283 0.220 - -
CvT-212DistilGPT2 [32] 0.394 0.249 0.172 0.127 0.155 0.287 0.230 0.219 0.258
𝑀2fact𝐸𝑁𝑇𝑁𝐿 [30] - - - 0.083 - 0.269 0.218 0.320 0.311
XrayGPT(7B) [39] 0.128 0.045 0.014 0.004 0.079 0.111 0.064 - -
Med-PaLM(12B) [40] 0.309 - - 0.104 - 0.262 0.225 0.252 0.373
Med-PaLM(562B) [40] 0.317 - - 0.115 - 0.275 0.235 0.261 0.378
PPKED [24] 0.360 0.224 0.149 0.106 0.149 0.284 0.212 - -
M2KG [44] 0.386 0.237 0.157 0.111 - 0.274 0.233 - 0.352
KiUT [13] 0.393 0.243 0.159 0.113 0.160 0.285 0.225 - 0.321
ORGAN [11] 0.407 0.256 0.172 0.123 0.162 0.293 0.235 - 0.385
CXRmate - - - 0.079 - 0.262 0.170 0.272 0.357
Recap [10] 0.429 0.267 0.177 0.125 0.168 0.288 0.242 - 0.393
Ours 0.436 0.275 0.184 0.129 0.177 0.305 0.251* 0.350* 0.411*

Table 2: Ablation study, evaluated on validation sets.

Datasets Variant AvgNLG F1-Rad F1-CE

MIMIC-ABN

Full model 0.181 0.220 0.317
w/o hist.info. 0.180 0.217 0.314
w/o RadFusion 0.174 0.207 0.294
w/o FeatureNorm 0.173 0.197 0.276

MIMIC-CXR

Full model 0.253 0.351 0.413
w/o hist.info. 0.248 0.333 0.401
w/o RadFusion 0.244 0.328 0.389
w/o FeatureNorm 0.238 0.314 0.376

Table 3: The effectiveness analysis of our proposed feature
normalization (FN) method on diseases with different label
frequencies, evaluated on the MIMIC-ABN validation set.

Variant High-freq. diseases Low-freq. diseases
P-CE R-CE F1-CE P-CE R-CE F1-CE

Full model 0.506 0.549 0.526 0.320 0.281 0.264
w/o FN 0.480 0.502 0.479 0.256 0.193 0.178
Gains +0.026 +0.047 +0.047 +0.064 +0.088 +0.086

4.6 Ablation study
Our ablation study used validation sets to avoid overfitting the
model to the testing set during hyperparameter tuning and model
architecture decisions, ensuring the final evaluation is unbiased.

4.6.1 Effect of historical information. To examine the impact of in-
tegrating patients’ historical examination data on the performance
of the model, we conducted an experiment by omitting the histori-
cal information of follow-up patients. As indicated in Table 2, on
MIMIC-ABN, the exclusion of historical data did not significantly

affect the model’s performance, which can be attributed to the
fact that less than 10% of the patients on MIMIC-ABN are follow-
up cases. However, on the MIMIC-CXR dataset, which contains a
higher proportion of follow-up patients, the model’s performance
declined upon the removal of historical data, underscoring the
significance of historical information for follow-up patients.

4.6.2 Effect of RadFusion. To validate the effectiveness of the pro-
posed RadFusion module, we substituted it with the transformer-
based Fusion module from MedKLIP [42] for integrating node and
visual features. Given that the Fusion module does not account for
historical information, we applied the same method of incorporat-
ing historical features as with RadFusion. As illustrated in Table 2,
the model’s performance deteriorated upon replacing the RadFu-
sion module, underscoring the efficacy of the RadFusion module.

4.6.3 Effect of Feature Normalization. Table 2 shows that our pro-
posed feature normalization method is the most significant among
our technical innovations. To assess its effectiveness on diseases
with varying frequencies, we evaluated the clinical accuracy of
the generated reports in describing 14 abnormal observations of
MIMIC-ABN. The diseases were categorized into two groups based
on the frequency of occurrence of these observations. Those above
the average frequency were considered common diseases with high
frequency; Those below were classified as non-common diseases
with low frequency. In Table 3, the performance improvements in
low-frequency diseases are about twice as pronounced as those in
high-frequency ones. This finding underscores the significance of
our feature normalization method in enhancing clinical accuracy,
particularly for less common diseases. This is because we miti-
gate the challenge posed by the long-tail distribution of tokens by
addressing the frequency biases in the node feature representations.
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Chest X-ray Prior X-ray Prior report Ground truth and tenerated reports

portable supine radiograph of the chest.
there is diffuse indistinctness of the
pulmonary vasculature, suggestive of
mild interstitial pulmonary edema.
although the heart size is likely
exaggerated by the technique, there is
moderate cardiomegaly which is stable
from <unk> but not present on <unk>.
the lungs are clear. the there is no
pneumothorax or pleural effusion.
chronic rightward tracheal deviation
secondary to thyromegaly

as compared to the previous radiograph,
the patient has received a new
dobbhoff tube. the tip of the tube
projects over the middle parts of the
stomach. the course of the tube is
unremarkable. there is no evidence of
complications, notably no
pneumothorax. otherwise, the
radiographic appearance of the thoracic
organs is similar to the previous
examination.

Ground truth
as compared to prior chest radiograph from earlier today, there has been 
interval placement of an endotracheal tube, terminating <num> cm above the
carina. the cardiac silhouette is enlarged. as before, there is mild pulmonary
edema. lungs are otherwise clear. there is no focal consolidation, pneumothorax 
or pleural effusion .

Generated reports
the endotracheal tube terminates <num> cm above the carina. the lungs are 
well - expanded. there is mild pulmonary vascular congestion and interstitial
edema. there is no focal consolidation, pleural effusion or pneumothorax. the
cardiac silhouette is enlarged but stable. the mediastinal silhouette is
unchanged. the left upper extremity tube is in the stomach .

Ground truth
as compared to the previous radiograph , there is no relevant change. the tip of 
the endotracheal tube projects <num> cm above the carina. the tube could be 
advanced by <num> cm . unchanged moderate-to-severe cardiomegaly with 
signs of mild-to-moderate pulmonary edema and a moderate right-sided pleural
effusion. bilateral areas of atelectasis at the lung bases. no pneumothorax. 
right picc line in unchanged position. 

Generated reports
as compared to the previous radiograph , the monitoring and support devices , 
including the endotracheal tube and the tip of the tube are in unchanged
position . the tip of the tube projects <num> cm above the carina. unchanged 
moderate cardiomegaly with mild pulmonary edema and a moderate right
pleural effusion. mild atelectasis in the left lower lung . no pneumothorax .

Figure 3: Case study of two follow-up-visit samples. Predicted token nodes in reports are highlighted in green, and colored text
in reports represents the abnormalities.

4.7 Case Study
A qualitative analysis was conducted on two follow-up-visit sam-
ples from the MIMIC-CXR dataset in Figure 3. Our model performs
a comparative analysis of patients’ previous and current chest ra-
diographs while integrating historical report information by dis-
cretizing prior reports into a series of tokens, thereby synthesizing
a comprehensive diagnostic report. Within this illustration, crucial
tokens predicted by our model are accentuated with green high-
lighting, effectively encompassing the principal semantic content of
the report. Moreover, there is a significant overlap between the to-
kens within the generated report and the ground truth, exemplified
by terms such as “endotracheal”, “tube”, “pneumothorax”,“effusion”,
“edema”, and “enlarged”. Abnormal descriptions within the report
are marked in colored, with uniform coloring denoting similar
disease types, underscoring our model’s accuracy in delineating
multiple abnormalities. For instance, in the context of support de-
vices, the report specifies: “the endotracheal tube terminates <num>
cm above the carina”; regarding cardiomegaly, it notes: “the cardiac
silhouette is enlarged but stable”; and in the case of edema, it men-
tions: “there is mild pulmonary vascular congestion and interstitial
edema.” The generated reports also covers long, complex sentences
describing multiple abnormalities, such as “unchanged moderate
cardiomegaly with mild pulmonary edema and a moderate right
pleural effusion.”

5 CONCLUSION
In this paper, we present a medical report generation framework
that emulates radiologists’ workflows by integrating both historical
and current patient data, enabling disease progression tracking and
personalized report creation. Our method tackles textual diversity

in cross-modal tasks through style-agnostic representations and
advanced token prediction. We introduce a novel spatio-temporal
fusionmethod for integrating textual and visual data acrossmultiple
granularities and apply a feature normalization technique to address
biases from long-tail frequency distributions, enhancing accuracy in
rare disease reporting. Experimental results on two public datasets
demonstrate our model’s superiority over state-of-the-art baselines.

Limitation and Future Work. Our enhancements include
discrete node prediction to enrich reports. However, the typical
scarcity of nodes in reports leads to significant data imbalances,
impacting prediction accuracy. We address this by excluding some
low-frequency nodes, which risks omitting critical semantic in-
formation. Future work will aim to balance node prediction tasks
more effectively, ensuring the comprehensive capture of crucial
diagnostic details to improve the reliability of automated medical
reporting.

6 ETHICS STATEMENT
The datasets used in this work, MIMIC-ABN [31] and MIMIC-
CXR [17], are publicly available and have been automatically de-
identified to protect patient privacy. Our review confirms that the
usage of these datasets poses no substantial ethical risks. How-
ever, despite the model’s ability to enhance the factual accuracy
of medical reports, it has not yet reached a level suitable for clin-
ical application. The generated reports may occasionally include
inaccurate or biased observations and diagnostic suggestions. We
strongly recommend that healthcare professionals critically evalu-
ate and validate the model’s outputs before any clinical application
to ensure patient safety and care quality.
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