
A Datasets554

The vision-language datasets are based on the dataset mixtures from Chen et al. [15] and Driess et al. [17].555

The bulk of this data consists of the WebLI dataset, which is around 10B image-text pairs across 109556

languages, filtered to the top 10% scoring cross-modal similarity examples to give 1B training examples.557

Many other captioning and vision question answering datasets are included as well, and more info on the558

dataset mixtures can be found in Chen et al. [15] for RT-2-PaLI-X, and Driess et al. [17] for RT-2-PaLM-E.559

When co-fine-tuning RT-2-PaLI-X, we do not use the Episodic WebLI dataset described by Chen et al. [16].560

The robotics dataset is based on the dataset from Brohan et al. [1]. This consists of demonstration561

episodes collected with a mobile manipulation robot. Each demonstration is annotated with a natural562

language instruction from one of seven skills: ”Pick Object”, ”Move Object Near Object”, ”Place563

Object Upright”, ”Knock Object Over”, ”Open Drawer”, ”Close Drawer”, ”Place Object into564

Receptacle”, and ”Pick Object from Receptacle and place on the counter”. Further details can565

be found in Brohan et al. [1].566

RT-2-PaLI-X weights the robotics dataset such that it makes up about 50% of the training mixture for567

co-fine-tuning. RT-2-PaLM-E weights the robotics dataset to be about 66% of the training mixture.568

For the results on Language-Table in Table 2, our model is trained on the Language-Table datasets569

from Lynch et al. [78]. Our model is co-fine-tuned on several prediction tasks: (1) predict the action, given570

two consecutive image frames and a text instruction; (2) predict the instruction, given image frames; (3)571

predict the robot arm position, given image frames; (4) predict the number of timesteps between given572

image frames; and (5) predict whether the task was successful, given image frames and the instruction.573

B Baselines574

We compare our method to multiple state-of-the-art baselines that challenge different aspects of our575

method. All of the baselines use the exact same robotic data.576

• RT-1: Robotics Transformer 1 [1] is a transformer-based model that achieved state-of-the-art577

performance on a similar suite of tasks when it was published. The model does not use578

VLM-based pre-training so it provides an important data point demonstrating whether579

VLM-based pre-training matters.580

• VC-1: VC-1 [77] is a visual foundation model that uses pre-trained visual representations specifi-581

cally designed for robotics tasks. We use pre-trained representations from the VC-1 ViT-L model.582

Since VC-1 does not include language conditioning, we add this by separately embedding the583

language command via Universal Sentence Encoder [81] to enable comparison to our method. In584

particular, we concatenate the resulting language embedding tokens to the image tokens produced585

by VC-1, and pass the concatenated token sequences through token learner [82]. The token586

sequences produced by token learner are then consumed by an RT-1 decoder-only transformer587

model to predict robot action tokens. We train the VC-1 baseline end-to-end and unfreeze the588

VC-1 weights during training, since this led to far better results than using frozen VC-1 weights.589

• R3M: R3M [57] is a similar method to VC-1 in that R3M uses pre-trained visual-language590

representations to improve policy training. In this case the authors use Ego4D dataset [83] of591

human activities to learn the representation that is used by the policy. Both VC-1 and R3M test592

different state-of-the-art representation learning methods as an alternative to using a VLM. To593

obtain a language-conditioned policy from the R3M pretrained representation, we follow the594

same procedure as described above for VC-1, except we use the R3M ResNet50 model to obtain595

the image tokens, and unfreeze it during training.596

• MOO: MOO [48] is an object-centric approach, where a VLM is first used to specify the object597

of interest in a form of a single, colored pixel in the original image. This pixel-modified image598

is then trained with an end-to-end policy to accomplish a set of manipulation tasks. This baseline599

corresponds to a situation where a VLM is used as a separate module that enhances perception600

but its representations are not used for policy learning.601

C VLMs for RT-2602

The PaLI-X model architecture consists of a ViT-22B [84] to process images, which can accept sequences of603

n images, leading to n×k tokens per image, where k is the number of patches per image. The image tokens604

passing over a projection layer is then consumed by an encoder-decoder backbone of 32B parameters and 50605
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layers, similar to UL2 [85], which jointly processes text and images as embeddings to generate output tokens606

in an auto-regressive manner. The text input usually consists of the type of task and any additional context607

(e.g., ”Generate caption in 〈lang〉” for captioning tasks or ”Answer in 〈lang〉: question” for VQA tasks).608

The PaLI-3B model trained on Language-Table (Table 2) uses a smaller ViT-G/14 [86] (2B parameters)609

to process images, and UL2-3B [85] for the encoder-decoder network.610

The PaLM-E model is based on a decoder-only LLM that projects robot data such as images and text into611

the language token space and outputs text such as high-level plans. In the case of the used PaLM-E-12B, the612

visual model used to project images to the language embedding space is a ViT-4B [15]. The concatenation613

of continuous variables to textual input allows PaLM-E to be fully multimodal, accepting a wide variety of614

inputs such as multiple sensor modalities, object-centric representations, scene representations and object615

entity referrals.616

D Training Details617

We perform co-fine-tuning on pre-trained models from the PaLI-X [16] 5B & 55B model, PaLI [15] 3B618

model and the PaLM-E [17] 12B model. For RT-2-PaLI-X-55B, we use learning rate 1e-3 and batch size619

2048 and co-fine-tune the model for 80K gradient steps whereas for RT-2-PaLI-X-5B, we use the same620

learning rate and batch size and co-fine-tune the model for 270K gradient steps. For RT-2-PaLM-E-12B,621

we use learning rate 4e-4 and batch size 512 to co-fine-tune the model for 1M gradient steps. Both models622

are trained with the next token prediction objective, which corresponds to the behavior cloning loss in623

robot learning. For RT-2-PaLI-3B model used for Language-Table results in Table 2, we use learning624

rate 1e-3 and batch size 128 to co-fine-tune the model for 300K gradient steps.625

E Evaluation Details626

E.1 Evaluation Scenarios627

For studying the emergent capabilities of RT-2 in a quantitative manner, we study various challenging628

semantic evaluation scenarios that aim to measure capabilities such as reasoning, symbol understanding,629

and human recognition. A visual overview of a subset of these scenes is provided in Figure 7, and the630

full list of instructions used for quantiative evalution is shown in Table 4.631

Figure 7: An overview of some of the evaluation scenarios used to study the emergent capabilities of RT-2. They
focus on three broad categories, which are (a) reasoning, (b) symbol understanding, and (c) human recognition. The
visualized instructions are a subset of the full instructions, which are listed in Appendix E.2.

E.2 Evaluation Instructions632

Table 3 lists natural language instructions used in model evaluations for unseen objects, backgrounds, and633

environments. Each instruction was run between 1-5 times, depending on the number of total instructions634

in that evaluation set.635
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Table 4 lists natural language instructions used to evaluate quantitative emergent evals. Each instruction636

was run 5 times.637

Task Group Tasks

Unseen Objects
(Easy)

pick banana, move banana near coke can, move orange can near banana,
pick oreo, move oreo near apple, move redbull can near oreo, pick pear, pick
coconut water, move pear near coconut water, move pepsi can near pear

Unseen Objects
(Hard)

pick cold brew can, pick large orange plate, pick chew toy, pick large tennis
ball, pick bird ornament, pick fish toy, pick ginger lemon kombucha, pick
egg separator, pick wrist watch, pick green sprite can, pick blue microfiber
cloth, pick yellow pear, pick pretzel chip bag, pick disinfectant wipes, pick
pineapple hint water, pick green cup, pick pickle snack, pick small blue plate,
pick small orange rolling pin, pick octopus toy, pick catnip toy

Unseen Back-
grounds (Easy)

pick green jalapeno chip bag, pick orange can, pick pepsi can, pick 7up can,
pick apple, pick blue chip bag, pick orange, pick 7up can, move orange near
sink, pick coke can, pick sponge, pick rxbar blueberry

Unseen Back-
grounds (Hard)

pick wrist watch, pick egg separator, pick green sprite can, pick blue mi-
crofiber cloth, pick yellow pear, pick pretzel chip bag, pick disinfectant wipes,
pick pineapple hint water, pick green cup, pick pickle snack, pick small blue
plate, pick small orange rolling pin, pick octopus toy, pick catnip toy, pick
swedish fish bag, pick large green rolling pin, pick black sunglasses

Unseen Environ-
ments (Easy)

pick coke can, pick apple, pick rxbar blueberry, move apple near coke can,
move rxbar blueberry near apple, move coke can near rxbar blueberry, pick
blue plastic bottle, pick sponge, pick blue chip bag, move sponge near blue
plastic bottle, move blue chip bag near sponge, move blue plastic bottle near
blue chip bag, move coke can near white mug, move sponge near white mug,
move coke can near yellow bowl, move sponge near yellow bowl, move
coke can near green cloth, move sponge near green cloth, move coke can
near plate, move sponge near plate, move coke can near spoon, move sponge
near spoon, move coke can near orange cup, move sponge near orange cup,
pick white mug, pick yellow bowl, pick green cloth, move white mug near
sponge, move yellow bowl near sponge, move green cloth near sponge, pick
plate, pick spoon, pick orange cup, move plate near sponge, move spoon near
sponge, move orange cup near sponge, put coke can into sink, drop coke can
into sink, push coke can into sink, put sponge into sink, drop sponge into sink,
push sponge into sink, put green cloth into sink, drop green cloth into sink,
push green cloth into sink

Unseen Environ-
ments (Hard)

pick coke can, pick apple, pick rxbar blueberry, move apple near coke can,
move rxbar blueberry near apple, move coke can near rxbar blueberry, move
coke can near stapler, move apple near stapler, move coke can near keyboard,
move apple near keyboard, move coke can near tissue box, move apple near
tissue box, move coke can near papers, move apple near papers, move coke
can near mouse, move apple near mouse, move coke can near book, move
apple near book, pick marker, pick stapler, pick mouse, move marker near
apple, move stapler near apple, move mouse near apple, push coke can to the
left, push coke can to the right, push sponge to the left, push sponge to the
right, push tissue box to the left, push tissue box to the right, point at coke
can, point at sponge, point at tissue box

Table 3: Natural language instructions used for evaluations testing controlled distribution shifts along the dimension of
novel objects, novel environments, and novel backgrounds. For each category, we introduce evaluation settings with
smaller distribution shifts as well as larger distribution shifts. A visualization of these scenarios if shown in Figure 3.

F Example Failure Cases638

In Fig. 8 we provide examples of a notable type of failure case in the Language Table setting, with the RT-2639

model not generalizing to unseen object dynamics. In these cases, although the model is able to correctly640

attend to the language instruction and move to the first correct object, it is not able to control the challenging641

dynamics of these objects, which are significantly different than the small set of block objects that have been642

seen in this environment [78]. Then pen simply rolls off the table (Fig. 8, left), while the banana’s center-of-643
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Task Group Tasks

Symbol Understanding:
Symbol 1

move coke can near X, move coke can near 3, move coke can near Y

Symbol Understanding:
Symbol 2

move apple to tree, move apple to duck, move apple to apple, move apple to
matching card

Symbol Understanding:
Symbol 3

put coke can close to dog, push coke can on top of heart, place coke can
above star

Reasoning: Math move banana to 2, move banna near the sum of two plus one, move banana
near the answer of three times two, move banana near the smallest number

Reasoning: Logos move cup to google, move cup to android, move cup to youtube, move cup to
a search engine, move cup to a phone

Reasoning: Nutrition get me a healthy snack, pick a healthy drink, pick up a sweet drink, move the
healthy snack to the healthy drink, pick up a salty snack

Reasoning: Color and
Multilingual

move apple to cup with same color, move apple to cup with different color,
move green chips to matching color cup, move apple to vaso verde, Bewegen
Sie den Apfel in die rote Tasse, move green chips to vaso rojo, mueve la
manzana al vaso verde, déplacer les frites verts dans la tasse rouge

Person Recognition:
Celebrities

move coke can to taylor swift, move coke can to tom cruise, move coke can
to snoop dog

Person Recognition:
CelebA

move coke can to person with glasses, move coke can to the man with white
hair, move coke can to the brunette lady

Table 4: Natural language instructions used for quantitative emergent evalutions.

mass is far from where the robot makes contact (Fig. 8, right). We note that pushing dynamics are notori-644

ously difficult to predict and control [87]. We hypothesize that greater generalization in robot-environment645

interaction dynamics may be possible by further scaling the datasets across diverse environments and objects646

– for example, in this case, datasets that include similar types of more diverse pushing dynamics [33].647

In addition, despite RT-2’s promising performance on real world manipulation tasks in qualitative and648

quantitative emergent evaluations, we still find numerous notable failure cases. For example, with the649

current training dataset composition and training method, RT-2 seemed to perform poorly at:650

• Grasping objects by specific parts, such as the handle651

• Novel motions beyond what was seen in the robot data, such as wiping with a towel or tool use652

• Dexterous or precise motions, such as folding a towel653

• Extended reasoning requiring multiple layers of indirection654

Figure 8: Qualitative example failure cases in the real-world failing to generalize to unseen object dynamics.

G Quantitative Emergent Evaluation655

Table 5 lists all of our quantitative emergent evaluation results. We find that RT-2 performs 2x to 3x better656

than RT-1 on these new instructions, without any additional robotic demonstrations. This showcases how657

our method allows us to leverage capabilities from pretraining on web-scale vision-language datasets.658
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Model Symbol Understanding Reasoning Person Recognition Average

Symbol 1 Symbol 2 Symbol 3 Average Math Logos Nutrition Color/Multilingual Average Celebrities CelebA Average

VC-1 [77] 7 25 0 11 0 8 20 13 10 20 7 13 11
RT-1 [1] 27 20 0 16 5 0 32 28 16 20 20 20 17
RT-2-PaLI-X-55B (ours) 93 60 93 82 25 52 48 58 46 53 53 53 60
RT-2-PaLM-E-12B (ours) 67 20 20 36 35 56 44 35 43 33 53 43 40

Table 5: Performance of RT-2 and baselines on quantitative emergent evaluations.

H How does the generalization vary with parameter count and other design659

decisions?660

For this comparison, we use RT-2-PaLI-X model because of its flexibility in terms of the model size661

(due to the nature of PaLM-E, RT-2-PaLM-E is restricted to only certain sizes of PaLM and ViT models).662

In particular, we compare two different model sizes, 5B and 55B, as well as three different training663

routines: training a model from scratch, without using any weights from the VLM pre-training; fine-tuning664

a pre-trained model using robot action data only; and co-fine-tuning (co-training with fine-tuning), the665

primary method used in this work where we use both the original VLM training data as well as robotic666

data for VLM fine-tuning. Since we are mostly interested in the generalization aspects of these models,667

we remove the seen tasks evaluation from this set of experiments.668

The results of the ablations are presented in Table 6. First, we observe that training a very large model669

from scratch results in a very poor performance even for the 5B model. Given this result, we decide to670

skip the evaluation of an even bigger 55B PaLI-X model when trained from scratch. Second, we notice671

that co-fine-tuning a model (regardless of its size) results in a better generalization performance than672

simply fine-tuning it with robotic data. We attribute this to the fact that keeping the original data around673

the fine-tuning part of training, allows the model to not forget its previous concepts learned during the674

VLM training. Lastly, somewhat unsurprisingly, we notice that the increased size of the model results675

in a better generalization performance.676

Model Size Training Unseen Objects Unseen Backgrounds Unseen Environments Average

Easy Hard Easy Hard Easy Hard

RT-2-PaLI-X 5B from scratch 0 10 46 0 0 0 9
RT-2-PaLI-X 5B fine-tuning 24 38 79 50 36 23 42
RT-2-PaLI-X 5B co-fine-tuning 60 38 67 29 44 24 44
RT-2-PaLI-X 55B fine-tuning 60 62 75 38 57 19 52
RT-2-PaLI-X 55B co-fine-tuning 70 62 96 48 63 35 63

Table 6: Ablations of RT-2 showcasing the impact of the parameter count and the training strategy on generalization.

I Additional Chain-Of-Thought Reasoning Results677

We present additional examples of chain-of-thought reasoning rollouts accomplished with RT-2-PaLM-E678

described in Sec. 4.4.679
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User
Pick up the 
object that is 
different from all 
other objects

User

Move the green 
objects together

User

Move the blue 
objects together

Plan: Move green 
can near green 
rice chip bag

Plan: Move blue 
chip bag near 
pepsi

Plan: Pick rxbar 
chocolate

User
I am sleepy, bring 
me a drink to 
help.

Plan: Pick redbull 
can

Figure 9: Additional examples of RT-2 with chain-of-thought reasoning
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