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A Protected variable removal

A trivial method for satisfying FTU fairness, is to remove the protected attribute from downstream
learners. We first provide a motivating example explaining why this is sub-optimal. We then follow
this with an experiment on the Adult dataset.

A.1 Example

Figure 1: Human knowledge is
essential for defining fairness.

Defining fairness is task and data dependent. For example, let us as-
sume two datasets are generated by the graphical models in Figure
1. Data generated by the top graph is considered fair: Education
affects past experience (Resume), which together affect future
job prospects (Job). The bottom graph is a historical example
of unfairness: even if there would be no bias between Loan and
Race, redlining (i.e. the practice of refusing a loan to people liv-
ing in certain areas) would discriminate indirectly based on race
[1, 2, 3, 4]. Human knowledge is thus essential for defining fairness
correctly, and making sure (e.g., historical) bias is not propagated
by the models we deploy. This example also shows why simply
removing or not measuring a sensitive attribute does not suffice:
not only does this ignore indirect bias, but hiding the protected
attribute leads to an (additional) correlation between Postcode and Loan due to confounding. A
smart debiasing method is required that can distinguish fair from unfair relations.

A.2 Experiment

As explained in the previous example, simply removing the protected attribute is a naive and sub-
optimal solution to FTU fairness due to confounding. Let us test this experimentally. We use the same
experimental setup described in Section 6 for the Adult dataset, but we include additional metrics for
protected attribute removal. We denote protected attribute removal by the *-PR suffix. In Table 1,
we observe that naively removing the protected attribute only ensures FTU fairness, as shown by:
GAN-PR, WGAN-GP-PR, and DECAF-PR. Furthermore, we observe that synthetic data quality
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diminishes as well for WGAN-GP-PR and DECAF-PR across precision, recall, and AUROC. For
GAN-PR we see a slight improvement in data quality over GAN, however this improvement is very
minimal in comparison to DECAF.

Table 1: Full table of bias removal experiment on Adult dataset [5] including protected removal (PR)
metrics. For methods *-PR, we remove the protected attribute from the dataset before synthesizing
data. ‡Note that the FTU values for the *-PR values will be zero since they are removed from the
data generation method.

Data Quality Fairness
Method Precision↑ Recall↑ AUROC↑ FTU↓ DP↓
Original data D 0.920± 0.006 0.936± 0.008 0.807± 0.004 0.116± 0.028 0.180± 0.010
GAN 0.607± 0.080 0.439± 0.037 0.567± 0.132 0.023± 0.010 0.089± 0.008
WGAN-GP 0.683± 0.015 0.914± 0.005 0.798± 0.009 0.120± 0.014 0.189± 0.024
FairGAN 0.681± 0.023 0.814± 0.079 0.766± 0.029 0.009± 0.002 0.097± 0.018
GAN-PR 0.632± 0.077 0.509± 0.110 0.612± 0.106 ‡0.0± 0.0 0.120± 0.012
WGAN-GP-PR 0.640± 0.019 0.848± 0.028 0.739± 0.034 ‡0.0± 0.0 0.078± 0.014
DECAF-PR 0.717± 0.021 0.839± 0.033 0.769± 0.020 ‡0.0± 0.0 0.044± 0.013
DECAF-ND 0.780± 0.023 0.920± 0.045 0.781± 0.007 0.152± 0.013 0.198± 0.013
DECAF-FTU 0.763± 0.033 0.925± 0.040 0.765± 0.010 0.004± 0.004 0.054± 0.005
DECAF-CF 0.743± 0.022 0.875± 0.038 0.769± 0.004 0.003± 0.006 0.039± 0.011
DECAF-DP 0.781± 0.018 0.881± 0.050 0.672± 0.014 0.001± 0.002 0.001± 0.001

B Convergence guarantees DECAF GAN

Assuming the correct underlying data generating DAG is known, well-known theoretical results for
GANs transfer to DECAF. We highlight the main results. The typical GAN minimax objective (Eq. 3
paper) is optimized by iteratively updating the discriminator and generator, with respective losses:

LD(X̂,X) = logD(X̂) + log(1−D(X)) (1)

LG(X̂) = − logD(X̂) (2)

First, we reiterate the following theorem from [6]. Let PG and PX denote generator and original data
distributions, respectively.
Theorem 1. Given fixed optimal discriminator D∗, the global minimum of the generator loss (Eq. 2)
is achieved if and only if PG = PX .

Proof. Noting that we have made no changes to the GAN discriminator, we refer to Theorem 1 of
[6].

Theorem 2. (Convergence guarantee) Assuming the following three conditions hold:

(i) data generating distribution PX is Markov compatible with a known DAG G = (V,E);

(ii) generator G and discriminator D have enough capacity; and

(iii) in every training step the discriminator is trained to optimality given fixed G, and G is subse-
quently updated as to maximise the discriminator loss (Eq. 3 paper);

then generator distribution PG converges to true data distribution PX

Proof. This is the direct result of the construction of generator G and follows a similar argument
as Proposition 2 of [6]. Note that by the definition of compatibility of PX and G = (V,E), we can
write:

PX(X) =
∏

Xi∈V
P (Xi|{Xj : (Xj → Xi) ∈ E})

Given each Gi (see Eq. 2 paper) has enough capacity, G can thus express the full distribution
PX(X). By convexity of the loss functions and the existence of a unique global optimum (Theorem
1), gradient descent is theoretically guaranteed to converge, PG → PX [6].
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Note that for condition (i) of Theorem 2 to be valid, we do not require that graph G equals the true
underlying DAG of the data generating distribution PX ; PG is only required to disentangle into the
causal factors implied by G. This is highly beneficial, as it enables generation of perfect synthetic
data without perfect causal knowledge. For example, if the Markov equivalence class of the true
underlying DAG has been determined through causal discovery, any graph G in the equivalence class
satisfies condition (i) of Theorem 2.

Remarks The convergence guarantees do not necessarily hold in practice. First, finite data means
there there is no guarantee the algorithm converges to the true underlying data distribution instead
of, for example, the observed empirical data distribution. Second, in practice each generator Gi will
have limited capacity and P (Xi|Pa(Xi)) might not lie in its support. On a more positive note, these
limitations are not specific for DECAF and generally GANs have done well in the past. Additionally,
our method is directly extendable to the more stable WGAN-GP [7] and other generative models.

C Compatibility different fairness definitions

Related definitions In the paper we have discussed FTU, DP and CF, which are independence-based
definitions and do not take directionality explicitly into account when defining fairness. Some
authors use similar definitions, but instead of looking at (conditional) independencies of A and
Y , they consider (blocked) directed paths from protected attribute A to Y . These definitions are
compatible with DECAF, but mean less edges need to be removed. See Table 2 and Figure 2. Zhang
et al. [8] consider direct and indirect discrimination, which can be understood as the “directed path”
equivalents of FTU and DP.2 Assuming faithfulness and not allowing any discrimination—i.e. τ = 0
in [8]—direct and indirect discrimination prohibit the existence of edge A→ Y and directed path
A to Y , respectively. Zhang and Bareinboim [9] disentangle the total effect of A on Y into direct,
indirect and spurious relations. This leads to the same definition for direct discrimination as [8], but a
different definition of indirect discrimination as it does allow for direct influence of A on Y . A very
similar definition, coined counterfactual fairness, is proposed by [10]. Kilbertus et al. [11] introduce
unresolved discrimination (UD) as the path-equivalent version of conditional fairness. They define
proxy discrimination as well, which can be considered the dual of UD [11].

Incompatible definitions Some definitions are not compatible with fair synthetic data generation
because they rely on the final prediction, e.g. equality of opportunity [12] and calibration (e.g. see
[13]). As a consequence, DECAF cannot be used for these. Furthermore, we note that all our fairness
definitions are binary: a distribution is fair or unfair. In practice some level of unfairness might be
tolerated. For example, the US Supreme Court’s 80% rule [14] essentially states that a prediction has
disparate impact if for disadvantaged group A = 1 and positive outcome Ŷ = 1, P (Ŷ=1|A=1)

P (Ŷ=1|A=0)
< 0.8

[15]. Some authors (e.g. Feldman et al. [15]) have explored this continuous definition, but because it
requires quantification of path-specific effects work is limited by a linearity assumption. Extending
this to nonlinear path-specific effects is an interesting direction for future work, with great relevance
for real-life applications.

Figure 2: (Left) Typical strictness of different definitions. Note that the strictness of CF, ¬ UD and
¬PD depends on the choice of explanatory variables/proxies. (Right) Example showing different
definitions and required edge removals. ¬ DD: 7; FTU: 77; ¬ ID: 77; DP: 7777. Note that for FTU,
A→ X1 could have been removed instead of Y → X1.

2Note: the legal definitions of direct and indirect discrimination are in fact defined as FTU and DP.
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Table 2: Different definitions of fairness that are compatible with DECAF and which edges need
removal when evaluation distribution P (X) = PX(X). The first three definitions are non-causal, the
others only prohibit causal paths. A, Y, P,R denote respectively the protected attribute, label, proxy
variables and explanatory variables. Let πA→Y denote a directed path from A to Y that ends with
B → Y for some B.

Definition Edges to remove

Demographic Parity (DP) [16] B ↔ Y : ∀B ∈ BlG′(Y ) with A 6⊥⊥ B
Conditional Fairness (CF) B ↔ Y : ∀B ∈ BlG′(Y ) with A 6⊥⊥ B|R
Fairness through Unawareness (FTU) A↔ Y and (A→ C or Y → C : ∀C with A→ C ← Y )

No Indirect Discrim. (¬ ID) [8] B → Y if there exists πA→Y

No Proxy Discrim. (¬PD) [11] B → Y if there exists πA→Y that is blocked by P
No Unresolved Discrim. (¬UD) [11] B → Y if there exists πA→Y that is not blocked by R
No Direct Discrim. (¬ DD) [8, 9] A→ Y

D Additional Details and Results

D.1 Implementation details.

We instantiate the generator of DECAF with d sub-networks with shared hidden layers. Both the
generator and discriminator are constructed having 2 hidden layers with 2d neurons and initialized
with random uniform weights. Each benchmark is initialized with the same random weights and
published hyperparameters. For preprocessing, all continuous variables are standardized. We use the
Adam optimizer with a learning rate of 0.001 for up to 50 epochs. We update the generator once for
every 10 discriminator updates. We implement DECAF using PyTorch Lightning3.

Computational hardware. All models were trained on an Ubuntu 18.04 OS with 64GB of RAM
(Intel Core i7-6850K CPU @ 3.60GHz) and 2 NVidia 1080 Ti GPUs.

Scalability Due to the sequential feature generation, DECAF’s run time scales linearly with the
number of variables. In practice—for the larger Communities and Crime dataset—this comes down
to an average training time of just about 35s per epoch when run on a machine with hexacore Intel
i7-6850K CPU. Practical improvements can be made to speed this up further: when the graph is
sparse one can parallelize calculations and often one can cluster (some) variables and model clusters
together using a single generator network.

Generating discrete variables In both datasets the only non-binary discrete variable is the pro-
tected attribute, which for simplicity we have binarised (discriminated vs non-discriminated). All
variables are generated in the same way, but binary variables are rounded off after generation.

Table 3: Overview datasets
Credit Census Communities

Number of features 15 10 128
- Continuous 3 4 120
- Discrete 12 6 8
Target type Binary Binary Binary
Number of samples 379 32,561 1994
Number of discovered edges 40 22 1288

D.2 Census Dataset Details

DECAF supports both FTU and DP debiasing, i.e. respectively direct and indirect discrim-
ination removal. We use the DAG from [8, 15] as shown in Figure 3. FTU is achieved

3Source code is available at https://github.com/vanderschaarlab/DECAF

4

https://github.com/vanderschaarlab/DECAF


by removing the directed edge between between sex and income (see Corollary 3), DP is
achieved by removing4 all incoming edges into the target variable that have the protected vari-
able as an ancestor (Corollary 2)- these include edges between the target variable income and
each of occupation, hours_per_week, occupation, workclass, education, relationship,
marital_status, and sex. DP fairness is overly strict, so to satisfy CF fairness, we allow the
variables occupation, hours_per_week, workclass, and education while removing the edges
from sex, marital_status, and relationship.

We generate synthetic data from the ground truth dataset using each benchmark generator. We ran-
domly hold out a sample of 2000 samples as a test set. We train an MLP using default scikit-learn
hyperparameters on the generated dataset to use as our downstream classifier. We use a hidden layer
with 100 neurons and ReLU activation functions. For the output layer we use a softmax activation
and binary cross entropy loss. We use Adam as the optimizer with a learning rate of 0.001.

race age

occupation

income

hours_per_week workclass
relationship

sex

marital_status

native_country

education

Figure 3: Adult dataset DAG from [8, 15]. The target variable is in green, the protected attribute in
purple, and the allowed CF variables in blue. FTU is achieved by removing: 7; DP: 777; CF: 77. In
this particular instance, we follow [17], and remove gender discrimination. However, our method
generalizes to removing the highly problematic variable race to income.

D.3 Fair Credit Details

We use the Credit Approval dataset from [5] as our GT dataset. We synthetically add bias by
decreasing the probability that a sample will be have their credit approved based on the chosen A.
We induce bias by choosing A to be ethnicity [1, 2, 3, 4], with a discriminated population having
a value of 45. The credit_approval for this population was synthetically denied (set to 0) with
some bias probability β – see Section 6.2 for more details.

The causal DAG used in this experiment is shown in Figure 4. This DAG was found using the Fast
Greedy Equivalence Search (FGES) [18] with the pycausal library [19]. We provide the prior
knowledge that age and ethnicity are root nodes to the FGES algorithm.

We train an MLP using default scikit-learn hyperparameters on the generated dataset to use as
our downstream classifier. We use a hidden layer with 100 neurons and ReLU activation functions.
For the output layer we use a softmax activation and binary cross entropy loss. We use Adam as the
optimizer with a learning rate of 0.001.

In Table 4, we show the results of running this experiment 10 times over our biased dataset. Note that
our method was able to generate synthetic examples that had the highest AUROC (demonstrating
FTU fairness). Table 4 shows that our method can perform debiasing without performance hits to
the synthetic data metrics – i.e., there are no significant difference (outside of a standard deviation)
between the top methods.

4Specifically, we focus on the scenario of P (X) being the original biased data distribution; we want a model
trained on synthetic data D ∼ P ′(X) to be DP-fair when evaluated on P (X), see remark Section 4.2.

5Note that the values have been anonymized in this dataset.
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age

years_employed credit_score

approved

default

married

employed

education_level
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zip

bank_customer

ethnicity

citizen
debt

income

Figure 4: Credit Approval DAG discovered using FGES [18] and Tetrad [19]. The target variable is
in green, the protected attribute in purple, and the allowed CF variables in blue. FTU is achieved by
removing: 7; DP: 777; CF: 77. Also, note that in this case CF fairness and DP fairness are the same.

Table 4: Bias removal experiment on Credit Approval dataset. Here we train an MLP on the listed
dataset, and report the testing AUROC for credit approval prediction on the ground truth (GT) dataset
for the biased population. Methods denoted *-PR represent modifications to the dataset by dropping
the protected variable (PR). Note that there the FTU is zero for *-PR methods since the protected
variable, P, has been removed.

Data Quality Fairness
Method Precision↑ Recall↑ AUROC↑ DP↓ FTU↓
GAN 0.921± 0.036 0.335± 0.029 0.743± 0.047 0.405± 0.077 0.194± 0.058
WGAN 0.970± 0.007 0.804± 0.057 0.698± 0.009 0.520± 0.036 0.461± 0.029
ADSGAN 0.963± 0.009 0.841± 0.052 0.708± 0.009 0.506± 0.013 0.429± 0.059
GAN-PR 0.794± 0.117 0.368± 0.080 0.727± 0.047 0.203± 0.196 0.0± 0.0
WGAN-PR 0.941± 0.004 0.880± 0.017 0.814± 0.019 0.406± 0.022 0.0± 0.0
ADSGAN-PR 0.945± 0.008 0.880± 0.019 0.827± 0.008 0.413± 0.029 0.0± 0.0
FairGAN 0.951± 0.012 0.663± 0.046 0.680± 0.008 0.510± 0.075 0.474± 0.054
DECAF 0.954± 0.012 0.601± 0.015 0.713± 0.045 0.511± 0.130 0.432± 0.127
DECAF-FTU 0.936± 0.017 0.901± 0.034 0.877± 0.009 0.099± 0.065 0.014± 0.012
DECAF-DP 0.940± 0.007 0.922± 0.024 0.875± 0.010 0.011± 0.029 0.015± 0.017

E Surrogate variables

Debiasing in DECAF relies on removing edges from a trained model. As highlighted in Section 5.2,
we need surrogate variables with which to replace the removed edges (Eq. 4 paper). In this section,
we compare two surrogate variable mechanisms. The aim is show i) that debiasing is successful
independent of the choice of surrogate variables, and ii) how prior knowledge helps in choosing
surrogate variable mechanism, which leads to better data quality.

Mechanisms Let X̃ij denote the surrogate variable used for the removed edge (i→ j), i.e. the surro-
gate variable that replaces the influence of Xi on Xj . Here, we compare two surrogate mechanisms
for this setting:

1. X̃ij ∼ P (Xi), i.e. we sample from the parent’s marginal distribution,

2. X̃ij = x̃ij , where x̃ij is a fixed value.

Mechanism 1 is straightforward and most applicable when one does not know anything about the
bias of a particular edge. By sampling from the marginal, each sample might use a different value of
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X̃ij when generating feature Xj , which means the diversity of the generated Xj is retained better
compared to mechanism 2. Mechanism 1 for all experiments in Section 6.

On the other hand, mechanism 2 is more suitable when we know explicitly that there is bias for some
values of Xi, e.g. if Xi is the protected attribute we might know there is a group A = 0 that is being
discriminated. In this case, sampling X̃ij from the marginal of A is not desired: even though this
means we remove direct bias from A to Y , it still means we disadvantage some individuals randomly,
i.e. every time we sample x̃ij = 0. We can employ the second mechanism instead, i.e. set x̃ij = 1
for all individuals. This corresponds to treating everyone like they are from the advantaged group.

Experiments We repeat the experiment from Section 6.2, in which we insert direct bias from A to
Y by denying loans for a disadvantaged group A = 0 with probability β. Our aim is to remove
the direct bias from A to Y and we evaluate the synthetic data quality and bias with respect to the
original, unbiased dataset. As we will see, in this setting mechanism 2 is more appropriate: we want
to treat everyone from group A = 0 like they are from group A = 1, thereby removing the bias we
inserted. Meanwhile, we do not want to change the way we generate data for the advantaged group.
More specifically, even though it would not be considered discrimination against a protected group,
randomly denying loans to individuals of any group should still be considered unfair.

In Figure 5 we plot the quality metrics and FTU for three generation methods: DECAF-ND (no
debiasing), DECAF-FTU1 (DECAF-FTU with surrogate mechanism 1) and DECAF-FTU2 (DECAF-
FTU with mechanism 2). We plot three columns; on the left we plot the metrics for all generated
data, in the middle we plot the metrics as computed on the discriminated group and on the right for
the non-discriminated group.

As we can see in the FTU plots (bottom), both debiasing mechanisms are equally valid for removing
the injected bias from A to Y . However, the precision metric tells a different story. Mechanism 1
disadvantages individuals randomly whenever it samples x̃ij = 0, but this is not in line with what we
want the data to be like (no disadvantage like this at all). As a result, we see that the quality of both
the discriminated group goes down. The same result can be observed in the recall and AUROC plot,
though the overlapping error bars prohibit strong conclusions.

In a nutshell, these results indicate that for different mechanisms for surrogate variables, data fairness
is guaranteed. However, knowledge about the origins of the bias can help increase the data utility.

F DAG Sensitivity

In this section, we investigate DECAF under imperfect knowledge. Here, we are curious to understand
what happens when our causal knowledge has: 1) has missing edges, 2) has spurious edges, i.e.,
edges that we assumed falsely, and 3) edges that are reversed in directionality.

We perform this experiment on the credit approval dataset [5], with the known DAG used in the
manuscript. Using an identical experimental setup as described in Section 6.2 and a bias of β = 0.8,
we run our experiment 10 times each under random DAG perturbations. Starting with the baseline
DAG used in our credit approval experiment, we perform a sensitivity analysis to the following DAG
perturbations:

• Edge removal is done by randomly edges from the baseline DAG.

• Edge addition is done by randomly adding edges that are constrained by the following
two criteria: 1) it does not create any cycles, and 2) it does not create any new indirect
bias measures. For the second condition, we ensure this by asserting that an edge is not
added between the protected attribute ethnicity and an ancestor of approved. We do
this to ensure that the indirect bias is held consistent across each DAG instantiation and
experimental run.

• Edge reversal is done by randomly reversing edges in the baseline DAG while preserving
acyclicity.

Results for this experiment are shown in Figure 6. As expected, we see that edge removal degrades
synthetic data quality (precision, recall, and AUROC) as the number of edges removed increases;
this is not the case for adding and reversing edges – where stable synthetic data quality is preserved.
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Figure 5: Plot of precision, recall, AUROC, and FTU over various bias strengths for (a) both popula-
tions (discriminated and non-discriminated), (b) discriminated population, and (c) non-discriminated
population.

In terms of debiasing, we see that DECAF-FTU and DECAF-ND is still able to debias consistently
across all DAG perturbations.

G Hidden Confounders

In this section, we examine DECAF under hidden confounders on the Credit Approval dataset.
Assuming the DAG in Figure 4, we create a hidden confounder by removing the variable for
education_level from the dataset and DAG. We then replicate the experimental setup for Sec-
tion ?? under identical conditions. We present the results in Figure 7.
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Figure 6: Plot of precision, recall, AUROC, FTU, and DP over (a) edge removal, (b) edge addition,
and (c) edge reversal on the credit approval dataset.
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Figure 7: Plot of precision (a), recall (b), AUROC (c), FTU (d), and DP (e) over bias strength β
for experiments with hidden confounding. FairGAN performs similarly in terms of DP and FTU,
but DECAF-FTU and DECAF-DP have significantly better data quality as well as down stream
prediction capability (AUROC).
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