
Checklist

1. For all authors...

(a) Do the main claims made in the abstract and introduction accurately reflect the paper’s
contributions and scope? [Yes]

(b) Did you describe the limitations of your work? [Yes]
(c) Did you discuss any potential negative societal impacts of your work? [N/A]
(d) Have you read the ethics review guidelines and ensured that your paper conforms to

them? [Yes]

2. If you are including theoretical results...

(a) Did you state the full set of assumptions of all theoretical results? [Yes] . See §3.1.
(b) Did you include complete proofs of all theoretical results? [Yes] . All proofs are in §B.

3. If you ran experiments...

(a) Did you include the code, data, and instructions needed to reproduce the main experi-
mental results (either in the supplemental material or as a URL)? [Yes] We provide the
URL to our code repository.

(b) Did you specify all the training details (e.g., data splits, hyperparameters, how they
were chosen)? [Yes] See §C.1.

(c) Did you report error bars (e.g., with respect to the random seed after running experi-
ments multiple times)? [Yes]

(d) Did you include the total amount of compute and the type of resources used (e.g., type
of GPUs, internal cluster, or cloud provider)? [Yes] See Experimental setup in section
§6.

4. If you are using existing assets (e.g., code, data, models) or curating/releasing new assets...

(a) If your work uses existing assets, did you cite the creators? [Yes] See §C.1.
(b) Did you mention the license of the assets? [Yes] We use open-source code.
(c) Did you include any new assets either in the supplemental material or as a URL? [No]
(d) Did you discuss whether and how consent was obtained from people whose data you’re

using/curating? [N/A] We use open-source datasets.
(e) Did you discuss whether the data you are using/curating contains personally identifiable

information or offensive content? [N/A]

5. If you used crowdsourcing or conducted research with human subjects...

(a) Did you include the full text of instructions given to participants and screenshots, if
applicable? [N/A]

(b) Did you describe any potential participant risks, with links to Institutional Review
Board (IRB) approvals, if applicable? [N/A]

(c) Did you include the estimated hourly wage paid to participants and the total amount
spent on participant compensation? [N/A]

Contents

1 Introduction 1

2 Related work 3

3 Background on Error-Feedback (EF) SGD 4

3.1 Assumptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

15



4 A communication complexity perspective to sparsification 5

4.1 A sparse approximation problem . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

4.2 Minimizing the total-error is not possible . . . . . . . . . . . . . . . . . . . . . . 5

4.3 Top-k is communication-optimal for a per-iteration k element budget . . . . . . . . 5

4.4 A communication complexity model for adaptive sparsification . . . . . . . . . . . 6

4.5 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

5 Absolute compressors and their convergence 7

5.1 Convergence results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

5.1.1 Convex convergence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

5.1.2 Non-convex convergence . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

6 Experiments 9

7 Conclusion 10

A Notations 17

B Convergence analysis 17

B.1 Overview of results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

B.2 Technical results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

B.3 Non-convex convergence analysis . . . . . . . . . . . . . . . . . . . . . . . . . . 19

B.3.1 Absolute compressors . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

B.3.2 δ-contraction operators . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

B.3.3 Uncompressed SGD . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

B.3.4 Final convergence result . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

B.4 Convex convergence analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

B.4.1 Absolute compressors . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

B.4.2 δ-contraction operators . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

B.5 Comparison against unbiased compressors . . . . . . . . . . . . . . . . . . . . . . 27

C Addendum to numerical experiments 28

C.1 Experimental settings and implementation details . . . . . . . . . . . . . . . . . . 28

C.2 Top-k suffers from large error accumulation . . . . . . . . . . . . . . . . . . . . . 28

C.3 Logistic regression experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

C.3.1 Extreme sparsification . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

C.3.2 Convergence to an arbitrary neighborhood of the optimum . . . . . . . . . 31

C.4 Comparison against ACCORDION . . . . . . . . . . . . . . . . . . . . . . . . . . 31

C.5 Entire-model sparsification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

C.6 Error-Feedback (EF) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

C.6.1 Convergence without EF . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

C.6.2 Different types of EF . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

16



D How to tune the hard-threshold? 35

Appendices are supporting material that has not been peer-reviewed.

A Notations

In this paper, by [d] we denote the set of d natural numbers {1, 2, · · · , d}. We denote the `2 norm of
a vector x ∈ Rd by ‖x‖, and the `1 and `∞-norms are denoted by ‖x‖1 and ‖x‖∞, respectively. By
0 we denote a vector of all 0s in Rd. In the proofs, we use the notation Et[·] to denote expectation
conditioned on the iterate, xt, that is, E[·|xt].

B Convergence analysis

In this section, we provide the proofs of convex and non-convex convergence results of the absolute
compressors with EF, and compare them with that of the δ-contraction operators, and vanilla SGD.

B.1 Overview of results

In §B.2, we provide the technical lemmas and inequalities necessary for the analyses. In §B.3 we
provide the non-convex convergence results, and §B.4 contains the convex convergence results.

B.2 Technical results

Lemma 4. If a, b ∈ Rd then the Young’s inequality is: For all ρ > 0, we have

‖a+ b‖2 ≤ (1 + ρ)‖a‖2 + (1 + ρ−1)‖b‖2. (10)

Alternatively,
2 〈a, b〉 ≤ ρ‖a‖2 + ρ−1‖b‖2. (11)

Lemma 5. For ai ∈ Rd we have:

‖ 1

n

n∑

i=1

ai‖2 ≤
1

n

n∑

i=1

‖ai‖2. (12)

Lemma 6. [54] Let r0, c ≥ 0, d, T > 0, and 0 < γ ≤ 1
d . Then choosing γ = min( 1

d ,
√

r0
cT ), the

following holds:
r0

γT
+ cγ ≤ dr0

T
+

2
√
cr0√
T

Proof. We consider two cases. If r0
cT ≤ 1

d2 , then choosing the step-size γ =
(
r0
cT

)1/2
, we get

r0

γT
+ cγ ≤ 2

√
cr0√
T

.

Else, if r0
cT > 1

d2 , then choosing γ = 1
d , we get

r0

γT
+ cγ ≤ dr0

T
+
c

d
≤ dr0

T
+

√
cr0√
T
.

Combining both bounds, we get the result.

Lemma 7. Let r0, b ≥ 0, c, d, T > 0, and 0 < γ ≤ 1
d . Then choosing γ = min( 1

d ,
√

r0
cT ), the

following holds:
r0

γT
+ cγ + bγ2 ≤ dr0

T
+

2
√
cr0√
T

+
br0

cT
.

17



Proof. The proof follows similar to Lemma 6. We consider two cases. If r0
cT ≤ 1

d2 , then choosing the

step-size γ =
(
r0
cT

)1/2
, we get

r0

γT
+ cγ + bγ2 ≤ 2

√
cr0√
T

+
br0

cT
.

Else, if r0
cT > 1

d2 , then choosing γ = 1
d , we get

r0

γT
+ cγ + bγ2 ≤ dr0

T
+
c

d
+

b

d2
≤ dr0

T
+

√
cr0√
T

+
br0

cT
.

Combining both bounds, we get the result.

Lemma 8. [54] Let r0 ≥ 0, d, T > 0, and 0 < γ ≤ 1
d . Then choosing γ = min( 1

d ,
(
r0
bT

)1/3
), the

following holds:
r0

γT
+ bγ2 ≤ dr0

T
+

2(br0)
2/3

T 2/3
.

Proof. We consider two cases. If r0
bT ≤ 1

d3 , then choosing the step-size γ =
(
r0
bT

)1/3
, we get

r0

γT
+ bγ2 ≤ 2(br0)

2/3

T 2/3
.

Else, if r0
bT > 1

d3 , then choosing γ = 1
d , we get

r0

γT
+ bγ2 ≤ dr0

T
+

b

d2
≤ dr0

T
+

(br0)
2/3

T 2/3
.

Combining both bounds, we get the result.

Lemma 9. For every non-negative sequence {rt}t≥0 and parameters, a > 0, b, c ≥ 0, T ≥ 2,φ ≥ 1,
decreasing step-sizes {γt := 2

a(φ+t)}t≥0, and weights {wt := (φ+ t)}t≥0, satisfy

ΨT :=
1

WT

T∑

t=0

(
wt
γt

(1− aγt)rt −
wt
γt
rt+1 + cγtwt + bγ2

twt

)
≤ 4c

aT
+
aφ2r0

T 2
+

16b ln(T )

a2T 2
,

where WT :=
∑T
t=0 wt.

Proof. This proof is motivated from Lemma 11 in [54]. We observe
wt
γt

(1− aγt)rt =
a

2
(φ+ t)(φ+ t− 2)rt =

a

2
((φ+ t− 1)2 − 1)rt ≤

a

2
(φ+ t− 1)2rt. (13)

By plugging in the definition of γt and wt in Ψt, we find

ΨT

(13)
≤ 1

WT

T∑

t=0

(a
2

(φ+ t− 1)2rt −
a

2
(φ+ t)2rt+1

)
+

T∑

t=0

2c

aWT
+

T∑

t=0

4b

a2(φ+ t)WT

≤ a(φ− 1)2r0

2WT
+

2c(T + 1)

aWT
+

4b

a2WT

T∑

t=0

1

φ+ t
.

By using (φ − 1)2 ≤ φ2, WT =
∑T
t=0(φ + t) ≥ (2φ+T )(T+1)

2 ≥ (T+1)(T+2)
2 , and

∑T
t=0

1
φ+t ≤∑T

t=0
1

1+t ≤ ln(T + 1) + 1, we have

ΨT ≤
aφ2r0

(T + 1)(T + 2)
+

4c

a(T + 2)
+

8b(ln(T + 1) + 1)

a2(T + 1)(T + 2)
.

For T ≥ 2, we have (ln(T+1)+1)
(T+1)(T+2) ≤

2 ln(T )
T 2 . By using this, we get

ΨT ≤
aφ2r0

T 2
+

4c

aT
+

16b ln(T )

a2T 2
.

Hence the result.

18



Lemma 10. (Lemma D.2 in [22]) For every non-negative sequence {rt}t≥0 and parameters, d ≥
a > 0, b, c, T ≥ 0, with a bound on the step-size γt ≤ 1

d , there exists a constant step-size,

γt = γ = min{1

d
,

ln(max{2,min{a2r0T
2/c, a3r0T

3/b}})
aT

}

and weights,wt := (1−aγ)−(t+1), such that for all T satisfying ln(max{2,min{a2r0T 2/c,a3r0T
3/b}})

T ≤
1, we have

ΨT := 1
WT

∑T
t=0

(
wt
γt

(1− aγt)rt − wt
γt
rt+1 + cγtwt + bγ2

twt

)
= Õ

(
dr0 exp

[
−adT

]
+ c

aT + b
a2T 2

)
.

Proof. Substituting the values for γt and wt, we get

ΨT =
1

γWT

T∑

t=0

(wt−1rt − wtrt+1) +
cγ

WT

T∑

t=0

wt +
bγ2

WT

T∑

t=0

wt

≤ r0

γWT
+ cγ + bγ2

≤ r0

γ
exp[−aγT ] + cγ + bγ2, (14)

where we use WT ≥ wT ≥ (1− aγ)−T ≥ exp[aγT ] in the last inequality. To tune γ, we consider
following two cases:
• If 1

d ≥
ln(max{2,min{a2r0T 2/c,a3r0T

3/b}})
aT , then we choose γ = ln(max{2,min{a2r0T 2/c,a3r0T

3/b}})
aT

and (14) becomes Õ( c
aT + b

a2T 2 ), as

• If 1
d < ln(max{2,min{a2r0T 2/c,a3r0T

3/b}})
aT , then we choose γ = 1

d and (14) becomes
Õ(dr0 exp

[
−adT

]
+ c

aT + b
a2T 2 ).

Combining both bounds, we get the result.

The recurrence relation in the next lemma is instrumental for perturbed iterate analysis of Algorithm
1 used in both convex and non-convex cases.

Lemma 11. Let ēt = 1
n

∑n
i=1 ei,t, ḡt = 1

n

∑n
i=1 gi,t, and p̄t = 1

n

∑n
i=1 pi,t. Define the sequence

of iterates {x̃t}t≥0 as x̃t = xt − ēt, with x̃0 = x0. Then {x̃t}t≥0 satisfy the recurrence: x̃t+1 =
x̃t − γtḡt.

Proof. We have

x̃t+1 = xt+1 − ēt+1 = xt − (ēt + γtḡt) = x̃t − γtḡt.

Hence the result.

B.3 Non-convex convergence analysis

In this section, we provide the non-convex convergence analyses. Lemma 13 provides a one-step
descent recurrence which leads to Theorem 1 and a key result for proving convergence. Based on
this, in §B.3.1, §B.3.2, §B.3.3 we discuss the convergence of absolute compressors, δ-contraction
operators, and uncompressed SGD, respectively. In §B.3.4 we provide the convergence result
for absolute compressors and δ-contraction operators for an appropriate choice of step-size. The
following lemma bounds the quantity Et‖ 1

n

∑n
i=1 gi,t‖2.

Lemma 12. Let f follow Assumption 4 and the stochastic noise, ξi,t follow Assumption 3. Then we
have

Et‖
1

n

n∑

i=1

gi,t‖2 ≤ (1 +
M(C + 1)

n
)‖∇f(xt)‖2 +

Mζ2 + σ2

n
. (15)

19



Proof. Let the stochastic gradient, gi,t computed at ith worker at iteration t follows gi,t = ∇fi(xt) +
ξi,t with E[ξi,t|xt] = 0. Hence, we have

Et‖
1

n

n∑

i=1

gi,t‖2 = Et‖
1

n

n∑

i=1

(∇fi(xt) + ξi,t)‖2

E[ξi,t|xt]=0
= ‖∇f(xt)‖2 + Et‖

1

n

n∑

i=1

ξi,t‖2

E[ξi,t|xt]=0
= ‖∇f(xt)‖2 +

1

n2

n∑

i=1

Et‖ξi,t‖2

By Assumption 3

≤ ‖∇f(xt)‖2 +
1

n2

n∑

i=1

(M‖∇fi(xt)‖2 + σ2)

= ‖∇f(xt)‖2 +
M

n2

n∑

i=1

‖∇fi(xt)−∇f(xt)‖2 +
M‖∇f(xt)‖2

n
+
σ2

n

By Assumption 4

≤ (1 +
M

n
)‖∇f(xt)‖2 +

M

n
(C‖∇f(xt)‖2 + ζ2) +

σ2

n
.

By rearranging the terms we get the result.

The following non-convex descent lemma is the key result used to establish convergence of both
absolute compressors and δ-contraction operators.
Lemma 13. (Non-convex descent lemma) Let Assumptions 1, 3, and 4 hold. If {xt}t≥0 denote the

iterates of Algorithm 1 for a constant step-size, γ ≤ n

2L(M(C + 1) + n)
, then

E[f(x̃t+1)]] ≤ E[f(x̃t)]−
γ

4
E‖∇f(xt)‖2 +

γ2L(Mζ2 + σ2)

2n
+
γL2

2n

n∑

i=1

E‖ei,t‖2. (16)

Proof. By using the L-smoothness of f and taking expectation we have

Et[f(x̃t+1)] ≤ f(x̃t)− 〈∇f(x̃t),Et[x̃t+1 − x̃t]〉+
L

2
Et‖x̃t+1 − x̃t‖2

= f(x̃t)− γ 〈∇f(x̃t),∇f(xt)〉+
γ2L

2
Et‖

1

n

n∑

i=1

gi,t‖2

(15)
≤ f(x̃t)− γ 〈∇f(x̃t),∇f(xt)〉

+
γ2L

2

(
(1 +

M(C + 1)

n
)‖∇f(xt)‖2 +

Mζ2

n
+
σ2

n

)

≤ f(x̃t)− γ‖∇f(xt)‖2 + γ 〈∇f(xt)−∇f(x̃t),∇f(xt)〉

+
γ2L(M(C + 1) + n)

2n
‖∇f(xt)‖2 +

γ2L(Mζ2 + σ2)

2n
(11)
≤ f(x̃t)− (γ − γ

2
− γ2L(M(C + 1) + n)

2n
)‖∇f(xt)‖2 +

γ‖∇f(xt)−∇f(x̃t)‖2
2

+
γ2L(Mζ2 + σ2)

2n
By L−smoothness

and γ≤ n
2L(M(C+1)+n)

≤ f(x̃t)−
γ‖∇f(xt)‖2

4
+
γL2‖xt − x̃t‖2

2
+
γ2L(Mζ2 + σ2)

2n

= f(x̃t)−
γ‖∇f(xt)‖2

4
+
γL2‖ēt‖2

2
+
γ2L(Mζ2 + σ2)

2n
(12)
≤ f(x̃t)−

γ‖∇f(xt)‖2
4

+
γL2 1

n

∑n
i=1‖ei,t‖2
2

+
γ2L(Mζ2 + σ2)

2n
.

20



Taking total expectation yields the lemma.

Remark 10. Rearranging the terms in Lemma 13, performing telescopic sum, and noting that ζ = 0
for n = 1, we get the result in Theorem 1.

B.3.1 Absolute compressors

Theorem. 6 (Non-convex convergence of absolute compressors) Let Assumptions 1, 2, 3, and 4
hold. Then the iterates, {xt}t≥0 of Algorithm 1 with an absolute compressor, C and a constant
step-size, γ ≤ n

2L(M(C+1)+n) , follow

1

T

T−1∑

t=0

E‖∇f(xt)‖2 ≤
4(f(x0)− f?)

γT
+

2γL(Mζ2 + σ2)

n
+ 2γ2L2υ2.

Proof. By using Lemma 13, we have

E[f(x̃t+1)] ≤ E[f(x̃t)]−
γE‖∇f(xt)‖2

4
+
γL2 1

n

∑n
i=1 E‖ei,t‖2
2

+
γ2L(Mζ2 + σ2)

2n
Remark 5
≤ E[f(x̃t)]−

γE‖∇f(xt)‖2
4

+
γ3L2υ2

2
+
γ2L(Mζ2 + σ2)

2n
.

By taking summation over the iterates, we get

1

T

T−1∑

t=0

E‖∇f(xt)‖2 ≤
4
∑T−1
t=0 (E[f(x̃t)]− E[f(x̃t+1)])

γT
+

2γL(Mζ2 + σ2)

n
+ 2γ2L2υ2

≤ 4(f(x0)− f?)
γT

+
2γL(Mζ2 + σ2)

n
+ 2γ2L2υ2.

Hence the result.

B.3.2 δ-contraction operators

We now provide an error-bound for δ-contraction operators, which is an extension of the single node
case in [54].

Lemma 14. Let f follow Assumption 4 and the stochastic noise follow Assumptions 3. Define ei,t as
in Algorithm 1. Then by using a δ-compressor, C, with a constant step-size, γ ≤ 1

2L(2/δ+M)
√
C+1

,
we have

T∑

t=0

[
1

n

n∑

i=1

E‖ei,t‖2
]
≤ 1

4L2

T∑

t=0

E‖∇f(xt)‖2 +
2γ2(T + 1)

δ

((
2

δ
+M

)
ζ2 + σ2

)
. (17)

Proof. We note that the compression operator, C and the stochastic noise, ξi,t are independent of
each other. Therefore, by taking expectation on the randomness of the compression operator, C in the
following expression we have

1

n

n∑

i=1

EC‖ei,t+1‖2 =
1

n

n∑

i=1

EC‖ei,t + γgi,t − γC(
ei,t
γ

+ gi,t)‖2

By (7)
≤ 1

n

n∑

i=1

γ2(1− δ)‖ei,t
γ

+ gi,t‖2,

21



which further by taking expectation conditioned on xt becomes

1

n

n∑

i=1

E
(
EC‖ei,t+1‖2|xt

) E[ξi,t|xt]=0

≤ (1− δ)
n

n∑

i=1

‖ei,t + γ∇fi(xt)‖2 +
(1− δ)
n

n∑

i=1

γ2E
[
‖ξi,t‖2|xt

]

Assumption 3

≤ (1− δ)
n

n∑

i=1

‖ei,t + γ∇fi(xt)‖2 +
(1− δ)γ2

n

n∑

i=1

(
M‖∇fi(xt)‖2 + σ2

)

(10)
≤ (1− δ)(1 + ρ)

n

n∑

i=1

‖ei,t‖2 +
(1− δ)(1 + ρ−1 +M)γ2

n

n∑

i=1

‖∇fi(xt)‖2

+(1− δ)γ2σ2

Assumption 4

≤ (1− δ)(1 + ρ)

n

n∑

i=1

‖ei,t‖2 +
(
(1− δ)(1 + ρ−1 +M)γ2(C + 1)

)
‖∇f(xt)‖2

+
(
(1− δ)(1 + ρ−1 +M)γ2ζ2

)
+ (1− δ)γ2σ2

≤ (1− δ)(1 + ρ)

n

n∑

i=1

‖ei,t‖2

+γ2
(
(1 + ρ−1 +M)(C + 1)‖∇f(xt)‖2 + (1 + ρ−1 +M)ζ2 + σ2

)
.

By unrolling the recurrence, taking total expectation, setting ρ = δ
2(1−δ) , such that (1 + ρ−1) =

2−δ
δ ≤ 2

δ and (1− δ)(1 + ρ) ≤ (1− δ
2 ), and using the fact that ei,0 = 0, for all i, we find

1

n

n∑

i=1

E‖ei,t+1‖2 ≤ γ2
t∑

i=0

[(1− δ)(1 + ρ)]t−i
((

2

δ
+M

)
(C + 1)E‖∇f(xi)‖2 +

(
2

δ
+M

)
ζ2 + σ2

)

≤ γ2
t∑

i=0

(1− δ

2
)t−i

((
2

δ
+M

)
(C + 1)E‖∇f(xi)‖2 +

(
2

δ
+M

)
ζ2 + σ2

)
.

Finally,

T∑

t=0

[
1

n

n∑

i=1

E‖ei,t‖2
]

= γ2
T∑

t=0

t−1∑

i=0

(1− δ

2
)t−1−i

((
2

δ
+M

)
(C + 1)E‖∇f(xi)‖2 +

(
2

δ
+M

)
ζ2 + σ2

)

≤ γ2
T−1∑

t=0

T−t−1∑

j=0

(1− δ

2
)j
((

2

δ
+M

)
(C + 1)E‖∇f(xt)‖2 +

(
2

δ
+M

)
ζ2 + σ2

)

≤ γ2
T−1∑

t=0

((
2

δ
+M

)
(C + 1)E‖∇f(xt)‖2 +

(
2

δ
+M

)
ζ2 + σ2

) ∞∑

j=0

(1− δ

2
)j

= γ2
T−1∑

t=0

(
2

δ

)((
2

δ
+M

)
(C + 1)E‖∇f(xt)‖2 +

(
2

δ
+M

)
ζ2 + σ2

)

≤ γ2
T∑

t=0

(
2

δ

)((
2

δ
+M

)
(C + 1)E‖∇f(xt)‖2 +

(
2

δ
+M

)
ζ2 + σ2

)

=

T∑

t=0

(
γ2

(
2

δ

)(
2

δ
+M

)
(C + 1)E‖∇f(xt)‖2

)
+

T∑

t=0

2γ2

δ

((
2

δ
+M

)
ζ2 + σ2

)
.

Choosing γ ≤ 1
2L(2/δ+M)

√
C+1

, we get γ2
(

2
δ

) (
2
δ +M

)
≤ 1

4L2(C+1) . Combining all together we
have

T∑

t=0

[
1

n

n∑

i=1

E‖ei,t‖2
]
≤ 1

4L2

T∑

t=0

E‖∇f(xt)‖2 +
2γ2(T + 1)

δ

((
2

δ
+M

)
ζ2 + σ2

)
.

Hence the result.

22



By using the previous bound, we now provide the non-convex convergence result for δ-contraction
operators.
Theorem. 7 (Non-convex convergence of δ-contraction operators) Let Assumptions 1, 2, 3, and 4
hold. Then the iterates, {xt}t≥0 of Algorithm 1 with a δ-contraction operator and a constant step-size
γ ≤ min{ n

2L(M(C+1)+n) ,
1

2L(2/δ+M)
√
C+1
} follow

1

T

T−1∑

t=0

E‖∇f(xt)‖2 ≤
8(f(x0)− f?)

γT
+

4γL(Mζ2 + σ2)

n
+

8γ2L2

δ

((
2

δ
+M

)
ζ2 + σ2

)
.

Proof. Summing over the iterates t = 0 to t = T − 1 in (16) of Lemma 13, we have

E[f(x̃T )] ≤ f(x0)−
∑T−1
t=0 γE‖∇f(xt)‖2

4
+
γL2

∑T−1
t=0

1
n

∑n
i=1 E‖ei,t‖2

2
+

T−1∑

t=0

γ2L(Mζ2 + σ2)

2n

(17)
≤ f(x0)− (

γ

4
− γ

8
)

T−1∑

t=0

E‖∇f(xt)‖2 +
γ3L2T

δ

((
2

δ
+M

)
ζ2 + σ2

)
+
γ2TL(Mζ2 + σ2)

2n
.

Rearranging, we get

1

T

T−1∑

t=0

E‖∇f(xt)‖2 ≤
8(f(x0)− E[f(x̃t)])

γT
+

4γL(Mζ2 + σ2)

n
+

8γ2L2

δ

((
2

δ
+M

)
ζ2 + σ2

)

≤ 8(f(x0)− f?)
γT

+
4γL(Mζ2 + σ2)

n
+

8γ2L2

δ

((
2

δ
+M

)
ζ2 + σ2

)
.

Hence the result.

B.3.3 Uncompressed SGD

We provide the convergence result of no-compression SGD (Algorithm 1 with an identity compressor,
i.e., C(x) = x for all x ∈ Rd).
Theorem 8. (Non-convex convergence of SGD) Let Assumptions 1, 2, 3, and 4 hold. Then the
iterates, {xt}t≥0 of Algorithm 1 by using an identity compressor (C(x) = x, for all x ∈ Rd) with a
constant step-size, γ ≤ n

L(M(C+1)+n) follow

1

T

T−1∑

t=0

E‖∇f(xt)‖2 ≤
2(f(x0)− f?)

γT
+
γL(Mζ2 + σ2)

n
.

Proof. We use the L-smoothness of f to find

Et[f(xt+1)] ≤ f(xt)− 〈∇f(xt),Et[xt+1 − xt]〉+
L

2
Et‖xt+1 − xt‖2

= f(xt)− γ 〈∇f(xt),Et[ḡt])〉+
γ2L

2
Et‖ḡt‖2

= f(xt)− γ‖∇f(xt)‖2 +
γ2L

2
Et‖

1

n

n∑

i=1

gi,t‖2

(15)
≤ f(xt)− γ‖∇f(xt)‖2 +

γ2L

2

(
(1 +

M(C + 1)

n
)‖∇f(xt)‖2 +

Mζ2

n
+
σ2

n

)

= f(xt)− γ
(

1− γL(M(C + 1) + n)

2n

)
‖∇f(xt)‖2 +

γ2L(Mζ2 + σ2)

2n
γ≤ n

L(M(C+1)+n)

≤ f(xt)−
γ

2
‖∇f(xt)‖2 +

γ2L(Mζ2 + σ2)

2n
.

By summing over the iterates and taking total expectation, we get

1

T

T−1∑

t=0

E‖∇f(xt)‖2 ≤
2(f(x0)− f?)

γT
+
γL(Mζ2 + σ2)

n
.

Hence the result.

23



B.3.4 Final convergence result

From Remark 9, the following corollary describes the O(1/
√
nT ) convergence with an appropriate

step-size for absolute compressors and δ-contraction operators.
Corollary 1. Let Assumptions 1, 2, 3, and 4 hold with Mζ2 + σ2 > 0 and let {xt}t≥0 denote the
iterates of algorithm 1. Then, if
• C is an absolute compressor, we have

1

T

T−1∑

t=0

E‖∇f(xt)‖2 = O
(√

L(Mζ2 + σ2)(f(x0)− f?)√
nT

+
L((Mn (C + 1) + 1) + nυ2

Mζ2+σ2 )(f(x0)− f?)
T

)
.

• C is a δ-contraction operator, we have

1
T

∑T−1
t=0 E‖∇f(xt)‖2 = O



√

(L(Mζ2+σ2))(f(x0)−f?)√
nT

+
L

(
max{Mn (C+1)+1),( 1

δ+M)
√
C+1}+

n((1+Mδ)ζ2+δσ2)
δ2(Mζ2+σ2)

)
(f(x0)−f?)

T


 .

• C is the identity compressor, we have

1

T

T−1∑

t=0

E‖∇f(xt)‖2 = O
(√

L(Mζ2 + σ2)(f(x0)− f?)√
nT

+
L(Mn (C + 1) + 1)(f(x0)− f?)

T

)
.

Proof. Invoking Lemma 7 in Theorem 6 and Theorem 7, and Lemma 6 in Theorem 8 we get the
results.

We note that the above results are for the cases with Mζ2 + σ2 > 0. If Mζ2 + σ2 = 0, i.e. a
non-stochastic setting, then one can derive the convergence result using Lemma 8.

While compression does not affect the slower decaying O(1/
√
nT ) term for both absolute compres-

sors and δ-contraction operators, we observe δ-contraction operators have 1/δ2 dependence in the
O(1/T ) term when ζ 6= 0 (heterogeneous data). Therefore, in this setting, the Top-k sparsifier has
d2/k2 in the numerator of O(1/T ) term. On the other hard, hard-threshold has dλ2 in the numerator
of O(1/T ) term even when ζ 6= 0, and thus has a significantly better dependence on d.

B.4 Convex convergence analysis

In this Section, we provide convergence results for distributed compressed SGD with absolute
compressors and an EF where the loss function on each worker fi is µ-strongly convex with µ ≥ 0
(see Assumption 5). Our analysis is inspired by the proof techniques in [54] which analyzes an EF
SGD with δ-contraction operators in the single node (n = 1) case. [10] extended this analysis to the
distributed (n > 1) case for δ-contraction operators.

We start with the following key result by Nesterov [41] for convex and smooth functions.
Lemma 15. Let fi follow Assumptions 1 and Assumption 5 with µ ≥ 0, then

‖∇fi(y)−∇fi(x)‖2 ≤ 2L(fi(y)− fi(x)− 〈∇fi(x), y − x〉), ∀x, y ∈ Rd. (18)

We start with the convex decent lemma from [10]. For completeness, we also provide the proof.
Lemma 16. (Convex descent lemma) (Lemma 21 in [10]) Let Assumptions 1, 2, 3, and 5 hold. De-
note D := 1

n

∑n
i=1‖∇fi(x?)‖2. If γt ≤ 1

4L(1+2M/n) , for all t ≥ 0, then the iterates, {x̃t}t≥0 of
Algorithm 1 follow

Et‖x̃t+1 − x?‖2 ≤ (1− µγt
2

)‖x̃t − x?‖2 −
γt
2

[f(xt)− f?] + 3Lγt‖xt − x̃t‖2 + (γ2
t )
σ2 + 2MD

n
.

Proof. We have

‖x̃t+1 − x?‖2 Lemma 11
= ‖x̃t − x?‖2 − 2γt 〈ḡt, x̃t − x?〉+ γ2

t ‖ḡt‖2

= ‖x̃t − x?‖2 − 2γt 〈ḡt, xt − x?〉+ γ2
t ‖ḡt‖2 + 2γt 〈ḡt, xt − x̃t〉 .

24



Therefore,

Et‖x̃t+1 − x?‖2 = ‖x̃t − x?‖2 − 2γt 〈Et[ḡt], xt − x?〉+ γ2
t Et‖ḡt‖2 + 2γt 〈Et[ḡt], xt − x̃t〉

= ‖x̃t − x?‖2 − 2γt 〈∇f(xt), xt − x?〉+ γ2
t Et‖ḡt‖2 + 2γt 〈∇f(xt), xt − x̃t〉 .

(19)

First, we bound 2 〈∇f(xt), xt − x̃t〉. We use Young’s inequality (11) with ρ = 1
2L and get

2 〈∇f(xt), xt − x̃t〉 ≤ 1

2L
‖∇f(xt)‖2 + 2L‖xt − x̃t‖2

(18),∇f(x?)=0

≤ f(xt)− f(x?) + 2L‖xt − x̃t‖2. (20)

Next, we bound −2 〈∇f(xt), xt − x?〉. We use the µ-strong convexity of f to find

−2 〈∇f(xt), xt − x?〉 ≤ 2(f(x?)− f(xt))− µ‖xt − x?‖2. (21)

However, since we want to work with ‖x̃t − x?‖2 instead of ‖xt − x?‖2, we get rid of ‖xt − x?‖2
using (10) with ρ = 1 as

‖xt − x?‖2 ≥
1

2
‖x̃t − x?‖2 − ‖xt − x̃t‖2.

Substituting this in Equation (21), we get

−2 〈∇f(xt), xt − x?〉 ≤ 2(f(x?)− f(xt))−
µ

2
‖x̃t − x?‖2 + µ‖xt − x̃t‖2. (22)

Finally, we bound Et‖ḡt‖2 as

Et‖
1

n

n∑

i=1

gi,t‖2 = E

[
‖ 1

n

n∑

i=1

(∇fi(xt) + ξi,t)‖2|xt
]

= E

[
‖∇f(xt) +

1

n

n∑

i=1

ξi,t‖2|xt
]

E[ξi,t|xt]=0
= ‖∇f(xt)‖2 + E

[
‖ 1

n

n∑

i=1

ξi,t‖2|xt
]

E[ξi,t|xt]=0
= ‖∇f(xt)‖2 +

1

n2

n∑

i=1

E
[
‖ξi,t‖2|xt

]

Assumption 3

≤ ‖∇f(xt)‖2 +
1

n2

n∑

i=1

(M‖∇fi(xt)‖2 + σ2)

= ‖∇f(xt)‖2 +
M

n2

n∑

i=1

‖∇fi(xt)−∇fi(x?) +∇fi(x?)‖2 +
σ2

n

≤ ‖∇f(xt)‖2 +
2M

n2

n∑

i=1

(
‖∇fi(xt)−∇fi(x?)‖2 + ‖∇fi(x?)‖2

)

+
σ2

n
(18),D= 1

n

∑n
i=1‖∇fi(x

?)‖2

≤ ‖∇f(xt)‖2 +
2M

n2

n∑

i=1

2L[fi(xt)− fi(x?)− 〈∇fi(x?), xt − x?〉]

+
2MD

n
+
σ2

n
(23)

∇f(x?)=0
= ‖∇f(xt)−∇f(x?)‖2 +

4LM

n
(f(xt)− f(x?)) +

2MD + σ2

n
(18),∇f(x?)=0

≤ 2L

(
1 +

2M

n

)
(f(xt)− f(x?)) +

2MD + σ2

n
. (24)

25



We now substitute (20), (22), and (24) in (19) to get

Et‖x̃t+1 − x?‖2 = ‖x̃t − x?‖2 − 2γt 〈∇f(xt), xt − x?〉+ γ2
t Et‖ḡt‖2 + 2γt 〈∇f(xt), xt − x̃t〉

≤
(

1− µγt
2

)
‖x̃t − x?‖2 − γt

(
1− γt · 2L

(
1 +

2M

n

))
(f(xt)− f(x?))

+γt(2L+ µ)‖xt − x̃t‖2 + γ2
t

2MD + σ2

n
.

Choosing γt ≤ 1
4L(1+2M/n) gives the desired result.

Next, we give the convex convergence result of distributed EF SGD with absolute compressors.

B.4.1 Absolute compressors

The next theorem combines the results of Theorems 4 and 5 from the main paper. We present them as
a single theorem (Theorem 9) to keep the structure of the proofs simple.
Theorem 9. Let Assumptions 1, 2, 3, and 5 hold. Denote D := 1

n

∑n
i=1‖∇fi(x?)‖2, and R0 =

‖x0 − x?‖2. Then the iterates, {xt}t≥0 of Algorithm 1 with an absolute compressor, Cυ have the
following convergence rates if Assumption 5 is satisfied with the following choices of the parameters:

i) (Theorem 4) If µ > 0, a constant step-size {γt = γ}t≥0, with γ ≤ 1
4L(1+2M/n) is chosen as in

Lemma 10 and weights {wt = (1− µγ/2)−(t+1)}t≥0 then

E[f(x̄T )]− f? = Õ
(
L(1 +M/n)R0 exp

[
− µT

8L(1 + 2M/n)

]
+
σ2 +MD

µnT
+

Lυ2

µ2T 2

)
.

ii) (Theorem 5) If µ = 0, a constant step-size {γt = γ}t≥0, with γ ≤ 1
4L(1+2M/n) is chosen as in

Lemma 7 and weights {wt = 1}t≥0 then

E[f(x̄T )]− f? = O



√

(σ2 +MD)R0√
nT

+

(
nLυ2

σ2+MD + L(1 +M/n)
)
R0

T


 .

iii) If µ > 0, step-sizes {γt = 4
µ(φ+t)}t≥0, and weights {wt = φ + t}t≥0, respectively with

φ = 16L
µ (1 + 2M

n ) then

E[f(x̄T )]− f? = O
(
σ2 +MD

µnT
+
µL2(1 +M/n)2R0 + Lυ2 ln(T )

µ2T 2

)
.

In the above, x̄T = 1
WT

∑T
t=0 wtxt, and WT =

∑T
t=0 wt.

Proof. By using Lemma 11 in Lemma 16, and taking total-expectation over all the previous iterates,
we have

E‖x̃t+1 − x?‖2 ≤ (1− µγt
2

)E‖x̃t − x?‖2 −
γt
2
E[f(xt)− f?] + 3LγtE‖ēt‖2 + γ2

t (
σ2 + 2MD

n
)

(12)
≤ (1− µγt

2
)E‖x̃t − x?‖2 −

γt
2
E[f(xt)− f?] + 3Lγt

n∑

i=1

1

n
E‖ei,t‖2 (25)

+γ2
t (
σ2 + 2MD

n
) (26)

Remark 5
≤ (1− µγt

2
)E‖x̃t − x?‖2 −

γt
2
E[f(xt)− f?] + 3Lγ3

t υ
2 + γ2

t (
σ2 + 2MD

n
).

Rearranging, we get

E[f(xt)]−f? ≤
2

γt
(1− µγt

2
)E‖x̃t−x?‖2−

2

γt
E‖x̃t+1−x?‖2 +γt

2σ2 + 4MD

n
+6Lγ2

t υ
2. (27)

26



With rt = 2E‖x̃t−x?‖2, a = µ
2 , c = 2σ2+4MD

n , b = 6Lυ2, we can see the RHS as 1
γt

(1−aγt)rt−
1
γt
rt+1 + cγt + bγ2

t . Thus, we use Lemma 10 and Lemma 9 to get the first and the third result

respectively. Note that to get the LHS, we use the convexity of f as 1
WT

∑T
t=0 wtf(xt) ≥ f(x̄T ).

Finally, to get the second result, we substitute µ = 0 in Equation (27) and perform telescopic sum to
get ∑T

t=0 E[f(xt)]

T + 1
− f? ≤ 2‖x0 − x?‖2

γ(T + 1)
+

2σ2 + 4MD

n
γ + 6Lυ2γ2.

We now use Lemma 7 and convexity of f to arrive at the desired result. Similarly, for the result of
Remark 7, we use Lemma 8.

B.4.2 δ-contraction operators

The rates for δ-contraction operators is based on [22], except we consider a slightly different set of
assumptions. Below we provide the sketch of the proof.

First, using equation (18), we can have

1

n

n∑

i=1

‖∇fi(xt)‖2 =
1

n

n∑

i=1

‖∇fi(xt)‖2

=
1

n

n∑

i=1

‖∇fi(xt)−∇fi(x?) +∇fi(x?)‖2

≤ 2

n

n∑

i=1

‖∇fi(xt)−∇fi(x?)‖2 +
2

n

n∑

i=1

‖∇fi(x?)‖2

(18)
≤ 4L(f(xt)− f?) + 2D. (28)

Second, from Assumption 3, we have

1

n

n∑

i=1

E[‖ξi,t‖2 | xt] ≤
M

n

n∑

i=1

‖∇fi(xt)‖2 + σ2

(28)
≤ 4LM(f(xt)− f?) + 2MD + σ2. (29)

Third, from (24), we have

E

[
‖ 1

n

n∑

i=1

gi,t‖2|xt
]
≤ 2L

(
1 +

2M

n

)
(f(xt)− f(x?)) +

2MD + σ2

n
. (30)

Using (28), (29), and (30), we can show that Assumption 3.3 in [22] is satisfied with A = 2L,D1 =

2D, Ã = 2LM , D̃1 = 2MD + σ2, A′ = L(1 + 2M
n ), D′1 = 2MD+σ2

n , ρ1 = ρ2 = 1, and all the
other quantities as zero. Then, using Lemma G.1 in [22] with γ ≤ δ

8L
√

3(2+Mδ)
, we can show that

Assumption 3.4 in [22] is satisfied with F1 = 0, F2 = 0, and D3 = 6Lγ
δ2

(
D(4 + 2Mδ) + δσ2

)
. We

subsequently use (25), followed by Lemma 10 for the strongly-convex case (Remark 6), and Lemma
7 for the convex case (Remark 8).

B.5 Comparison against unbiased compressors

Till now, we have discussed the convergence of compressed SGD using EF. However, unbiased
relative compressors which satisfy (i) EC [C(x)] = x; and (ii) EC‖C(x) − x‖2 ≤ Ω‖x‖2 do not
require EF. We compare the convergence of such unbiased compressors and absolute compressors
with EF. With the notations above, [29] provide the following convergence result for unbiased
compressors in the strongly convex case:

E[f(x̄T )]−f?+µE[‖xT−x∗‖2] ≤ 64ΩnL(1+M/n)R0 exp
[
− µT

4ΩnL(1+M/n)

]
+36 (Ωn−1)D+Ωσ2/n

µT ,

27



Table 2: Summary of the benchmarks used

Model Task Dataset No. of Parameters Optimizer
ResNet-18 [26] Image classification CIFAR-10 [35] 11,173,962 SGD+Nesterov momentum

LSTM [28] Language modelling Wikitext-2 [39] 28,949,319 Vanilla SGD
NCF [27] Recommendation Movielens-20M 31,832,577 ADAM [34]

where Ωn = Ω−1
n + 1. Comparing with Theorem 4, we find unbiased compressors have compression

affecting the slower-decaying 1
T term. Although, we note that their convergence is in both the iterates

and functional values, whereas ours is only in functional values.

C Addendum to numerical experiments

Overview. In this section, we provide:

i) The experimental settings and implementation details of our DNN experiments (§C.1).

ii) Further discussion on the large error-accumulation of Top-k and its effect on total-error (§C.2).

iii) Logistic regression experiments (§C.3).

iv) Comparison against the state-of-the-art adaptive sparsifier ACCORDION [3]. (§C.4)

v) Experiment with Entire-model Top-k (§C.5).

vi) Experiments without EF, and discussion on different forms of EF (§C.6).

C.1 Experimental settings and implementation details

We implement the sparsifiers in PyTorch. For each method, a gradient reducer class is defined, which
invokes the appropriate compression function and then perform the aggregation among the workers.
Tables 2, 3, 4, and 5 provide the experimental details for each of the tasks. We used the default
hyper-parameters provided in the mentioned repositories for each task.

Table 3: Image classification task

Dataset CIFAR-10
Architecture ResNet-18
Repository PowerSGD [57]

See https://github.com/epfml/powersgd
License MIT

Number of workers 8
Global Batch-size 256 × 8

Optimizer SGD with Nesterov Momentum
Momentum 0.9

Post warmup LR 0.1 × 16
LR-decay /10 at epoch 150 and 250

LR-warmup Linearly within 5 epochs, starting from 0.1
Number of Epochs 300

Weight decay 10−4

Repetitions 3, with different seeds
Hard-threshold: λ values {1.2× 10−2, 7.2× 10−3, 5× 10−3, 3× 10−3, 1.8× 10−3}

Top-k: k values {0.03%, 0.06%, 0.12%, 0.3%, 0.75%}

C.2 Top-k suffers from large error accumulation

In Figure 4, we show the cascading effect (mentioned in §4.5) for the experiment in Figure 1. We
observe that the error norm profile in Figure4 c closely follows the error compensated gradient norm
profile in Figure4 b.

28

https://github.com/epfml/powersgd


Table 4: Language modelling task

Dataset WikiText2
Architecture LSTM
Repository PowerSGD [57]

See https://github.com/epfml/powersgd
License MIT

Number of workers 8
Global Batch-size 128 × 8

Optimizer vanilla SGD
Post warmup LR 1.25 × 16

LR-decay /10 at epoch 60 and 80
LR-warmup Linearly within 5 epochs, starting from 1.25

Number of Epochs 90
Weight decay 0
Repetitions 3, with different seeds

Hard-threshold: λ values {4.5× 10−3, 2.75× 10−3, 1.6× 10−3, 1.12× 10−3}
Top-k: k values {0.025%, 0.05%, 0.1%, 0.2%}

Table 5: Recommendation task

Dataset Movielens-20M
Architecture NCF
Repository NVIDIA Deep Learning Examples

See https://github.com/NVIDIA/DeepLearningExamples
Number of workers 8
Global Batch-size 220

Optimizer ADAM
ADAM β1 0.25
ADAM β2 0.5
ADAM LR 4.5× 10−3

Number of Epochs 30
Weight decay 0

Dropout 0.5
Repetitions 3, with different seeds

Hard-threshold: λ values {2× 10−6, 1.3× 10−6, 1× 10−6, 4× 10−7}
Top-k: k values {7.7%, 9.5%, 11.3%, 13.7%}

License Open Source

In Figure 5 and Figure 6, we show that hard-threshold has a better convergence because of a smaller
total-error in LSTM-WikiText2 and NCF-Ml-20m benchmarks. We note that we use the ADAM
optimizer on the NCF-Ml-20m benchmark, and therefore our total-error insight is not theoretically
justified in this case. Nevertheless, our experiment empirically confirms that the total-error perspective
is useful for optimizers beyond vanilla SGD and momentum SGD.

C.3 Logistic regression experiments

For the convex experiments, we consider the following `2 regularized logistic regression experiment
considered in [22]4:

min
x∈Rd

f(x) =
1

N

N∑

i=1

log(1 + exp(−yiA[i, :]x)) +
µ

2
‖x‖2, where A ∈ RN×d, y ∈ RN . (31)

The function, f(x) in (31) is µ-strongly convex and L-smooth with L = µ+ λmax(ATA)
4N . As in [22],

we use the step-size γ = 1/L, and µ = 10−4 λmax(ATA)
4N . We use standard LIBSVM datasets [14],

4Open source code: https://github.com/eduardgorbunov/ef_sigma_k

29

https://github.com/epfml/powersgd
https://github.com/NVIDIA/DeepLearningExamples
https://github.com/eduardgorbunov/ef_sigma_k


(a) (b) (c)

Figure 4: Convergence of Top-k and Hard-threshold for a logistic regression model on gisette LIBSVM
dataset with 20 workers: (a) Functional suboptimality vs. bits communicated; (b) Error-compensated gradient
norm vs. Epoch; (c) Error-norm vs. iterations. Top-k has large error-accumulation due to the cascading-effect.

0 2000 4000 6000
Iteration Number (t)

0

1000

2000

T
es

t
P

er
p

le
xi

ty

Hard threshold-0.00275

Top-k-0.05%

4000 6000

95

100

(a)

0 2000 4000 6000
Iteration Number (t)

0

10000

20000

1 n

∑
n i=

1
‖e

i,
t‖2 2

Hard threshold-0.00275

Top-k-0.05%

(b)

0 2000 4000 6000
Iteration Number (t)

0.02

0.04

0.06

k
t/
d

(%
)

Hard threshold-0.00275

Top-k-0.05%

(c)

Figure 5: Convergence of Top-k and Hard-threshold for an LSTM on WikiText2 at 0.05% average
density: (a) Test-perplexity vs. Iterations, (b) Error-norm vs. Iterations, (c) Density (kt/d) vs. Iterations.
k = 0.05% of d, and λ = 0.0072. Hard-threshold has better convergence than Top-k because of a smaller
total-error.

0 10 20 30
Epoch Number

85

90

95

B
es

t
h

r@
10

(%
)

Hard threshold-2e− 06

Top-k-7.7%

(a)

0 10 20 30
Epoch Number

0.000

0.005

0.010

0.015

1 n

∑
n i=

1
‖e

i,
t‖2 2

Hard threshold-2e− 06

Top-k-7.7%

(b)

0 10 20 30
Epoch Number

7.5

8.0

8.5

k
t/
d

(%
)

Hard threshold-2e− 06

Top-k-7.7%

(c)

Figure 6: Convergence of Top-k and Hard-threshold for NCF on ML-20m at 7.7% average density:
(a) Best Hit-rate@10 vs. Epochs, (b) Error-norm vs. Epochs, (c) Density (kt/d) vs. Epochs. k = 0.06% of d,
and λ = 0.0072. Hard-threshold has better convergence than Top-k because of a smaller total-error.

and split the dataset into number of worker partitions. For distributed EF-SGD, we use a local batch
size of 1 at each node, where the new batch is chosen uniformly at random at each step.

Tuning the hard-threshold: Our goal is to make f(xT )− f(x?) ≤ ε, for a given precision, ε > 0.
We set λ such that dγ2λ2 = ε, i.e., λ =

√
ε

d
√
γ .

Justification: Remark 5 states that by using a hard-threshold λ > 0, the noise due to compression is
dγ2λ2. Due to this compression noise, we expect (although we did not prove) that xT will oscillate in
a dγ2λ2 neighborhood of the optimum, x?, i.e. ‖xT−x?‖2 ≤ dγ2λ2. Furthermore, by L-smoothness,
we have

f(xT )− f(x?) ≤ L

2
‖xT − x?‖2.

Therefore, if we want to converge to a ε-close functional-suboptimality value, f(xT )− f(x?), then
ensuring dγ2λ2 ≤ ε guarantees ‖xT − x?‖2 ≤ ε, and implies, f(xT )− f(x?) ≤ L

2 ε. The above is
an upper bound, and we observe in our experiments by using λ =

√
ε

d
√
γ , gives f(xt)− f(x?) ≤ ε.

C.3.1 Extreme sparsification

In Figure 7, we perform extreme sparsification to train a logistic regression model on the madelon
LIBSVM dataset. We compare Top-k with k = 1, and hard-threshold with λ = 14881 set via
dγ2λ2 = 1.25 × 10−4, so that they both communicate same data volume. In Figure 7b, we see

30



that Hard-threshold sparsifier does not communicate any elements in many iterations. Despite this,
hard-threshold has faster convergence than Top-k in Figure 7 a. Figure 7 c demonstrates that this is
because hard-threshold has a smaller total-error than Top-k.

(a) (b) (c)

Figure 7: Convergence of Top-k and Hard-threshold for a logistic regression model on madelon LIBSVM
dataset with 20 workers: (a) Functional suboptimality vs. bits communicated; (b) parameters communicated vs.
iterations; (c) error norm vs. iterations. Hard-threshold has a faster convergence than Top-k even when it does
not communicate any parameter in some iterations.

C.3.2 Convergence to an arbitrary neighborhood of the optimum

For the experiments in this section, the uncompressed baseline is distributed gradient descent (GD).
Unlike SGD, GD has linear convergence to the exact optimum. However, Distributed EF-GD does
not converge to the exact optimum due to compression noise. To remedy this, Gorbunov et al. [22]
introduced a family of variance-reduced compression algorithms that have linear convergence to the
exact optimum. We consider algorithm EF-GDstar from [22] (known as EC-GDstar in [22]).

We empirically show that EF-GDstar with hard-threshold compressor, can converge to an arbitrarily
small neighborhood around the optimum, for an appropriate choice of hard-threshold. Figure 8 and
Figure 9 demonstrate the convergence of EF-GDstar using Hard-threshold and Top-k sparsifiers with
20 workers and 100 workers, respectively. We choose (i) k = 1 for 20 workers and k = 5 for 100
workers, respectively; (ii) λ = 2.98, such that dγ2λ2 = 5× 10−12. By using this λ, the compression
error for hard-threshold is less than 5 × 10−12 in Figures 8 c and 9 c. Moreover, hard-threshold
converges to f(xT )− f(x?) ≤ 5× 10−12 in both Figures 8 b and 9 b. Additionally, hard-threshold
sends 1.7× and 8× less data than Top-k in Figure 8 a and Figure 9 a, respectively. Furthermore,
Figure 8 is an extreme sparsification scenario where hard-threshold communicates < 1 parameter per
iteration per worker.

(a) (b) (c)

Figure 8: Convergence of EF-GDstar using Top-k and Hard-threshold sparsifiers on a logistic regression
model on madelon LIBSVM dataset with 20 workers: (a) Functional suboptimality vs. bits communicated; (b)
functional suboptimality vs. epochs; (c) error-norm vs. epochs.

Our results demonstrate that it is possible to use the hard-threshold compressor to converge to an
arbitrarily small neighborhood around the optimum. We leave the convergence analyses, and devising
practical variants for future research.

C.4 Comparison against ACCORDION

The experiment details are provided in 6, and the CIFAR-100 results are provided in Table 7.

31



(a) (b) (c)

Figure 9: Convergence of EF-GDstar using Top-k and Hard-threshold sparsifiers on a logistic regression
model on madelon LIBSVM dataset with 100 workers: (a) Functional suboptimality vs. bits communicated; (b)
functional suboptimality vs. epochs; (c) error norm vs. epochs.

Table 6: ACCORDION experiments

Dataset CIFAR-10 and CIFAR-100
Architectures ResNet-18 [26], SENet18 [30], GoogleNet [56]
Repository PowerSGD [57]

See https://github.com/epfml/powersgd
License MIT

Number of workers 8
Global Batch-size 256 × 8

Optimizer SGD with Nesterov Momentum
Momentum 0.9

Post warmup LR 0.1 × 16
LR-decay /10 at epoch 150 and 250

LR-warmup Linearly within 5 epochs, starting from 0.1
Number of Epochs 300

Weight decay 10−4

Repetitions 6, with different seeds
Accordion: kmin value 0.1% for both CIFAR-10 and CIFAR-100
Accordion: kmax value 1% for CIFAR-10 and 2% for CIFAR-100

Hard-threshold: λ values
(Calculated using λ = 1

2
√
kmin

) ResNet-18-CIFAR-10: 4.73× 10−3

ResNet-18-CIFAR-100: 4.72× 10−3

GoogleNet-CIFAR-10: 6.37× 10−3

GoogleNet-CIFAR-100: 6.32× 10−3

SENet18-CIFAR-10: 4.68× 10−3

SENet18-CIFAR-100: 4.68× 10−3

Table 7: Comparison against ACCORDION [3] on CIFAR-100

Network Method Accuracy (%) Average Density (%)

ResNet-18

Top-2% (kmax/d) 71.8 2.00 (1×)
Top-0.1% (kmin/d) 70.6 0.10 (20×)
ACCORDION 71.6 0.57 (3.5×)
Hard-threshold ( 1

2
√
kmin

) 71.4 0.35 (5.7×)

GoogleNet

Top-2% (kmax/d) 75.5 2.00 (1×)
Top-0.1% (kmin/d) 73.1 0.10 (20×)
ACCORDION 74.2 0.48 (4.2×)
Hard-threshold ( 1

2
√
kmin

) 75.0 0.38 (5.3×)

SENet18

Top-2% (kmax/d) 71.9 2.00 (1×)
Top-0.1% (kmin/d) 70.1 0.10 (20×)
ACCORDION 71.0 0.55 (3.6×)
Hard-threshold ( 1

2
√
kmin

) 72.1 0.36 (5.6×)

32

https://github.com/epfml/powersgd


0.0 0.2 0.4 0.6
Average Density (%)

90

92

94

T
es

t
A

cc
u

ra
cy

(%
)

Baseline

Entire-model Top-k

Hard threshold

Layer-wise Top-k

Figure 10: ResNet-18 on CIFAR-10

Figure 11: Test metric vs. Data volume for entire-model compression. The dashed black line in each plot
denotes the no compression baseline. Each setting is repeated with three seeds, and we plot the average with
standard deviation. For description on parameters, see Tables 3, 4, and 5.

C.5 Entire-model sparsification

Sparsification can be performed in two ways: layer-wise or entire-model. In layer-wise sparsification,
the sparsifier is invoked individually on each tensor resulting from each layer. In contrast, in entire-
model sparsification, the sparsifier is applied to a single concatenated tensor resulting from all layers.
Since hard-threshold is an element-wise sparsifier, layer-wise and entire-model sparsification result in
the same sparsified vector. However, it is expected that layer-wise and entire model vary substantially
for Top-k. Layer-wise Top-k is used in all practical implementations [47, 37, 62] because performing
entire-model Top-k is both compute and memory intensive.

While we employ layer-wise Top-k in our experiments, we present in Figure 11 the test metric
vs. data volume experiment for ResNet-18-CIFAR-10 benchmark (Figure 2a) using entire-model
Top-k. We find that hard-threshold is more communication-efficient than entire-model Top-k as well.
Notably, at an average density ratio of 0.003%, hard-threshold has more than 4% higher accuracy
than entire-model Top-k.

C.6 Error-Feedback (EF)

In this section, we discuss various aspects of EF (or memory). Particularly, in §C.6.1 we investigate
if hard-threshold is more communication-efficient than Top-k without EF. Then, in Section C.6.2, we
discuss and compare the different ways to perform EF in the literature.

C.6.1 Convergence without EF

To understand how the sparsifiers perform without the EF, we conduct experiments without EF
for ResNet-18 benchmark. We report this in Figure 12. Similar to the with EF case, we find that
hard-threshold has better convergence than Top-k. We note that with EF, hard-threshold achieved
baseline performance at an extreme average density of 0.12%. However, without EF, hard-threshold
fails to achieve baseline performance (94.2%) even at a significantly higher average density of 5%.
Hence, EF is a necessary tool to ensure faster convergence.

C.6.2 Different types of EF

For optimizers other than vanilla SGD, one can compress and aggregate quantities other than
stochastic gradients (such as momentum). Consider an example for SGD with Nesterov momentum,
where the compression and aggregation can be performed in the following two ways:

33



0 2000 4000 6000
Iteration Number (t)

25

50

75
T

es
t

A
cc

u
ra

cy
(%

)

Hard threshold-0.0003

Top-k-5.0%

4000 6000
90.0

92.5

(a)

0 2000 4000 6000
Iteration Number (t)

0

10

20

k
t/
d

(%
)

Hard threshold-0.0003

Top-k-5.0%

(b)

Figure 12: Top-k and hard-threshold without error compensation for ResNet-18 on CIFAR-10: (a) Ac-
curacy vs. Iterations, (b) density, (kt/d) vs. iterations. Average density is 5% for Top-k and 4.7% for
hard-threshold.

Algorithm 2: Distributed EF SGD with mo-
mentum by using gradient compression
for worker w = 1, ..,W in parallel do

for iteration t = 1, 2, · · · , do
Compute local stochastic gradient gw
∆w ← gw + ew
C(∆w)← COMPRESS(∆w)
ew ← ∆w − DECOMPRESS(∆w)
C(∆)←
AGGREGATE(C(∆1), . . . , C(∆W ))

∆
′
← DECOMPRESS(C(∆))

m← λm+ ∆
′

x← x− γ(∆
′

+m)

Algorithm 3: Distributed EF SGD with mo-
mentum by using update compression
for worker w = 1, ..,W in parallel do

for iteration t = 1, 2, · · · , do
Compute local stochastic gradient gw
mw ← λmw + gw
uw ← mw + gw
∆w ← uw + ew
C(∆w)← COMPRESS(∆w)
ew ← ∆w − DECOMPRESS(∆w)
C(∆)←
AGGREGATE(C(∆1), . . . , C(∆W ))

∆
′
← DECOMPRESS(C(∆))

x← x− γ(∆
′
)

0 2000 4000 6000
Iteration Number (t)

25

50

75

T
es

t
A

cc
u

ra
cy

(%
)

Gradient compression Top-k-0.12%

Update compression Top-k-0.12%

4000 6000
90.0

92.5

Figure 13: Test Accuracy for gradient compression vs. update compression for Top-k on ResNet-18
on CIFAR-10. We experiment with three different seeds, and the plot represents the run with highest
final accuracy for each setting. The test accuracy statistics (µ ± σ) are: Gradient compression
(92.96± 0.39%) and update compression (90.78± 2.03%).

34



• Gradient compression. This was proposed in [57] and is depicted in Algorithm 2. In the
case of SGD with Nesterov momentum, this update rule ensures that every worker maintains
the same momentum state. However, the updates to momentum is sparse, as the momentum
is calculated using sparsified gradients.

• Update compression. This was proposed in [37], and is depicted in Algorithm 3. In the
case of SGD with Nesterov momentum, every worker maintains a different momentum state
calculated from their local stochastic gradients. Although updates to the momentum state is
dense in this case, the momentum state is completely unaware of the compression and does
not reflect the actual history of the updates. In order to circumvent this issue, Lin et. al. [37]
had proposed momentum factor-masking to clear old local momentum states of a parameter
once the parameter is updated. However, it is not easy to devise such modifications for
optimizers which maintain multiple states derived from complicated calculations, such as
RMSProp and ADAM.

Nomenclature for Algorithm 2 and 3. In Algorithm 2 and 3 we show the distributed training loop.
We denote the learning rate by γ, momentum factor by λ, the model parameters by x ∈ Rd, the
momentum at worker w by mw, and the error at worker w by ew. At the beginning of the training,
mw and ew are initialized to zero for all workers. By COMPRESS, DECOMPRESS, and AGGREGATE we
denote the compression, decompression, and aggregate function, respectively.

We also conduct experiments for Top-k on ResNet-18 benchmark by using aforementioned update
rules and find that gradient compression (Algorithm 2) results in better performance (see Figure 13). In
light of the above discussion and experimental evidence, we stick to gradient compression (Algorithm
2) for our main experiments.

D How to tune the hard-threshold?

Substituting υ2 = dλ2 for hard-threshold in Theorem 6 we get

1
T

∑T−1
t=0 E‖∇f(xt)‖2 ≤ 4(f(x0)−f?)

γT + 2γL(Mζ2+σ2)
n + 2γ2L2dλ2. (32)

Similarly, substituting δ = k
d for Top-k in Theorem 7 we get

1
T

∑T−1
t=0 E‖∇f(xt)‖2 ≤ 8(f(x0)−f?)

γT + 4γL(Mζ2+σ2)
n + 8γ2L2d

k

((
2d
k +M

)
ζ2 + σ2

)
. (33)

We ignore the first two terms unaffected by compression in (32) and (33), and focus on the last term.
To ensure that hard-threshold has better convergence than Top-k we have

2L2dλ2 ≤ 8L2d
k

((
2d
k +M

)
ζ2 + σ2

)
,

that is,
λ ≤ 2√

k

√(
2d
k +M

)
ζ2 + σ2.

Therefore, if M̂ , ζ̂, and σ̂ are estimates of M , ζ, and σ, respectively, then we suggest setting the
threshold as

λ ∼ 2√
k

√(
2d

k
+ M̂

)
ζ̂2 + σ̂2.

In our comparison against ACCORDION, we assume ζ̂ = 0 (homogeneous distributed data), and
σ̂ ∼ 1

4 . This leads us to the hard-threshold value

λ ∼ 1

2
√
k
.

We find that λ = 1
2
√
kmin

has better performance (with similar total-data volume) than Top-kmin in
Tables 1 and 7.

35


