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ABSTRACT

Conformal prediction has shown spurring performance in constructing statistically
rigorous prediction sets for arbitrary black-box machine learning models, assuming
the data is exchangeable. However, even small adversarial perturbations during the
inference can violate the exchangeability assumption, challenge the coverage guar-
antees, and result in a subsequent decline in prediction coverage. In this work, we
propose the first certifiably robust learning-reasoning conformal prediction frame-
work (COLEP) via probabilistic circuits, which comprises a data-driven learning
component that trains statistical models to learn different semantic concepts, and a
reasoning component that encodes knowledge and characterizes the relationships
among the statistical knowledge models for logic reasoning. To achieve exact and
efficient reasoning, we employ probabilistic circuits (PCs) to construct the reason-
ing component. Theoretically, we provide end-to-end certification of prediction
coverage for COLEP under ℓ2 bounded adversarial perturbations. We also provide
certified coverage considering the finite size of the calibration set. Furthermore, we
prove that COLEP achieves higher prediction coverage and accuracy over a single
model as long as the utilities of knowledge models are non-trivial. Empirically, we
show the validity and tightness of our certified coverage, demonstrating the robust
conformal prediction of COLEP on various datasets.

1 INTRODUCTION

Deep neural networks (DNNs) have demonstrated impressive achievements in different domains (He
et al., 2016; Vaswani et al., 2017; Li et al., 2022b; Pan et al., 2019; Chen et al., 2018). However, as
DNNs are increasingly employed in real-world applications, particularly those safety-critical ones
such as autonomous driving (Xu et al., 2022a) and medical diagnosis (Kang et al., 2023a), concerns
regarding their trustworthiness and reliability have emerged (Szegedy et al., 2014; Eykholt et al.,
2018; Cao et al., 2021; Li et al., 2017; Wang et al., 2023). To address these concerns, it is crucial
to provide the worst-case certification for the model predictions (i.e., certified robustness) (Wong
& Kolter, 2018; Cohen et al., 2019; Li et al., 2023), and develop techniques that enable users to
statistically evaluate the uncertainty linked to the model predictions (i.e., conformal prediction) (Lei
et al., 2018; Solari & Djordjilović, 2022).
In particular, considering potential adversarial manipulations during test time, where a small perturba-
tion could mislead the models to make incorrect predictions (Szegedy et al., 2014; Madry et al., 2018;
Xiao et al., 2018; Cao et al., 2021; Kang et al., 2024b), different robustness certification approaches
have been explored to provide the worst-case prediction guarantees for neural networks. On the
other hand, conformal prediction has been studied as an effective tool for generating prediction
sets that reflect the prediction uncertainty of a given black-box model, assuming that the data is
exchangeable (Romano et al., 2020; Vovk et al., 2005). Such prediction uncertainty has provided a
probabilistic guarantee in addition to the worst-case certification. However, it is unclear how such
uncertainty certification would perform in the worst-case adversarial environments.
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Although the worst-case certification for conformal prediction is promising, it is challenging for
purely data-driven models to achieve high certified prediction coverage (i.e., worst-case coverage
with bounded input perturbations). Recent studies on the learning-reasoning framework, which
integrates extrinsic domain knowledge and reasoning capabilities into data-driven models, have
demonstrated great success in improving the model worst-case certifications (Yang et al., 2022;
Zhang et al., 2023). In this paper, we aim to bridge the worst-case robustness certification and
uncertainty certification, and explore whether such knowledge-enabled logical reasoning could help
improve the certified prediction coverage for conformal prediction. We ask: How to efficiently
integrate knowledge and reasoning capabilities into DNNs for conformal prediction? Can we prove
that such knowledge and logical reasoning enabled framework would indeed achieve higher certified
prediction coverage and accuracy than that of a single DNN?

In this work, we first propose a certifiably robust learning-reasoning conformal prediction framework
(COLEP) via probabilistic circuits (PCs). In particular, we train different data-driven DNNs in the
“learning" component, whose logical relationships (e.g., a stop sign should be of octagon shape) are
encoded in the “reasoning" component, which is constructed with probabilistic circuits (Darwiche,
1999; 2001) for logical reasoning as shown in Fig 1. Theoretically, we first derive the certified
coverage for COLEP under ℓ2 bounded perturbations. We also provide certified coverage considering
the finite size of the calibration set. We then prove that COLEP achieves higher certified coverage and
accuracy than that of a single model as long as the knowledge models have non-trivial utilities. To
our best knowledge, this is the first knowledge-enabled learning framework for conformal prediction
and with provably higher certified coverage in adversarial settings.
We have conducted extensive experiments on GTSRB, CIFAR-10, and AwA2 datasets to demonstrate
the effectiveness and tightness of the certified coverage for COLEP. We show that the certified
prediction coverage of COLEP is significantly higher compared with the SOTA baselines, and COLEP
has weakened the tradeoff between prediction coverage and prediction set size. We perform a range
of ablation studies to show the impacts of different types of knowledge.

Related work Conformal prediction is a statistical tool to construct the prediction set with guar-
anteed prediction coverage (Vovk et al., 1999; 2005; Shafer & Vovk, 2008; Lei et al., 2013; Yang
& Kuchibhotla, 2021; Solari & Djordjilović, 2022; Jin et al., 2023), assuming that the data is ex-
changeable. Several works have explored the scenarios where the exchangeability assumption is
violated (Jin et al., 2023; Barber et al., 2022; Ghosh et al., 2023; Kang et al., 2023c; 2024a). However,
it is unclear how to provide the worst-case certification for such prediction coverage considering
adversarial setting. Recently, Gendler et al. (Gendler et al., 2022) provided a certified method for
conformal prediction by applying randomized smoothing to certify the non-conformity scores. How-
ever, such certified coverage could be loose due to the generic nature of randomized smoothing. We
propose COLEP with a sensing-reasoning framework to achieve much stronger certified coverage
by leveraging the knowledge-enabled logic reasoning capabilities. We provide a comprehensive
literature review on certified robustness and logical reasoning in appendix B.

2 PRELIMINARIES

Suppose that we have n data samples {(Xi, Yi)}ni=1 with features Xi ∈ Rd and labels Yi ∈ Y :=
{1, 2, ..., Nc}. Assume that the data samples are drawn exchangeably from some unknown distribution
PXY . Given a desired coverage 1− α ∈ (0, 1), conformal prediction methods construct a prediction
set Ĉn,α ⊆ Y for a new data sample (Xn+1, Yn+1) ∼ PXY with the guarantee of marginal prediction
coverage: P[Yn+1 ∈ Ĉn,α(Xn+1)] ≥ 1− α.

In this work, we focus on the split conformal prediction setting (Lei et al., 2018; Solari & Djordjilović,
2022), where the data samples are randomly partitioned into two disjoint sets: a training set Itr

and a calibration set Ical = [n]\Itr. In here and what follows, [n] := {1, · · · , n}. We fit a classifier
h(x) : Rd 7→ Y to the training set Itr to estimate the conditional class probability πy(x) := P[Y =
y|X = x] of Y given X. Using the estimated probabilities that we denote by π̂y(x), we then compute
a non-conformity score Sπ̂y (Xi, Yi) for each sample in the calibration set Ical to measure how much
non-conformity each validation sample has with respect to its ground truth label. A commonly used
non-conformity score for valid and adaptive coverage is introduced by (Romano et al., 2020) as:
Sπ̂y (x, y) =

∑
j∈Y π̂j(x)I[π̂j(x)>π̂y(x)] + π̂y(x)u, where I[·] is the indicator function and u is uniformly

sampled over the interval [0, 1]. Given a desired coverage 1− α, the prediction set of a new data point
Xn+1 is formulated as:

Ĉn,α(Xn+1) = {y ∈ Y : Sπ̂y (Xn+1, y) ≤ Q1−α({Sπ̂y (Xi, Yi)}i∈Ical)} (1)
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whereQ1−α({Sπ̂y (Xi, Yi)}i∈Ical) is the ⌈(1−α)(1+|Ical|)⌉-th largest value of the set {Sπ̂y (Xi, Yi)}i∈Ical .
The prediction set Ĉn,α(Xn+1) includes all the labels with a smaller non-conformity score than the
(1− α)-quantile of scores in the calibration set. Since we assume the data samples are exchangeable,
the marginal coverage of the prediction set Ĉn,α(Xn+1) is no less than 1− α.

3 LEARNING-REASONING PIPELINE FOR CONFORMAL PREDICTION

To achieve high certified prediction coverage against adversarial perturbations, we introduce the
certifiably robust learning-reasoning conformal prediction framework (COLEP). For better readability,
we provide structured tables for used notations through the analysis in Appendix K.

3.1 OVERVIEW OF COLEP
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Figure 1: Overview of COLEP.

The COLEP is comprised of a data-driven learning
component and a logic-driven reasoning component.
The learning component is equipped with a main
model to perform the main task of classification and
L knowledge models, each learns different concepts
from data. Following the learning component is the
reasoning component, which consists of R subcom-
ponents (e.g., PCs) responsible for encoding diverse
domain knowledge and logical reasoning by charac-
terizing the logical relationships among the learning
models. The COLEP framework is depicted in Fig 1. Concretely, consider an input x ∈ Rd (e.g.,
the stop sign image) and an untrusted main model (e.g., stop sign classification model) within the
learning component that predicts the label of x along with estimates of conditional class probabilities

π̂j(x) := P[ŷ = j|X = x], (2)
where j ∈ Y := [Nc]. Note that the main model as a Nc-class classification model can be viewed as
Nc binary classification models, each with success probability π̂j∈[Nc](·). In Fig 1, we particularly
illustrate COLEP using a binary stop sign classifier π̂s(·) as the main model for simplicity. Each
knowledge model (e.g., octagon shape classification model π̂o(·)) learns a concept from x (e.g.,
octagon shape) and outputs its prediction denoted by ŷ(l) ∈ {0, 1} where l ∈ [L] indexes a particular
knowledge model. There can be only two possible outcomes: whether the l-th knowledge model
detects the concept ŷ(l) = 1 or not ŷ(l) = 0. Consistently with the notation of the main model, we
denote the conditional concept probability of the l-th knowledge model by

π̂(l)(x) := P[ŷ(l) = 1|X = x] (3)
for l ∈ [L] Once the learning models output their predictions along with estimated probabilities,
the reasoning component accepts these estimates as input and passes them through R distinct
reasoning subcomponents in parallel. It then combines the probabilities at the outputs of the reasoning
subcomponents to calculate the corrected estimates of conditional class probabilities by COLEP,
which we denote as π̂COLEPj (x) for j ∈ [Nc] (e.g., corrected probability of x having a stop sign or not:
π̂COLEPs (x) or 1-π̂COLEPs (x)) and form the conformal prediction set with them.

3.2 REASONING VIA PROBABILISTIC CIRCUITS

We encode two types of knowledge in the reasoning component: (1) preventive knowledge of the
form “A =⇒ B” (e.g., “IsStopSign =⇒ IsOctagon”), and (2) permissive knowledge of the
form “B =⇒ A” (e.g., “HasContentStop =⇒ IsStopSign”), where A represents the main task
corresponding to the main model (e.g., “IsStopSign”), B as one of the L knowledge models (e.g.,
“IsOctagon”), and =⇒ denotes logical implication with a conditional variable as the left operand and
a consequence variable on the right. In this part, we consider one particular reasoning subcomponent
(i.e., one PC) and encode H preventive and permissive knowledge rules {Kh}Hh=1 in it. The h-th
knowledge rule Kh is assigned with weight wh ∈ R+.

To enable exact and efficient reasoning, we need to seek for appropriate probabilistic models as the
reasoning component. Recent work (Gürel et al., 2021; Yang et al., 2022) encode propositional logic
rules with Markov Logic Networks (MLNs) (Richardson & Domingos, 2006), but the inference com-
plexity is exponential regarding the number of knowledge models. Variational inference is efficient
for reaonsing (Zhang et al., 2023), but induces error during reasoning. Thus, we use probabilistic
circuits (PCs) to achieve better trade-offs between the model expressiveness and reasoning efficiency.
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Encode preventive and permissive knowledge rules with PCs. PCs define a joint distribution over
a set of random variables. PCs take an assignment of the random variables as input and output the
joint probability of the assignment. Specifically, the input of PCs can be represented by an Nc + L
sized vector of Bernoulli random variables (e.g., [IsStopSign, IsOctagon, IsRed, IsDigit]) with the
corresponding vector of success probabilities (e.g., π̂ = [π̂s, π̂

o, π̂r, π̂d]) denoted as:

π̂ :=
[
[π̂j ]j∈[Nc], [π̂

(l)]l∈[L]

]
. (4)

Note that π̂ is a concatenated vector of the estimated conditional class and concept probabilities of the
main model and knowledge models, respectively (e.g., π̂ = [π̂s, π̂

o, π̂r, π̂d] with Nc = 1, L = 2). Since
conformal prediction is our main focus, the conditional probabilities π̂ in eq. (4) will be frequently
referenced throughout the paper. To distinguish the index representing each class label j ∈ [Nc], we
use j∀ ∈ [Nc + L] to address entries of Nc + L sized vectors.
The computation of PCs is based on an acyclic directed graph G. Each leaf node Oleaf in G represents a
univariate distribution (e.g., B(π̂s(x)): Bernoulli distribution over IsStopSign with success rate π̂s(x)).
The output of a PC is typically the root node Oroot representing the joint probability of an assignment
(e.g., p(IsStopSign = 1, IsOctagon = 1|x)). The graph G contains internal sum nodes computing a
convex combination of children nodes, and product nodes computing the product of them.

Formally, we let the leaf node O(j∀)
leaf in the computational graph G be a Bernoulli distribution with

success probability π̂j∀(x). Let µ ∈M := {0, 1}Nc+L be the index variable (not an observation) of a
possible assignment for Nc classes in the interest of the main model and L concepts in the interest of
L knowledge models. We also define the factor function F : {0, 1}Nc+L 7→ R+ which takes as input
a possible assignment µ and outputs the factor value of the assignment:

F (µ) = exp

{
H∑

h=1

whI[µ∼Kh]

}
, (5)

where I[µ∼Kh] = 1 indicates that the assignment µ follows the given logic rule Kh, and otherwise
I[µ∼Kh] = 0 (e.g., in the shape PC in fig. 1, F ([1, 1]) = ew, I[[1,1]∼K] = 1, where K is the rule
“IsStopSign =⇒ IsOctagon” with weight w). F (µ) essentially measures how well the assignment µ
conforms to the specified knowledge rules. Following (Darwiche, 2002; 2003), we let sum nodes
compute the logical “or” operation, and product nodes compute the logical “and” operation. We
associate each assignment µ ∈M with the factor value F (µ) at the level of leaf nodes as fig. 1.
Given a feasible assignment of random variables, the output of PC Oroot computes the likelihood
of the assignment (e.g., p(IsStopSign = 1, IsOctogon = 1|x)). When considering the likelihood of
the j-th class label, we can marginalize class labels other than j and formulate the class probability
conditioned on input x as:

π̂COLEPj (x) =

∑
µ∈M, µj=1 Oroot(µ)∑

µ∈M Oroot(µ)
=

∑
µ∈M, µj=1 exp

{∑Nc+L
j∀=1 T (π̂j∀(x), µj∀)

}
F (µ)∑

µ∈M exp
{∑Nc+L

j∀=1 T (π̂j∀(x), µj∀)
}
F (µ)

, (6)

where T (a, b) := log(ab+(1−a)(1− b)) for simplicity of notations and µj denotes the j-th element of
vector µ. Note that the numerator and denominator of eq. (6) can be exactly and efficiently computed
with a single forwarding pass of PCs (Hitzler & Sarker, 2022; Choi & Darwiche, 2017; Rooshenas
& Lowd, 2014). We can also improve the expressiveness of the reasoning component by linearly
combining outputs of R PCs π̂(r)

j with coefficients βr for the r-th PC as π̂COLEPj (x) =
∑

r∈[R] βrπ̂
(r)
j (x)

. The core of this formulation is the mixture model involving a latent variable rPC representing the
PCs. In short, we can write π̂COLEPj (x) as the marginalized probability over the latent variable rPC as
π̂COLEPj (x) =

∑
r∈[R] P[rPC = r] · π̂(r)

j (x). Hence, the coefficient βr for the r-th PC are determined by
P[rPC = r]. Although we lack direct knowledge of this probability, we can estimate it using the data
by examining how frequently each PC r correctly predicts the outcome across the given examples,
similarly as in the estimation of prior class probabilities for Naive Bayes classifiers.
Illustrative example. We open up the stop sign classification example in fig. 1 further as follows.
The main model predicts that the image x has a stop sign with probability π̂s(x). In parallel to it, the
knowledge model that detects octagon shape predicts that the image x has an object with octagon
shape with probability π̂o(x). Then we can encode the logic rule “IsStopSign =⇒ IsOctagon”
with weight w as fig. 1. The reasoning component can correct the output probability with encoded
knowledge rules and improve the robustness of the prediction. Consider the following concrete
example. Suppose that the adversarial example of a speed limit sign misleads the main classifier
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to detect it as a stop sign with a large probability (e.g., π̂s = 0.9), but the octagon classifier is not
misled and correctly predicts that the speed limit sign has a square shape (e.g., π̂o = 0.0). Then
according the computation as eq. (6), the corrected probability of detecting a stop sign given the
attacked speed limit image is π̂COLEP

s = 0.9/(0.1ew + 0.9), which is down-weighted from the original
wrong prediction π̂s = 0.9 as we have a positive logical rule weight w > 0. Therefore, the reasoning
component can correct the wrong output probabilities with the knowledge rules and lead to a more
robust prediction framework.

3.3 CONFORMAL PREDICTION WITH COLEP

After obtaining the corrected conditional class probabilities using COLEP in eq. (6), we move on to
conformal prediction with COLEP. To begin with, we construct prediction sets for each class label
within the learning component. Using eq. (1), the prediction set for the j-th class, where j ∈ [Nc],
can be formulated as:

ĈCOLEPj
n,αj

(Xn+1) = {qy ∈ {0, 1} : Sπ̂COLEP
j

(Xn+1, q
y) ≤ Q1−αj ({Sπ̂COLEP

j
(Xi, I[Yi=j])}i∈Ical)} (7)

where 1 − αj is the user-defined coverage level, similar to α in the standard conformal prediction.
The fact that element 1 is present in ĈCOLEPj

n,αj (Xn+1) signifies that the class label j is a possible ground
truth label for Xn+1 and can be included in the final prediction set. That is:

ĈCOLEP
n,α (Xn+1) = {j ∈ [Nc] : 1 ∈ ĈCOLEPj

n,αj
(Xn+1)} (8)

where α = maxj∈[Nc]{αj}. It is worth noting that if αj is set to a fixed value for all j ∈ [Nc], α in the
standard conformal prediction setting is recovered. In this work, we adopt a fixed α for each αj for
simplicity, but note that our framework allows setting different miscoverage levels for each class j,
which is advantageous in addressing imbalanced classes. We defer more discussions on the flexibility
of defining class-wise coverage levels to Appendix D.1.

4 CERTIFIABLY ROBUST LEARNING-REASONING CONFORMAL PREDICTION

In this section, we provide robustness certification of COLEP for conformal prediction. We start by
providing the certification of the reasoning component in Section 4.1, and then move to end-to-end
certified coverage as well as finite-sample certified coverage in Section 4.2. We defer all the proofs to
Appendix. The overview of the certification framework is provided in fig. 4 in Appendix E.

4.1 CERTIFICATION FRAMEWORK AND CERTIFICATION OF THE REASONING COMPONENT

The inference time adversaries violate the data exchangeability assumption, compromising the
guaranteed coverage. With COLEP, we aim to investigate (1) whether the guaranteed coverage can
be preserved for COLEP using a prediction set that takes the perturbation bound into account, and (2)
whether we can provide a worst-case coverage (a lower bound) using the standard prediction set as
before in eq. (8). We provide certification for goal (1) and (2) in Thms. 2 and 3, respectively.

The certification procedure can be decomposed into several subsequent stages. First, we certify
learning robustness by deriving the bounds for π̂ within the learning component given the input
perturbation bound δ. There are several existing approaches to certify the robustness of models
within this component (Cohen et al., 2019; Zhang et al., 2018; Gowal et al., 2018). In this work, we
use randomized smoothing (Cohen et al., 2019) (details in Appendix C.3), and get the bound of π̂
under the perturbation. Next, we certify reasoning robustness by deriving the reasoning-corrected
bounds using the bounds of the learning component (Thm. 1). Finally, we certify the robustness of
conformal prediction considering the reasoning-corrected bounds (Thm. 2 and Thm. 3).
As robustness of the learning component is performed using randomized smoothing, we directly
focus on the robustness certification of reasoning component.
Theorem 1 (Bounds for Conditional Class Probabilities π̂COLEPj (x) within the Reasoning Component).
Given any input x and perturbation bound δ, we let [π̂j∀ (x), π̂j∀ (x)] be bounds for the estimated
conditional class and concept probabilities by all models with j∀ ∈ [Nc + L] (for example, achieved
via randomized smoothing). Let V j

d be the set of index of conditional variables in the PC except for
j ∈ [Nc] and V j

s be that of consequence variables. Then the bound for COLEP-corrected estimate of
the conditional class probability π̂COLEPj is given by:
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U[π̂COLEPj (x)] =


(1− π̂j(x))

∑
µj=0

exp

∑
j∀∈V

j
d

T (π̂j∀(x), µj∀) +
∑

j∀∈V j
s

T (π̂j∀(x), µj∀)

F (µ)

π̂j(x)
∑

µj=1

exp

 ∑
j∀∈V

j
d

T (π̂j∀(x), µj∀) +
∑

j∀∈V j
s

T (π̂j∀(x), µj∀)

F (µ)

+ 1



−1

(9)

where T (a, b) = log(ab+(1−a)(1−b)). We similarly give the lower bound L[π̂COLEPj ] in Appendix F.1.
Remarks. Thm. 1 establishes a certification connection from the probability bound of the learning
component to that of the reasoning component. Applying robustness certification methods to DNNs,
we can get the probability bound of the learning component [π̂, π̂] within bounded input perturba-
tions. Thm. 1 shows that we can compute the probability bound after the reasoning component
[L[π̂COLEPj ],U[π̂COLEPj ]] following eq. (9). Since Equation (9) presents an analytical formulation of the
bound after the reasoning component as a function of the bounds before the reasoning component,
we can directly and efficiently compute [L[π̂COLEPj ],U[π̂COLEPj ]] in evaluations.

4.2 CERTIFIABLY ROBUST CONFORMAL PREDICTION

In this section, we leverage the reasoning component bounds in Thm. 1 to perform calibration with
a worst-case non-conformity score function for adversarial perturbations. This way, we perform
certifiably robust conformal prediction in the adversary setting during the inference time. We
formulate the procedure to achieve this in Thm. 2.
Theorem 2 (Certifiably Robust Conformal Prediction of COLEP). Consider a new test sample Xn+1

drawn from PXY . For any bounded perturbation ∥ϵ∥2 ≤ δ in the input space and the adversarial
sample X̃n+1 := Xn+1 + ϵ, we have the following guaranteed marginal coverage:

P[Yn+1 ∈ ĈCOLEPδ
n,α (X̃n+1)] ≥ 1− α (10)

if we construct the certified prediction set of COLEP where

ĈCOLEPδ
n,α (X̃n+1) =

{
j ∈ [Nc] : Sπ̂COLEP

j
(X̃n+1, 1) ≤ Q1−α({Sπ̂

COLEPδ
j

(Xi, I[Yi=j])}i∈Ical)

}
(11)

and S
π̂
COLEPδ
j

(·, ·) is a function of worst-case non-conformity score considering perturbation radius δ:

S
π̂
COLEPδ
j

(Xi, I[Yi=j]) =

{
Uδ[π̂

COLEP
j (Xi)] + u(1− Uδ[π̂

COLEP
j (Xi)]), Yi ̸= j

1− Lδ[π̂
COLEP
j (Xi)] + uLδ[π̂

COLEP
j (Xi)], Yi = j

(12)

with Uδ[π̂
COLEP
j (x)] = max|η|2≤δ π̂

COLEP
j (x+ η) and Lδ[π̂

COLEP
j (x)] = min|η|2≤δ π̂

COLEP
j (x+ η).

Remarks. Thm. 2 shows that the coverage guarantee of COLEP in the adversary setting is still valid
(eq. (10)) if we construct the prediction set by considering the worst-case perturbation as in eq. (11).
That is, the prediction set of COLEP in eq. (11) covers the ground truth of an adversarial sample with
nominal level 1− α. To achieve that, we use a worst-case non-conformity score as in eq. (12) during
calibration to counter the influence of adversarial sample during inference. The bound of output
probability (Uδ[π̂

COLEP
j ],Lδ[π̂

COLEP
j ]) in eq. (12) can be computed by Thm. 1 to achieve end-to-end

robustness certification of COLEP, which generally holds for any DNN and probabilistic circuits. We
also consider the finite-sample errors of using randomized smoothing for the learning component
certification as Anonymous (2023) and provided the theoretical statement and proofs in thm. 6 in
Appendix F.3.
Theorem 3 (Certified (Worst-Case) Coverage of COLEP). Consider the new sample Xn+1 drawn
from PXY and adversarial sample X̃n+1 := Xn+1 + ϵ with any perturbation ∥ϵ∥2 ≤ δ in the input
space. We have:

P[Yn+1 ∈ ĈCOLEP
n,α (X̃n+1)] ≥ τCOLEPcer := min

j∈[Nc]

{
τCOLEPcer
j

}
, (13)

where the certified (worst-case) coverage of the j-th class label τCOLEPcer
j is formulated as:

τCOLEPcer
j = max

{
τ : Qτ ({Sπ̂

COLEPδ
j

(Xi, I[Yi=j])}i∈Ical) ≤ Q1−α({Sπ̂COLEP
j

(Xi, I[Yi=j])}i∈Ical)

}
. (14)

Remarks. Thm. 2 constructs a certified prediction set with 1− α coverage as eq. (11) by considering
the worst-case perturbation during calibration to counter the influence of test-time adversaries. In
contrast, Thm. 3 targets the case when we still adopt a standard calibration process without the
consideration of test-time perturbations, which would lead to a lower coverage than 1−α and Thm. 3
concretely shows the formulation of the worst-case coverage. Thm. 3 presents the formulations of the
lower bound of the coverage (τCOLEPcer

j ) with the standard prediction set as eq. (8) in the adversary
setting. In addition to the certified coverage, we consider finite calibration set size and certified
coverage with finite sample errors in Appendix G.
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5 THEORETICAL ANALYSIS OF COLEP
In Section 5.3, we theoretically show that COLEP achieves better coverage and prediction accuracy
than a single main model as long as the utility of knowledge models and rules (characterized in
Section 5.1) is non-trivial. To achieve it, we provide a connection between those utilities and the
effectiveness of PCs in Section 5.2. The certification overview is provided in fig. 4 in Appendix E.
5.1 CHARACTERIZATION OF MODELS AND KNOWLEDGE RULES

We consider a mixture of benign distribution Db and adversarial distribution Da denoted by Dm :=
pDbDb + pDaDa with pDb + pDa = 1. We map a set of implication rules encoded in the r-th PC to
an undirected graph Gr = (Vr, Er), where Vr = [Nc + L] corresponds to Nc (binary) class labels and
L (binary) concept labels. There exists an edge between node j1 ∈ Vr and node j2 ∈ Vr iff they are
connected by an implication rule j1 =⇒ j2 or j2 =⇒ j1.
Let Ar(j∀) be the set of nodes in the connected component of node j∀ in graph Gr. Let Ar,d(j∀) ⊆
Ar(j∀) be the set of conditional variables and Ar,s(j∀) ⊆ Ar(j∀) be the set of consequence variables.
For any sample x, let ν(x) ∈ [0, 1]Nc+L be the Boolean vector of ground truth class and concepts such
that ν(x) :=

[
[I[y=j]]j∈[Nc], [I[y(l)=1]]l∈[L]

]
. We denote ν(x) as ν when sample x is clear in the context.

For simplicity, we assume a fixed weight w ∈ R+ for all knowledge rules in the analysis. In what
follows, we characterize the prediction capability of each model (main or knowledge) and establish a
relation between these characteristics and the prediction performance of COLEP.

For each class and concept probability estimated by learning models π̂j∀∈[Nc+L] : Rd 7→ [0, 1]
(recall eq. (4)), we have the following definition:

PD [π̂j∀(x) ≤ 1− tj∀,D |νj∀ = 0] ≥ zj∀,D, PD [π̂j∀(x) ≥ tj∀,D |νj∀ = 1] ≥ zj∀,D (15)
where tj∀,D, zj∀,D are parameters quantifying quality of the main model and knowledge models in
predicting correct class and concept, respectively. In particular, tj∀,D characterizes the threshold of
confidence whereas zj∀,D quantifies the probability matching this threshold over data distribution D.
Specifically, models with a large tj∀,D, zj∀,D imply that the model outputs a small class probability
when the ground truth of input is 0 and a large class probability when the ground truth of input is 1,
indicating the model performs well on prediction. We define the combined utility of models within
r-th PC by using individual model qualities. For j-th class, we have:

T
(r)
j,D = Πj∀∈Ar(j)tj∀,D, Z

(r)
j,D = Πj∀∈Ar(j)zj∀,D (16)

and the utility of associated knowledge rules within r-th PC for the j-th class as:

U
(r)
j =

{P [νj∀ = 0, ∃j∀ ∈ Ar,s(j) |νj = 0] , r ∈ Pd(j)

P [νj∀ = 1, ∃j∀ ∈ Ar,d(j) |νj = 1] , r ∈ Ps(j)
(17)

where Pd(j) and Ps(j) are PC index sets where j appears as conditional and consequence variables.
U

(r)
j quantifies the utility of knowledge rules for class j. Consider the case where j corresponds to

a conditional variable in the r-th PC. Small U (r)
j indicates that P [νj∀ = 1, ∀j∀ ∈ Ar,s(j) |νj = 0] is

high, hence implication rules for j∀ are universal and of low utility.

5.2 EFFECTIVENESS OF THE REASONING COMPONENT WITH PCS

Here we theoretically build the connection between the utility of knowledge models T (r)
j∀,D , Z(r)

j∀,D and
the utility of implication rules U (r)

j∀
with the effectiveness of reasoning components. We quantify the

effectiveness of the reasoning component as the relative confidence in ground truth class probabilities.
Specifically, we expect E

[
π̂COLEPj (X)− π̂j(X) |Y = j

]
to be large for j ∈ [Nc] as it enables COLEP to

correct the prediction of the main model, especially in the adversary setting.
Lemma 5.1 (Effectiveness of the Reasoning Component). For any class probability within models
j ∈ [Nc] and data sample (X,Y ) drawn from the mixture distribution Dm, we can prove that:

E
[
π̂COLEPj (X) |Y ̸= j

]
≤ E[π̂j(X)− ϵj,0 |Y ̸= j ],E

[
π̂COLEPj (X) |Y = j

]
≥ E [π̂j(X) + ϵj,1 |Y = j ]

(18)

ϵj,0 =
∑

D∈{Da,Db}

pD

 ∑
r∈Pd(j)

βrU
(r)
j Z

(r)
j,D

(
π̂j −

π̂j

π̂j + (1− π̂j)/λ
(r)
j,D

)
+
∑

r∈Ps(j)

βr

(
π̂j −

π̂j

π̂j + (1− π̂j)T
(r)
j,D

)
ϵj,1 =

∑
D∈{Da,Db}

pD

 ∑
r∈Pd(j)

βr

(
π̂j

π̂j + (1− π̂j)/T
(r)
j,D

− π̂j

)
+
∑

r∈Ps(j)

βrU
(r)
j Z

(r)
j,D

(
π̂j

π̂j + (1− π̂j)λ
(r)
j,D

− π̂j

)
(19)

where λ(r)
j,D = (1/T

(r)
j,D + e−w − 1) and we shorthand π̂j(X) as π̂j .
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Remarks. Lemma 5.1 analyzes the relative confidence of the ground truth class probabilities after
corrections with the reasoning component. Towards that, we consider different cases based on the
utility of the models and knowledge rules described earlier and combine conditional upper bounds
with probabilities. We can quantify the effectiveness of the reasoning component with ϵj,0, ϵj,1 since
non-trivial ϵj,0, ϵj,1 can correct the confidence of ground truth class in the expected direction and
benefit conformal prediction by inducing a smaller non-conformity score for an adversarial sample.

5.3 COMPARISON BETWEEN COLEP AND SINGLE MAIN MODEL

Here we reveal the superiority of COLEP over a single main model in terms of the certified prediction
coverage and prediction accuracy. Let ϵj,0,D = E(X,Y )∼D[ϵj,0|νj = 0] and ϵj,1,D = E(X,Y )∼D[ϵj,1|νj =
1]. In Section 5.2, we show that the utility of models and knowledge rules is crucial in forming an
understanding of COLEPand ϵj,0 > 0, ϵj,1 > 0 holds. In similar spirit, ϵj,0,D > 0 and ϵj,1,D > 0 for
j ∈ [Nc] and D ∈ {Da,Db} in the subsequent analysis.

Theorem 4 (Comparison of Marginal Coverage of COLEP and Main Model). Consider the adversary
setting that the calibration set Ical consists of nDb samples drawn from the benign distribution Db,
while the new sample (Xn+1, Yn+1) is drawn nDa times from the adversarial distribution Da. Assume
that A(π̂j ,Da) < 0.5 < A(π̂j ,Db) for j ∈ [Nc], where A(π̂j ,D) is the expectation of prediction
accuracy of π̂j on D. Then we have:

P[Yn+1 ∈ ĈCOLEP
n,α (X̃n+1)] > P[Yn+1 ∈ Ĉn,α(X̃n+1)], w.p.

1−max
j∈[Nc]

{exp
{
−2nDa(0.5−A(π̂j ,Da))

2ϵ2j,1,Da

}
+nDbexp

{
− 2nDb

(
(A(π̂j ,Db)− 0.5)

∑
c∈{0,1}

pjcϵj,c,Db

)2}}
(20)where pj0 = PDb [I[Y ̸=j]] and pj1 = PDb [I[Y =j]] are class probabilities on benign distribution.

Remarks. Thm. 4 shows that COLEP can achieve better marginal coverage than a single model with a
high probability exponentially approaching 1. The probability increases in particular with a higher
quality of models represented by ϵj,1,Da , ϵj,c,Db , A(π̂j ,Db). ϵj,1,Da , ϵj,c,Db quantifies the effectiveness
of the correction of the reasoning component and is positively correlated with the utility of models
T

(r)
j,D, Z

(r)
j,D and the utility of knowledge rules U (r)

j as shown in Lemma 5.1, indicating that better
knowledge models and rules benefits a higher prediction coverage with COLEP. The probability also
increases with lower accuracy on the adversarial distribution A(π̂j ,Da), indicating COLEP improves
marginal coverage more likely in a stronger adversary setting.
Theorem 5 (Comparison of Prediction Accuracy of COLEP and Main Model). Suppose that we
evaluate the expected prediction accuracy of π̂COLEPj (·) and π̂j(·) on n samples drawn from Dm and
denote the prediction accuracy as A(π̂COLEPj (·),Dm) and A(π̂j(·),Dm). Then we have:

A(π̂COLEPj (·),Dm) ≥ A(π̂j(·),Dm), w.p. 1−
∑

D∈{Da,Db}

pD
∑

c∈{0,1}

PD [Y = j] exp
{
−2n(ϵj,c,D)2

}
. (21)

Remarks. Thm. 5 shows that COLEP achieves better prediction accuracy than the main model with
a high probability exponentially approaching 1. The probability increases with more effectiveness
of the reasoning component quantified by a large ϵj,c,D, which positively correlates to the utility of
models T (r)

j,D, Z
(r)
j,D and the utility of knowledge rules U (r)

j as shown in Lemma 5.1, indicating that
better knowledge models and rules benefits a higher prediction accuracy with COLEP. In Appendix I,
we further show that COLEP achieves higher prediction accuracy with more useful knowledge rules.

6 EXPERIMENTS

We evaluate COLEP on certified conformal prediction in the adversarial setting on various datasets,
including GTSRB (Stallkamp et al., 2012), CIFAR-10, and AwA2 (Xian et al., 2018). For fair
comparisons, we use the same model architecture and parameters in COLEP and baselines CP
(Romano et al., 2020) and RSCP (Gendler et al., 2022). The desired coverage is set 0.9 across
evaluations. Note that we leverage randomized smoothing for learning component certification (100k
Monte-Carlo sampling) and consider the finite-sample errors of RSCP following Anonymous (2023)
and that of COLEP following Thm. 6. We fix weights w as 1.5 and provide more details in Appendix J.
Construction of the reasoning component. In each PC, we encode a type of implication knowledge
with disjoint attributes. In GTSRB, we have a PC of shape knowledge (e.g.,“octagon”, “square”),
a PC of boundary color knowledge (e.g., “red boundary”, “black boundary”), and a PC of content
knowledge (e.g., “digit 50”, “turn left”). Specifically, in the PC of shape knowledge, we can encode
the implication rules such as IsStopSign =⇒ IsOctagon (stop signs are octagon), IsSpeedLimit =⇒
IsSquare (speed limit signs are square). In summary, we have 3 PCs and 28 knowledge rules in
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Figure 2: Comparison of certified coverage between COLEP (τCOLEPcer ) and RSCP under bounded perturbations
δ = 0.125, 0.25, 0.50 on GTSRB, CIFAR-10, and AwA2. The upper bound of certified coverage τ(cer) is 0.9.
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Figure 3: Comparison of the marginal coverage and averaged set size for CP, RSCP, and COLEP under PGD
attack (δ = 0.25) on GTSRB, CIFAR-10, and AwA2. The nominal coverage level (green line) is 0.9.

GTSRB, 3 PCs and 30 knowledge rules in CIFAR-10, and 4 PCs and 187 knowledge rules in AwA2.
We also provide detailed steps of PC construction in appendix J.1.
Certified Coverage under Bounded Perturbations. We evaluate the certified coverage of COLEP
given a new test sample Xn+1 with bounded perturbation ϵ (|ϵ|2 < δ) based on our certification
in Thm. 3. Certified coverage indicates the worst-case coverage during inference in the adversary
setting, hence a higher certified coverage indicates a more robust conformal prediction and tigher
certification. We compare the certified coverage of COLEP with the SOTA baseline RSCP (Theorem
2 in (Gendler et al., 2022)). The comparison of certified coverage between COLEP and RSCP is
provided in Figure 2. The results indicate that COLEP consistently achieves higher certified coverage
under different ℓ2 norm bounded perturbations, and COLEP outperforms RSCP by a large margin
under a large perturbation radius δ = 0.5. Note that an obvious upper bound of the certified coverage
in the adversary setting is the guaranteed coverage without an adversary, which is 0.9 in the evaluation.
The closeness between the certified coverage of COLEP τCOLEP(cer) and the upper bound of coverage
guarantee τ(cer) shows the robustness of COLEP and tightness of our certification.
Prediction Coverage and Prediction Set Size under Adversarial Attacks. We also evaluate
the marginal coverage and averaged set size of COLEP and baselines under adversarial attacks.
COLEP constructs the certifiably robust prediction set following Thm. 2. We compare the results
with the standard conformal prediction (CP) and the SOTA conformal prediction with randomized
smoothing (RSCP). For fair comparisons, we apply PGD attack (Madry et al., 2018) with the same
parameters on CP, RSCP, and COLEP. For COLEP, we consider the adaptive PGD attack against the
complete learning-reasoning pipeline. The comparison of the marginal coverage and averaged set
size for CP, RSCP, and COLEP under PGD attack (δ = 0.25) is provided in Figure 3. The results
indicate that the marginal coverage of CP is below the nominal coverage level 0.9 under PGD
attacks as data exchangeability is violated, while COLEP still achieves higher marginal coverage
than the nominal level, validating the robustness of COLEP for conformal prediction in the adversary
setting. Compared with RSCP, COLEP achieves both larger marginal coverage and smaller set size,
demonstrating that COLEP maintains the guaranteed coverage with less inflation of the prediction set.
The observation validates our theoretical analysis in Thm. 4 that COLEP can achieve better coverage
than a single model with the power of kwowledge-enabled logical reasoning. We provide more
evaluations of different coverage levels 1 − α, different perturbation bound δ, different conformal
prediction baselines, and contributions of different knowledge rules in Appendix J.2.

Conclusion In this paper, we present COLEP, a certifiably robust conformal prediction framework
via knowledge-enabled logical reasoning. We leverage PCs for efficient reasoning and provide
robustness certification. We also provide end-to-end certification for finite-sample certified coverage
in the presence of adversaries and theoretically prove the advantage of COLEP over a single model.
We included the discussions of limitations, broader impact, and future work in Appendix A.
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A DISCUSSIONS, BROADER IMPACT, LIMITATIONS, AND FUTURE WORK

Broader Impact. In this paper, we propose a certifiably robust conformal prediction framework
COLEP via knowledge-enabled logic reasoning. We prove that for any adversarial test sample with
ℓ2-norm bounded perturbations, the prediction set of COLEP captures the ground truth label with
a guaranteed coverage level. Considering distribution shifts during inference time and weakening
the assumption of data exchangeability has been an active area of conformal prediction. COLEP
demonstrates both theoretical and empirical improvements in the adversarial setting and can inspire
future work to explore various types of distribution shifts with the power of logical reasoning and the
certification framework of COLEP. Furthermore, robustness certification for conformal prediction
can be viewed as the generalization of certified prediction robustness, which justifies a certifiably
robust prediction rather than a prediction set. Considering the challenges of providing tight bounds
for certified prediction robustness, we expect that COLEP can motivate the certification of prediction
robustness to benefit from a statistical perspective.

Limitations. A possible limitation may lie in the computational costs induced by pretraining
knowledge models. The problem can be partially relieved by training knowledge models with
parallelism. Moreover, we only need to pretrain them once and then can encode different types of
knowledge rules based on domain knolwedge. The training cost is worthy since we theoretically and
empirically show that more knowledge models benefit the robustness of COLEP a lot for conformal
prediction. Another possible limitation may lie in the access to knowledge rules. For the datasets that
release hierarchical information (e.g., ImageNet, CIFAR-100, Visual Genome), we can easily adapt
the information to implication rules used in COLEP. We can also seek knowledge graphs (Chen et al.,
2020b) with related label semantics for rule design. These approaches may be effective in assisting
practitioners in designing knowledge rules, but the process is not fully automatic, and human efforts
are still needed. Overall, for any knowledge system, one naturally needs domain experts to design
the knowledge rules specific to that application. There is probably no universal strategy on how to
aggregate knowledge for any arbitrary application, and rather application-specific constructions are
needed. This is where the power as well as limitation of our framework comes from.

Future work. The following directions are potentially interesting future work based on the framework
of COLEP: 1) exploring different structures of knowledge representations and their effectiveness on
conformal prediction performance, 2) proposing a more systematic way of designing logic rules
based on domain knowledge, and 3) initiating a better understanding of the importance of different
types of knowledge rules and motivating better design of rule weights accordingly.

Discussions. We will consider the cases where the knowledge graph is contaminated by adversarial
attackers or contains noises and misinformation in this part. The robustness of COLEP mainly
originates from the knowledge rules via factor function F (·) denoting how well each assignment
conforms to the specified knowledge rules. Since the knowledge rules and weights are specified by
practitioners and fixed during inferences, the PCs encoding the knowledge rules together with the
main model and knowledge models (learning + reasoning component in Figure 1) can be viewed as a
complete model. According to the adversarial attack settings in the literature Goodfellow et al. (2014);
Gendler et al. (2022), the model weights can be well protected in practical cases and the attackers
can only manipulate the inputs but not the model, and thus, the PC graph (i.e., the source of side
information) which is a part of the augmented model can not be manipulated by adversarial attacks.
On the other hand, it is an interesting question to discuss the case when the knowledge rules may be
contaminated and contain misinformation due to the neglect of designers. We can view the problem
of checking knowledge rules and correcting misinformation as a pre-processing step before the
employment of COLEP. The parallel module of knowledge checking and correction is well-explored
by a line of research Melo & Paulheim (2017); Caminhas (2019); Chen et al. (2020a), which basically
detects and corrects false logical relations in the semantic embedding space via consistency-checking
techniques. It is also interesting to leverage more advanced large language models to check and
correct human-designed knowledge rules. We deem that the process of knowledge-checking is
independent and parallel to COLEP, which may take additional efforts before the deployment of
COLEP but significantly benefits in achieving a much more robust system based on our analysis and
evaluations.

Alternative certification. There are two general certification directions for certifiably robust confor-
mal prediction: (1) plugging in the standard score for for test example, and the quantile is computed
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on the worst-case scores for each calibration point as in our paper; (2) plugging in the worst-case
score for the test example and the standard score for each calibration point. We can also adapt the
results with the second line based on the symmetry between x and x′ is indeed an interesting point.
Specifically, given perturbed x′ during test time, we can compute the bounds of output logits in
the δ-ball, which will also cover the clean x. Since the logit bounds also hold for clean x, we can
compute the worst-case scores based on the bounds and finally construct the prediction set with the
clean quantile value. The two lines of certification are essentially parallel. It is fundamentally due
to the exchangeability of clean samples, which leads to consideration of worst-case bounds either
during calibration or inference. One practical advantage of the first line of certification might be
that the computation of worst-case bounds requires more runtime, and thus, computing it during the
offline calibration process might be more desirable than during the online inference process.

Discussions of selection of rule weights. If a knowledge rule is true with a lower probability, then
the associated weight rule should be smaller, and vice versa. For example, there might be a case that
a knowledge rule only holds with probability 70%. In the example, the probability is with respect
to the data distribution, which means that 70% of data satisfies the rule “IsStopSign→IsOctogan”.
Besides, other factors such as the portions of class labels also affect the importance of corresponding
rules. If one class label is pretty rare in the data distribution, then the knowledge rules associated
with it clearly should be assigned a small weight, and vice versa. In summary, the importance of
knowledge rules depends on the data distribution, no matter whether we select it via grid search or
optimize it in a more subtle way. Therefore, we deem that a general guideline for an effective and
efficient selection of rule weights is to perform a grid search on a held-out validation set, which is
also essential for standard model training. However, we do not think the effectiveness of COLEP
is quite sensitive to the selection of weights. From the theoretical analysis and evaluations, we can
expect benefits from the knowledge rules as long as we have a positive weight w for the rules.

B MORE RELATED WORK

Certified Prediction Robustness To provide the worst-case robustness certification, a rich body
of work has been proposed, including convex relaxations (Zhang et al., 2018; Li et al., 2019;
Kang et al., 2023b), Lipschitz-bounded model layers (Tsuzuku et al., 2018; Singla et al., 2022;
Xu et al., 2022b), and randomized smoothing (Cohen et al., 2019; Salman et al., 2019; Li et al.,
2021; 2022a). However, existing work mainly focuses on certifying the prediction robustness rather
than the prediction coverage, which is demonstrated to provide essential uncertainty quantification
in conformal prediction (Jin et al., 2023). In this work, we aim to bridge worst-cast robustness
certification and prediction coverage, and design learning frameworks to improve the uncertainty
certification.

Knowledged-Enabled Logical Reasoning Neural-symbolic methods (Ahmed et al., 2022; Garcez
et al., 2022; Yi et al., 2018) use symbols to represent objects, encode relationships with logical rules,
and perform logical inference on them. DeepProbLog (Manhaeve et al., 2018) and Semantic loss
(Xu et al., 2018) are representatives that leverage logic circuits Brown (2003) with weighted mode
counting (WMC) to integrate symbolic knowledge. Probabilistic circuits (PCs) (Darwiche, 2002;
2003; Kisa et al., 2014) are another family of probabilistic models which allow exact and efficient
inference. PCs permit various types of inference to be performed in linear time of the size of circuits
(Hitzler & Sarker, 2022; Choi & Darwiche, 2017; Rooshenas & Lowd, 2014).

Worst-case Certification. In particular, considering potential adversarial manipulations during test
time, where a small perturbation could mislead the models to make incorrect predictions (Szegedy
et al., 2014; Madry et al., 2018; Xiao et al., 2018; Cao et al., 2021), different robustness certification
approaches have been explored to provide the worst-case prediction guarantees for neural networks.
For instance, a range of deterministic and statistical worst-case certifications have been proposed for
a single model (Wong & Kolter, 2018; Zhang et al., 2018; Cohen et al., 2019; Lecuyer et al., 2019),
reinforcement learning (Wu et al., 2022a; Kumar et al., 2022; Wu et al., 2022b), federated learning
paradigms (Xie et al., 2021; 2022), and fair learning (Kang et al., 2022; Ray Chaudhury et al., 2022),
under constrained perturbations (Balunovic et al., 2019; Li et al., 2021; 2022a).
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C PRELIMINARIES

C.1 PROBABILISTIC CIRCUITS

Definition 1 (Probabilistic Circuit). A probabilistic circuit (PC) P defines a joint distribution over
the set of random variables X and can be defined as a tuple (G, ψ), where G represents an acyclic
directed graph (V, E), and ψ : V 7→ 2X the scope function that maps each node in V to a subset of X
(i.e., scope). This scope function maps the nodes in the graph to specific subsets of random variables
X. A leaf node Oleaf of G computes a probability density over its scope ψ(Oleaf). All internal nodes of
G are either sum nodes (S) or product nodes (P ). A sum node S computes a convex combination of
its children: S =

∑
N∈ch(S) wS,NN where ch(S) denotes the children of node S. A product node P

computes a product of its children: P =
∏

N∈ch(P )N .

The output of PC is typically the value of the root node Oroot. We mainly focus on the marginal
probability computation inside PCs (e.g., P[xj = 1] =

∫
x∈X,xj=1

Oroot(x)/
∫
x∈X

Oroot(x)dx). The
inference of marginal probability is tractable by imposing structural constraints of smoothness
and decomposability : (1) decomposability: for any product node P ∈ V , ψ(v1) ∩ ψ(v2) = ∅,
for v1, v2 ∈ ch(P ), v1 ̸= v2, and 2) smoothness: for any sum node S ∈ V , ψ(v1) = ψ(v2), for
v1, v2 ∈ ch(S). With the constraint of decomposability, the integrals on the product node P can be
factorized into integrals of children nodes ch(P ), which can be formulated as follows:∫

x∈X

P (x)dx =

∫
x∈X

∏
N∈ch(P )

N(x)dx

=
∏

N∈ch(P )

[∫
x∈X

N(x)dx

] (22)

With the constraint of smoothness, the integrals on the sum node S can be decomposed linearly to
integrals on the children nodes ch(S), which can be formulated as:∫

x∈X

S(x)dx =

∫
x∈X

∑
N∈ch(S)

wS,NN(x)dx

=
∑

N∈ch(S)

wS,N

[∫
x∈X

N(x)dx

] (23)

We can see that the smoothness and decomposability of PCs enable the integral computation on
parent nodes to be pushed down to that on children nodes, and thus, the integral

∫
x∈X,xj=1

Oroot(x)

or
∫
x∈X

Oroot(x) can be computed by a single forwarding pass of the graph G. In total, we only
need two forwarding passes in the graph G to compute the marginal probability P[xj = 1] =∫
x∈X,xj=1

Oroot(x)/
∫
x∈X

Oroot(x)dx.

Knowledge rules in PCs. For the implication rule A =⇒ B, we define A as conditional variables
and B as consequence variables. Suppose that the r-th PC encodes a set of implication rules defined
over the set of Boolean variables Vr. The PC is called a homogeneous logic PC if there exists
a bipartition Vrd and Vrs (Vrd ∪ Vrs = V, Vrd ∩ Vrs = ∅) such that all variables in Vrd only
appear as conditional variables and all variables in Vrs only appears as consequence variables. We
construct homogeneous logic PCs to follow the structural properties of PCs (i.e., decomposability and
smoothness) and can show that such construction is intuitive in real-world applications. For example,
in the road sign recognition task, we construct a PC with the knowledge of shapes. We encode a set
of implication rules A =⇒ B where A is the road sign, and B is the corresponding shape (e.g.,
a road sign can imply an octagon shape). We can verify that such a PC is a homogeneous PC and
follow the structural constraints in the computation graph G, as shown in Figure 1.

C.2 MULTIPLE PCS WITH COEFFICIENTS βr IN THE COMBINATION OF PCS

Let us consider the case with R PCs. The conditional class probability of the j-th class corrected by
r-th PC can be formulated as:
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π̂
(r)
j (x) =

∑
µ∈M, µj=1 O

(r)
root(µ)∑

µ∈M O
(r)
root(µ)

=

∑
µ∈M, µj=1 exp

{∑Nc+L
j∀=1 T (π̂j∀(x), µj∀)

}
Fr(µ)∑

µ∈M exp
{∑Nc+L

j∀=1 T (π̂j∀(x), µj∀)
}
Fr(µ)

(24)

where µj denotes the j-th element of vector µ, and T (a, b) = log(ab + (1 − a)(1 − b)), and Fr(µ) =

exp
{∑Hr

h=1 whrI[µ ∼ Khr]
}

. Hr , Khr , whr are the number of knowledge rules, the h-th logic rule,
and the weight of the h-th logic rule for the r-th PC. Note that the numerator and denominator of
eq. (24) can be exactly and efficiently computed with a single forwarding pass of PCs (Hitzler &
Sarker, 2022; Choi & Darwiche, 2017; Rooshenas & Lowd, 2014). Specifically, the inference time
complexity of one PC defined on graph (V, E) with node set V and edge set E is O(|V|).
We improve the expressiveness of the reasoning component by combining R PCs with coefficients βr
for the r-th PC. Formally, given data input x, the corrected conditional class probability π̂COLEPj can be
expressed as:

π̂COLEPj (x) =
∑
r∈[R]

βrπ̂
(r)
j (x) (25)

We also note that the coefficients βr correspond to the accuracy of r-th PC normalized over all
PC accuracies. The core of this formulation is the mixture model involving a latent variable rPC

representing the PCs. In short, we can write π̂
(r)
j (x) as π̂(r)

j (x) = P[Y = y|X = x, rPC = r], and
π̂COLEPj (x) as the marginalized probability over the latent variable rPC such as:

π̂COLEPj (x) = P[Y = y|X = x] =
∑
r∈[R]

P[rPC = r] · P[Y = y|X = x, rPC = r]

=
∑
r∈[R]

P[rPC = r] · π̂(r)
j (x).

(26)

Hence, the coefficient βr for the r-th PC are determined by P[rPC = r]. Although we lack direct
knowledge of this probability, we can estimate it using the data by examining how frequently each
PC r correctly predicts the outcome across the given examples, similarly as in the estimation of prior
class probabilities for Naive Bayes classifiers.

C.3 RANDOMIZED SMOOTHING

Lemma C.1 (Randomized Smoothing (Cohen et al., 2019)). Considering the class conditional
probability π̂j : Rd 7→ [0, 1], we construct a smoothed model gj(x;σ) = Eη∼N (0,σ2)[π̂j(x + η)].
With input perturbation ∥ϵ∥2 ≤ δ, the smoothed model satisfies:

Φ(Φ−1(gj(x;σ))− δ/σ) ≤ gj(x+ ϵ;σ) ≤ Φ(Φ−1(gj(x;σ)) + δ/σ), (27)

where Φ is the Gaussian cumulative density function (CDF) and Φ−1 is its inverse.

In practice, we can estimate the expectation in gj(x;σ) by taking the average over many i.i.d.
realizations of Gaussian noises following (Cohen et al., 2019). Thus, the output probability of the
smoothed model can be bounded given input perturbations. Note that the specific ways of certifying
the learning component are orthogonal to certifying the reasoning component and the conformal
prediction procedure, and one can plug in different certification strategies for the learning component.

D CONFORMAL PREDICTION WITH COLEP

D.1 FLEXIBILITY OF USER-DEFINED COVERAGE LEVEL

In this part, we illustrate the flexibility of COLEP to use different miscoverage levels αj for different
label classes j ∈ [Nc] and prove the guaranteed coverage. Recall that in the standard conformal
prediction setting, we are given a desired coverage 1−α and construct the prediction set of a new test
sample Ĉn,α(Xn+1) with the guarantee of marginal coverage: P[Yn+1 ⊆ Ĉn,α(Xn+1)] ≥ 1− α. In
COLEP, we construct the prediction set ĈCOLEPj

n,αj (Xn+1) for the j-th class (j ∈ [Nc]) as in Equation (7)
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and construct the final prediction set ĈCOLEP
n,α (Xn+1) as in Equation (8). Then we have the following:

P
[
Yn+1 /∈ ĈCOLEP

n,α (Xn+1)
]

(28)

=P
[
1 /∈ Ĉ

COLEPYn+1
n,αj (Xn+1)

]
(29)

=P
[
Sπ̂COLEP

Yn+1
(Xn+1, 1) > Q1−αYn+1

(Sπ̂COLEP
Yn+1

({Xi, I[Yi=Yn+1]}i∈Ical)
]

(30)

≤ max
j∈[Nc]

P
[
Sπ̂COLEP

j
(Xn+1, I[Yn+1=j]) > Q1−αj

(Sπ̂COLEP
j

({Xi, I[Yi=j]}i∈Ical)
]

(31)

= max
j∈[Nc]

αj (32)

Therefore, we conclude that as long as we set maxj∈[Nc]{αj} ≤ α, we have the guarantee of

marginal coverage: P
[
Yn+1 ∈ ĈCOLEP

n,α (Xn+1)
]
≥ 1 − α. The flexibility of COLEP to set various

coverage levels for different label classes is advantageous in addressing problems related to the
imbalance of classes. For example, when samples of class j are extremely vulnerable to be attacked
by the adversary, we can set a higher miscoverage level αj for class j to consider the class-specific
vulnerability instead of setting a higher α for all classes which may affect the performance on other
classes.

D.2 ILLUSTRATIVE EXAMPLE

Let us consider the example of classifying whether the given image has a stop sign in Figure 1. The
main model generates an estimate π̂(x), meaning that the image x has a stop sign with probability
π̂(x). Suppose that we have a knowledge model to detect whether the image has an object of
octagon shape with an estimate π̂o(x), meaning that the image x has an object of octagon shape with
probability π̂o(x). Then we can encode the logic rule “IsStopSign =⇒ IsOctagon” with weight
w in the PC, as shown in Figure 1. The PC defines a joint distribution over the Bernoulli random
variables IsStopSign and IsStopSign and computes the likelihood of an instantiation of the random
variables at its output (e.g., p(IsStopSign = 1, IsOctagon = 0)). The represented joint distribution
in the PC is determined by the encoded logic rule with the pattern in the top PC of Figure 1. We
can see that only the assignment (IsStopSign = 1, IsOctagon = 0) is not multiplied by the weight w
due to the contradiction of the rule. Therefore, the probability of instantiations of random variables
with such contradictions will be down-weighted after the correction of the PC. In the simple PC, we
formally compute the class probability as:

p(IsStopSign = 1) ={p(IsStopSign = 1, IsOctagon = 0) + p(IsStopSign = 1, IsOctagon = 1)}/
{p(IsStopSign = 1, p(IsOctagon = 0) + p(IsStopSign = 1, IsOctagon = 1)

+p(IsStopSign = 0, IsOctagon = 0) + p(IsStopSign = 0, IsOctagon = 1)} .
(33)

Note that the nominator and denominator can be tractably computed by a forwarding pass of the
PC graph. COLEP can enlarge the probability estimate p(IsStopSign = 1) when x is a stop sign and
reduce it when x is not a stop sign by leveraging additional concept information p(IsStopSign, as
rigorously analyzed in Lemma 5.1.

E OVERVIEW OF CERTIFICATION

We provide the overview of certification flow in Figure 4, for a better understanding the connections
and differences of certifications in COLEP.

F OMITTED PROOFS IN SECTION 4

F.1 PROOF OF THM. 1

Theorem 1 (Generalization of Thm. 1 with multiple PCs). Given any input x and perturbation bound
δ, we let [π̂j∀(x), π̂j∀(x)] be bounds for the estimated conditional class and concept probabilities by
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Main Model & 
Knowledge 

models

Reasoning 
Component

Bound of output likelihood
[𝜋# 𝑥% , 𝜋# 𝑥% ]

Adversarial test samples 𝑥%
with bounded perturbation

𝑥% − 𝑥 ! ≤ 𝛿

Bound	of	output	likelihood	
after	the	reasoning	component
[𝕃 𝜋#"#$%& 𝑥% , 𝕌[𝜋#"#$%& 𝑥% ]]

(Theorem 1)

Certified	prediction	set	𝐶C',)
"#$%&!(𝑥%)

with	the	coverage guarantee 
(1 − 𝛼)

(Theorem 2)

𝜋#"#$%& 𝑥% (with reasoning component) achieves 
higher prediction coverage than 𝜋# 𝑥% (without 

reasoning component) (Theorem 4)
𝜋#"#$%& 𝑥% achieves higher prediction accuracy

than 𝜋# 𝑥% 	(Theorem 5)

(Achieved by robustness 
certification methods (e.g., 
randomized smoothing))

Standard	prediction	set	𝐶C',)"#$%&(𝑥%)
with the coverage guarantee 

(1 − 𝛼"#$%&"#$)
(Theorem 3)

Figure 4: Overview of prediction certification of COLEP. The certification setting is that the inference
time adversaries can violate the data exchangeability assumption, compromising the guaranteed
coverage. Therefore, the certification generally achieves the following three goals. (1) We can
preserve the guaranteed coverage using a prediction set that takes the perturbation bound into account
(Thm. 2), achieved by computing the probability bound of models before the reasoning component
(by randomized smoothing) and the bound after the reasoning component (by Thm. 1). (2) We prove
the worst-case coverage (a lower bound) if we use the standard prediction set as before (Thm. 3). (3)
We theoretically show that COLEP can achieve a better prediction coverage (Thm. 4) and prediction
accuracy (Thm. 5) than a data-driven model without the reasoning component.

the models with j∀ ∈ [Nc + L]. Let V j
rd be the set of index of conditional variables in the r-th PC

except for j ∈ [Nc] and V j
rs be that of consequence variables. Then the bound for COLEP-corrected

estimate of the conditional class probability π̂COLEPj is given by:

U[π̂COLEPj (x)] =
∑
r∈[R]

βr


(1− π̂j(x))

∑
µj=0

exp

∑
j∀∈V

j
rd

T (π̂j∀(x), µj∀) +
∑

j∀∈V j
rs

T (π̂j∀(x), µj∀)

Fr(µ)

π̂j(x)
∑

µj=1

exp

 ∑
j∀∈V

j
rd

T (π̂j∀(x), µj∀) +
∑

j∀∈V j
rs

T (π̂j∀(x), µj∀)

Fr(µ)

+ 1



−1

L[π̂COLEPj (x)] =
∑
r∈[R]

βr


(1− π̂j(x))

∑
µj=0

exp

∑
j∀∈V

j
rd

T (π̂j∀(x), µj∀) +
∑

j∀∈V j
rs

T (π̂j∀(x), µj∀)

Fr(µ)

π̂j(x)
∑

µj=1

exp

 ∑
j∀∈V

j
rd

T (π̂j∀(x), µj∀) +
∑

j∀∈V j
rs

T (π̂j∀(x), µj∀)

Fr(µ)

+ 1



−1

(34)
where T (a, b) = log(ab+ (1− a)(1− b)).

Proof of Thm. 1. We first provide a lemma that proves the monotonicity of the complex function with
respect to the estimated condition probabilities of conditional variables and consequence variables
within PCs as follows.

Lemma F.1 (Function Monotonicity within PCs). We define the target function as G(q, d) =∑
µ∈Mjd

exp
{∑

j∀∈[Nc+L]\{j} T (π̂j∀(x), µj∀)
}
Fr(µ), where q ∈ [Nc+L]\{j} and Mjd = {µ ∈

M : µj = d} (d ∈ {0, 1}). Then we have ∂G/∂π̂q(x) ≤ 0 if class label q corresponds to a
conditional variable in the PC and ∂G/∂π̂q(x) ≥ 0 if class label q corresponds to a consequence
variable in the PC.

Proof of Lemma F.1. Note that the function G(q, d) is linear with respect to π̂q(x). To explore the
monotonicity, we only need to determine the sign of the coefficients of π̂q(x). We first consider the
case where class label q corresponds to a conditional variable. We can rearrange the expression of
G(q, d) as follows:
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G(q, d) =
∑

µ∈Mjd

exp

 ∑
j∀∈[Nc+L]\{j}

T (π̂j∀ (x), µj∀ )

Fr(µ)

=
∑

µ∈Mjd,µq=1

exp

 ∑
j∀∈[Nc+L]\{j}

T (π̂j∀ (x), µj∀ )

Fr(µ) +
∑

µ∈Mjd,µq=0

exp

 ∑
j∀∈[Nc+L]\{j}

T (π̂j∀ (x), µj∀ )

Fr(µ)

=π̂q(x)
∑

µ∈Mjd,µq=1

exp

 ∑
j∀∈[Nc+L]\{j,q}

T (π̂j∀ (x), µj∀ )

Fr(µ) + (1 − π̂q(x))
∑

µ∈Mjd,µq=0

exp

 ∑
j∀∈[Nc+L]\{j,q}

T (π̂j∀ (x), µj∀ )

Fr(µ)

=π̂q(x)

 ∑
µ∈Mjd,µq=1

exp

 ∑
j∀∈[Nc+L]\{j,q}

T (π̂j∀ (x), µj∀ )

Fr(µ) −
∑

µ∈Mjd,µq=0

exp

 ∑
j∀∈[Nc+L]\{j,q}

T (π̂j∀ (x), µj∀ )

Fr(µ)


+

 ∑
µ∈Mjd,µq=0

exp

 ∑
j∀∈[Nc+L]\{j,q}

T (π̂j∀ (x), µj∀ )

Fr(µ)


(35)

Then we rearrange the coefficients of π̂q(x) as follows:

∑
µ∈Mjd,µq=1

exp

 ∑
j∀∈[Nc+L]\{j,q}

T (π̂j∀(x), µj∀)

Fr(µ)−
∑

µ∈Mjd,µq=0

exp

 ∑
j∀∈[Nc+L]\{j,q}

T (π̂j∀(x), µj∀)

Fr(µ)

=
∑

µ∈Mjd,µq=0

exp

 ∑
j∀∈[Nc+L]\{j,q}

T (π̂j∀(x), µj∀)

[Fr(R(µ, q))− Fr(µ)
]
,

(36)
where R(µ, q) : {0, 1}Nc+L × Z+ 7→ {0, 1}Nc+L rewrites the q-th dimension of vector µ to 1. Note
that when q is the index of a conditional variable, given any implication logic rule Khr, we have
I[R(µ, q) ∼ Khr] ≤ I[µ ∼ Khr]. Therefore, Fr(R(µ, q))− Fr(µ) ≤ 0 holds and ∂G/∂π̂q(x) ≤ 0.

Similarly, when q is the index of a consequence variable, given any implication logic rule Khr,
we have I[R(µ, q) ∼ Khr] ≥ I[µ ∼ Khr]. Therefore, Fr(R(µ, q)) − Fr(µ) ≥ 0 holds and
∂G/∂π̂q(x) ≥ 0.

Consider the r-th PC. We first rearrange the formulation of the class conditional probability π̂
(r)
j (x)

to the pattern of function G(·) and then leverage Lemma F.1 to derive the upper and lower bound.
The reformulation of π̂(r)

j (x) is shown as the following:

π̂
(r)
j (x) =

∑
µ∈M, µj=1 exp

{∑Nc+L
j∀=1 T (π̂j∀(x), µj∀)

}
Fr(µ)∑

µ∈M exp
{∑Nc+L

j∀=1 T (π̂j∀(x), µj∀)
}
Fr(µ)

(37)

=
1

1 +

∑
µ∈M, µj=0 exp

{∑Nc+L
j∀=1 T (π̂j∀(x), µj∀)

}
Fr(µ)∑

µ∈M, µj=1 exp
{∑Nc+L

j∀=1 T (π̂j∀(x), µj∀)
}
Fr(µ)

(38)

=
1

1 +
(1− π̂j(x))

∑
µ∈M, µj=0 exp

{∑
j∀∈[Nc+L]\{j} T (π̂j∀(x), µj∀)

}
Fr(µ)

π̂j(x)
∑

µ∈M, µj=1 exp
{∑

j∀∈[Nc+L]\{j} T (π̂j∀(x), µj∀)
}
Fr(µ)

(39)

Next, we focus on deriving the lower bound L[π̂(r)
j (x)], and the upper bound can be derived similarly.
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π̂
(r)
j (x) ≥

1 +
(1− π̂j(x))

∑
µ∈M, µj=0 exp

{∑
j∀∈[Nc+L]\{j} T (π̂j∀(x), µj∀)

}
Fr(µ)

π̂j(x)
∑

µ∈M, µj=1 exp
{∑

j∀∈[Nc+L]\{j} T (π̂j∀(x), µj∀)
}
Fr(µ)


−1

(40)

≥

1 +
(1− π̂j(x)) · U

[∑
µ∈M, µj=0 exp

{∑
j∀∈[Nc+L]\{j} T (π̂j∀(x), µj∀)

}
Fr(µ)

]
π̂j(x) · L

[∑
µ∈M, µj=1 exp

{∑
j∀∈[Nc+L]\{j} T (π̂j∀(x), µj∀)

}
Fr(µ)

]


−1

(41)

In Equation (41), we relax the numerator and denominator separately and then will show how to
derive the upper bound of the numerator and the lower bound of the denominator in Equation (41).
We can apply Lemma F.1 for any q ∈ [Nc + L]\{j} and get the following:

∑
µ∈M, µj=0

exp

 ∑
j∀∈[Nc+L]\{j}

T (π̂j∀(x), µj∀)

Fr(µ) ≤
∑

j∀∈V
j
rd

T (π̂j∀(x), µj∀) +
∑

j∀∈V
j
rs

T (π̂j∀(x), µj∀)

∑
µ∈M, µj=0

exp

 ∑
j∀∈[Nc+L]\{j}

T (π̂j∀(x), µj∀)

Fr(µ) ≥
∑

j∀∈V
j
rd

T (π̂j∀(x), µj∀) +
∑

j∀∈V
j
rs

T (π̂j∀(x), µj∀)

(42)
where V j

rd is the set of index of conditional variables in the r-th PC except for j ∈ [Nc] and V j
rs is

that of consequence variables.

From Equation (41) and Equation (42), we can derive the final bound of π̂COLEPj (x) by considering all
the PCs:

U[π̂COLEPj (x)] =
∑
r∈[R]

βr


(1− π̂j(x))

∑
µj=0

exp

∑
j∀∈V

j
rd

T (π̂j∀(x), µj∀) +
∑

j∀∈V j
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T (π̂j∀(x), µj∀)

Fr(µ)

π̂j(x)
∑

µj=1

exp

 ∑
j∀∈V

j
rd

T (π̂j∀(x), µj∀) +
∑

j∀∈V j
rs

T (π̂j∀(x), µj∀)

Fr(µ)

+ 1



−1

L[π̂COLEPj (x)] =
∑
r∈[R]

βr


(1− π̂j(x))

∑
µj=0

exp

∑
j∀∈V

j
rd

T (π̂j∀(x), µj∀) +
∑

j∀∈V j
rs

T (π̂j∀(x), µj∀)

Fr(µ)

π̂j(x)
∑

µj=1

exp

 ∑
j∀∈V

j
rd

T (π̂j∀(x), µj∀) +
∑

j∀∈V j
rs

T (π̂j∀(x), µj∀)

Fr(µ)

+ 1



−1

(43)

F.2 PROOF OF THM. 2

Theorem 2 (Recall). Consider a new test sample Xn+1 drawn from PXY . For any bounded
perturbation ∥ϵ∥2 ≤ δ in the input space and the adversarial sample X̃n+1 := Xn+1 + ϵ, we have the
following guaranteed marginal coverage:

P[Yn+1 ∈ ĈCOLEPδ
n,α (X̃n+1)] ≥ 1− α (44)

if we construct the certified prediction set of COLEP where

ĈCOLEPδ
n,α (X̃n+1) =

{
j ∈ [Nc] : Sπ̂COLEP

j
(X̃n+1, 1) ≤ Q1−α({Sπ̂

COLEPδ
j

(Xi, I[Yi=j])}i∈Ical)
}

(45)
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and S
π̂
COLEPδ
j

(·, ·) is a function of worst-case non-conformity score considering perturbation radius δ:

S
π̂
COLEPδ
j

(Xi, I[Yi=j]) =

{
Uδ[π̂

COLEP
j (Xi)] + u(1− Uδ[π̂

COLEP
j (Xi)]), Yi ̸= j

1− Lδ[π̂
COLEP
j (Xi)] + uLδ[π̂

COLEP
j (Xi)], Yi = j

(46)

with Uδ[π̂
COLEP
j (x)] = max|η|2≤δ π̂

COLEP
j (x+ η) and Lδ[π̂

COLEP
j (x)] = min|η|2≤δ π̂

COLEP
j (x+ η).

Proof of Thm. 2. We can upper bound the probability of miscoverage of the main task with the
probability of miscoverage of label classes as follows:

P
[
Yn+1 /∈ ĈCOLEPδ

n,α (X̃n+1)
]

(47)

≤ max
j∈[Nc]

P
[
I[Yn+1=j] /∈ ĈCOLEPδ

n,α,j (X̃n+1)
]

(48)

≤ max
j∈[Nc]

P
[
Sπ̂COLEP

j
(X̃n+1, I[Yn+1=j]) > Q1−α(Sπ̂

COLEPδ
j

({Xi, I[Yi=j]}i∈Ical)
]

(49)

≤ max
j∈[Nc]

P
[
S
π̂
COLEPδ
j

(Xn+1, I[Yn+1=j]) > Q1−α(Sπ̂
COLEPδ
j

({Xi, I[Yi=j]}i∈Ical)
]

(50)

≤α (51)

where ĈCOLEPδ
n,α,j (X̃n+1) :=

{
qy ∈ {0, 1} : Sπ̂COLEP

j
(X̃n+1, y) ≤ Q1−α(Sπ̂

COLEPδ
j

({Xi, I[Yi=j]}i∈Ical)
}

is the certified prediction set for the class label j.

Note that Equation (50) holds because we have S
π̂
COLEPδ
j

(Xn+1, I[Yn+1=j]) ≥

Sπ̂COLEP
j

(X̃n+1, I[Yn+1=j]). Next, we will prove Equation (50) rigorously. We first consider
the probability of miscoverage conditioned on Yn+1 = j.

P
[
Sπ̂COLEP

j
(X̃n+1, I[Yn+1=j]) > Q1−α(Sπ̂

COLEPδ
j

({Xi, I[Yi=j]}i∈Ical) |Yn+1 = j
]

(52)

≤P
[
1− (1− u)π̂COLEPj (X̃n+1) > Q1−α(Sπ̂

COLEPδ
j

({Xi, I[Yi=j]}i∈Ical) |Yn+1 = j
]

(53)

≤P
[
1− (1− u) · L

[
π̂COLEPj (X̃n+1)

]
> Q1−α(Sπ̂

COLEPδ
j

({Xi, I[Yi=j]}i∈Ical) |Yn+1 = j
]

(54)

≤P
[
S
π̂
COLEPδ
j

(Xn+1, I[Yn+1=j]) > Q1−α(Sπ̂
COLEPδ
j

({Xi, I[Yi=j]}i∈Ical) |Yn+1 = j
]

(55)

Similarly, we consider the probability of miscoverage conditioned on Yn+1 ̸= j.

P
[
Sπ̂COLEP

j
(X̃n+1, I[Yn+1=j]) > Q1−α(Sπ̂

COLEPδ
j

({Xi, I[Yi=j]}i∈Ical) |Yn+1 ̸= j
]

(56)

≤P
[
u+ (1− u)π̂COLEPj (X̃n+1) > Q1−α(Sπ̂

COLEPδ
j

({Xi, I[Yi=j]}i∈Ical) |Yn+1 ̸= j
]

(57)

≤P
[
u+ (1− u) · U

[
π̂COLEPj (X̃n+1)

]
> Q1−α(Sπ̂

COLEPδ
j

({Xi, I[Yi=j]}i∈Ical) |Yn+1 ̸= j
]

(58)

≤P
[
S
π̂
COLEPδ
j

(Xn+1, I[Yn+1=j]) > Q1−α(Sπ̂
COLEPδ
j

({Xi, I[Yi=j]}i∈Ical) |Yn+1 ̸= j
]

(59)

Combining Equation (55) and Equation (59), we prove that Equation (50) holds. Finally, from
Equation (51), we prove that:

P
[
Yn+1 ∈ ĈCOLEPδ

n,α (X̃n+1)
]
≥ 1− α (60)

F.3 THM. 2 WITH FINITE-SAMPLE ERRORS BY RANDOMIZED SMOOTHING

Theorem 6 (Thm. 2 with finite-sample errors of learning component certification by randomized
smoothing). Consider a new test sample Xn+1 drawn from PXY . For any bounded perturbation
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∥ϵ∥2 ≤ δ in the input space and the adversarial sample X̃n+1 := Xn+1 + ϵ, we have the following
guaranteed marginal coverage:

P[Yn+1 ∈ ĈCOLEPδ
n,α (X̃n+1)] ≥ 1− α (61)

if we construct the certified prediction set of COLEP where

ĈCOLEPδ
n,α (X̃n+1) =

{
j ∈ [Nc] : Sπ̂COLEP

j
(X̃n+1, 1) ≤ Q1−α+2β({Sπ̂

COLEPδ
j

(Xi, I[Yi=j])}i∈Ical)

}
(62)

and S
π̂
COLEPδ
j

(·, ·) is a function of worst-case non-conformity score considering perturbation radius δ:

S
π̂
COLEPδ
j

(Xi, I[Yi=j]) =

{
Uβ,δ[π̂

COLEP
j (Xi)] + u(1− Uβ,δ[π̂

COLEP
j (Xi)]), Yi ̸= j

1− Lβ,δ[π̂
COLEP
j (Xi)] + uLβ,δ[π̂

COLEP
j (Xi)], Yi = j

(63)

where Uβ,δ[π̂
COLEP
j (x)] and Lβ,δ[π̂

COLEP
j (x)] are computed by plugging in the β-confidence prob-

ability bound [π̂j∀(x;β), π̂j∀(x;β)] into Thm. 1. The high-confidence bound [π̂j∀(x;β), π̂j∀(x;β)]

can be obtained by randomized smoothing as the following:

π̂j∀(x;β) = Φ(Φ−1(Ê[π̂j∀(x+ σ)− bHoef(β)])− δ/σ)− bBern(β) (64)

π̂j∀(x;β) = Φ(Φ−1(Ê[π̂j∀(x+ σ) + bHoef(β)])− δ/σ) + bBern(β) (65)

where Ê is the empirical mean of NMC Monte-Carlo samples during randomized smoothing

and bHoef(β) =

√
ln 1/β

2NMC
is the Hoeffding’s finite-sample error and bBern(β) =

√
2V ln 2/β

NMC
+

7 ln 2/β

3(NMC − 1)
is the Berstein’s finite-sample error.

Proof of Thm. 6. Bounding the finite-sample error of randomized smoothing similarly as Theorem 1
in Anonymous (2023), we get that for a given j∀ ∈ [Nc + L], we have the following:

P
[
Lβ,δ

[
π̂COLEPj (X̃n+1)

]
≤ π̂COLEPj (X̃n+1) ≤ Uβ,δ

[
π̂COLEPj (X̃n+1)

]]
≥ 1− 2β (66)

We can upper bound the probability of miscoverage of the main task with the probability of miscover-
age of label classes as follows:

P
[
Yn+1 /∈ ĈCOLEPδ

n,α (X̃n+1)
]

(67)

≤ max
j∈[Nc]

P
[
I[Yn+1=j] /∈ ĈCOLEPδ

n,α,j (X̃n+1)
]

(68)

≤ max
j∈[Nc]

P
[
Sπ̂COLEP

j
(X̃n+1, I[Yn+1=j]) > Q1−α+2β(Sπ̂

COLEPδ
j

({Xi, I[Yi=j]}i∈Ical)
]

(69)

≤ max
j∈[Nc]

P
[
S
π̂
COLEPδ
j

(Xn+1, I[Yn+1=j]) > Q1−α+2β(Sπ̂
COLEPδ
j

({Xi, I[Yi=j]}i∈Ical)
]
+ 2β (70)

≤α− 2β + 2β (71)
≤α (72)

where ĈCOLEPδ
n,α,j (X̃n+1) :=

{
qy ∈ {0, 1} : Sπ̂COLEP

j
(X̃n+1, y) ≤ Q1−α+2β(Sπ̂

COLEPδ
j

({Xi, I[Yi=j]}i∈Ical)
}

is the certified prediction set for the class label j.

Note that Equation (70) holds because we have S
π̂
COLEPδ
j

(Xn+1, I[Yn+1=j]) ≥

Sπ̂COLEP
j

(X̃n+1, I[Yn+1=j]). Next, we will prove Equation (70) rigorously. We first consider

25



Published as a conference paper at ICLR 2024

the probability of miscoverage conditioned on Yn+1 = j.

P
[
Sπ̂COLEP

j
(X̃n+1, I[Yn+1=j]) > Q1−α+2β(Sπ̂

COLEPδ
j

({Xi, I[Yi=j]}i∈Ical) |Yn+1 = j
]

(73)

≤P
[
1− (1− u)π̂COLEPj (X̃n+1) > Q1−α+2β(Sπ̂

COLEPδ
j

({Xi, I[Yi=j]}i∈Ical) |Yn+1 = j
]

(74)

≤P
[
1− (1− u) · Lβ,δ

[
π̂COLEPj (X̃n+1)

]
> Q1−α+2β(Sπ̂

COLEPδ
j

({Xi, I[Yi=j]}i∈Ical) |Yn+1 = j
]

(75)

+ P
[
Lβ,δ

[
π̂COLEPj (X̃n+1)

]
≤ π̂COLEPj (X̃n+1)

]
(76)

≤P
[
S
π̂
COLEPδ
j

(Xn+1, I[Yn+1=j]) > Q1−α+2β(Sπ̂
COLEPδ
j

({Xi, I[Yi=j]}i∈Ical) |Yn+1 = j
]
+ 2β (77)

Similarly, we consider the probability of miscoverage conditioned on Yn+1 ̸= j.

P
[
Sπ̂COLEP

j
(X̃n+1, I[Yn+1=j]) > Q1−α+2β(Sπ̂

COLEPδ
j

({Xi, I[Yi=j]}i∈Ical) |Yn+1 ̸= j
]

(78)

≤P
[
u+ (1− u)π̂COLEPj (X̃n+1) > Q1−α+2β(Sπ̂

COLEPδ
j

({Xi, I[Yi=j]}i∈Ical) |Yn+1 ̸= j
]

(79)

≤P
[
u+ (1− u) · Uβ,δ

[
π̂COLEPj (X̃n+1)

]
> Q1−α+2β(Sπ̂

COLEPδ
j

({Xi, I[Yi=j]}i∈Ical) |Yn+1 ̸= j
]

(80)

+ P
[
Uβ,δ

[
π̂COLEPj (X̃n+1)

]
≥ π̂COLEPj (X̃n+1)

]
(81)

≤P
[
S
π̂
COLEPδ
j

(Xn+1, I[Yn+1=j]) > Q1−α+2β(Sπ̂
COLEPδ
j

({Xi, I[Yi=j]}i∈Ical) |Yn+1 ̸= j
]
+ 2β (82)

Combining Equation (77) and Equation (82), we prove that Equation (70) holds. Finally, from
Equation (72), we prove that:

P
[
Yn+1 ∈ ĈCOLEPδ

n,α (X̃n+1)
]
≥ 1− α (83)

F.4 PROOF OF THM. 3

Theorem 3 (Recall). Consider the new sample Xn+1 drawn from PXY and adversarial sample
X̃n+1 := Xn+1 + ϵ with any perturbation ∥ϵ∥2 ≤ δ in the input space. We have:

P[Yn+1 ∈ ĈCOLEP
n,α (X̃n+1)] ≥ τCOLEPcer := min

j∈[Nc]

{
τCOLEPcer
j

}
, (84)

where the certified coverage of the j-th class label τCOLEPcer
j is formulated as:

τCOLEPcer
j = max

{
τ : Qτ ({Sπ̂

COLEPδ
j

(Xi, I[Yi=j])}i∈Ical) ≤ Q1−α({Sπ̂COLEP
j

(Xi, I[Yi=j])}i∈Ical)
}
.

(85)

Proof of Thm. 3. We can bound the probability of coverage of the main task with the probability of
coverage of label classes as follows:

P
[
Yn+1 ∈ ĈCOLEP

n,α (X̃n+1)
]

(86)

≥ min
j∈[Nc]

P
[
I[Yn+1=j] ∈ ĈCOLEP

n,α,j (X̃n+1)
]

(87)

≥ min
j∈[Nc]

P
[
Sπ̂COLEP

j
(X̃n+1, I[Yn+1=j]) ≤ Q1−α(Sπ̂COLEP

j
({Xi, I[Yi=j]}i∈Ical)

]
(88)

≥ min
j∈[Nc]

P
[
Sπ̂COLEP

j
(X̃n+1, I[Yn+1=j]) ≤ QτCOLEPcer

j
(S

π̂
COLEPδ
j

({Xi, I[Yi=j]}i∈Ical)
]

(89)

≥ min
j∈[Nc]

P
[
S
π̂
COLEPδ
j

(Xn+1, I[Yn+1=j]) ≤ QτCOLEPcer
j

(S
π̂
COLEPδ
j

({Xi, I[Yi=j]}i∈Ical)
]

(90)

≥ min
j∈[Nc]

{τCOLEPcer
j } (91)
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where Equation (90) holds because S
π̂
COLEPδ
j

(Xn+1, I[Yn+1=j]) ≥ Sπ̂COLEP
j

(X̃n+1, I[Yn+1=j]) and is
proved rigorously in the proof of Thm. 2 in Appendix F.2.

G FINITE-SAMPLE CERTIFIED COVERAGE

In this section, we consider the finite-sample error induced by the finite size of the calibration set Ical.
We provide the finite-sample certified coverage in the adversary setting as follows.

Corollary 1 (Certified Coverage with Finite Samples). Consider the new sample Xn+1 drawn from
PXY and adversarial sample X̃n+1 := Xn+1 + ϵ with any perturbation ∥ϵ∥2 ≤ δ in the input space.
We have the following finite-sample certified coverage:

P[Yn+1 ∈ ĈCOLEP
n,α (X̃n+1)] ≥

(
1 +

1

|Ical|

)
min

j∈[Nc]

{
τCOLEPcer
j

}
−
√

log(2)/2 +
√
2/(4

√
log(2) + 8/π)√

|Ical|
(92)

where |Ical| is the size of the calibration set in conformal prediction.

Proof sketch and remarks. Leveraging corollary 1 of (Massart, 1990) and following the sketch in
(Yang & Kuchibhotla, 2021), we can prove the finite-sample error bound. Combining the finite-
sample error with the certified coverage bound in Thm. 3 concludes the proof. Note that the union
bound is applied to multiple models in (Yang & Kuchibhotla, 2021) while we circumvent it by
aggregating individual results for class labels subtly, and thus, COLEP achieves an improved sample
complexity of conformal prediction compared with ensemble learning given the same tolerance of
finite-sample error.

Proof of Corollary 1. From Corollary 1 of (Massart, 1990), we have that for all ϵ > 0,

P

sup
t∈R

∣∣∣∣∣∣ 1

|Ical|
∑
i∈Ical

I[
S
π̂
COLEPδ
j

(Xi,Yi)≤t

] − P
[
S
π̂
COLEPδ
j

(Xn+1, Yn+1) ≤ t

]∣∣∣∣∣∣ ≥ ϵ√
|Ical|

 ≤ 2 exp
{
−2ϵ2

}
(93)

For ease of notation, we let:

W :=
√
|Ical| sup

t∈R

∣∣∣∣∣∣∣
1

|Ical|
∑
i∈Ical

I[
S
π̂
COLEPδ
j

(Xi,Yi)≤t

] − P
[
S
π̂
COLEPδ
j

(Xn+1, Yn+1) ≤ t
]∣∣∣∣∣∣∣ . (94)

We let t = QτCOLEPcer
j

(S
π̂
COLEPδ
j

({Xi, I[Yi=j]}i∈Ical). It implies that:

P
[
S
π̂
COLEPδ
j

(Xn+1, Yn+1) ≤ QτCOLEPcer
j

(S
π̂
COLEPδ
j

({Xi, I[Yi=j]}i∈Ical)
]

≥ 1

|Ical|
∑
i∈Ical

I[
S
π̂
COLEPδ
j

(Xi,Yi)≤Q
τ
COLEPcer
j

(S
π̂
COLEPδ
j

({Xi,I[Yi=j]}i∈Ical )

] − W√
|Ical|

≥
⌈(1 + |Ical|)τCOLEPcer

j ⌉
|Ical|

− W√
|Ical|

≥
(
1 +

1

|Ical|

)
τCOLEPcer
j − W√

|Ical|

(95)
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Then using Equation (93), we can bound E[W ] as follows:

E[W ] =

∫ ∞

0

P [W ≥ u] du (96)

≤
∫ √

log(2)/2

0

P [W ≥ u] du+

∫ ∞

√
log(2)/2

P [W ≥ u] du (97)

≤
√
log(2)/2 + 2

∫ ∞

√
log(2)/2

exp{−2u2}du (98)

(a)

≤
√
log(2)/2 +

√
2/2

2
√
log(2) + 4/π

(99)

Inequality (a) follows from Formula 7.1.13 of (Abramowitz & Stegun, 1948). Finally, combining the
results in Thm. 3, we get:

P[Yn+1 ∈ ĈCOLEP
n,α (X̃n+1)] ≥

(
1 +

1

|Ical|

)
min

j∈[Nc]

{
τCOLEPcer
j

}
−
√

log(2)/2 +
√
2/(4

√
log(2) + 8/π)√

|Ical|
(100)

H OMITTED PROOFS IN SECTION 5

H.1 PROOF OF LEMMA 5.1

Lemma 6.1 (Recall). For any class probability within models j ∈ [Nc] and data sample (X,Y )
drawn from the mixture distribution Dm, we can prove that:

E
[
π̂COLEPj (X) |Y ̸= j

]
≤ E[π̂j(X)− ϵj,0 |Y ̸= j ],E

[
π̂COLEPj (X) |Y = j

]
≥ E [π̂j(X) + ϵj,1 |Y = j ]

(101)

ϵj,0 =
∑

D∈{Da,Db}

pD

 ∑
r∈Pd(j)

βrU
(r)
j Z

(r)
j,D

(
π̂j −

π̂j

π̂j + (1− π̂j)/λ
(r)
j,D

)
+
∑

r∈Ps(j)

βr

(
π̂j −

π̂j

π̂j + (1− π̂j)T
(r)
j,D

)
ϵj,1 =

∑
D∈{Da,Db}

pD

 ∑
r∈Pd(j)

βr

(
π̂j

π̂j + (1− π̂j)/T
(r)
j,D

− π̂j

)
+
∑

r∈Ps(j)

βrU
(r)
j Z

(r)
j,D

(
π̂j

π̂j + (1− π̂j)λ
(r)
j,D

− π̂j

)
(102)

where λ
(r)
j,D = (1/T

(r)
j,D + e−w − 1) and we shorthand π̂j(X) as π̂j .

Proof of Lemma 5.1. We first consider one PC and then analyze the effectiveness of R linearly
combined PCs. Without loss of generality, we focus on the class conditional probability by the r-th
PC (r ∈ [R]) for the class label j ∈ [Nc].

Recall that we map a set of implication rules encoded in the r-th PC to an undirected graph Gr =
(Vr, Er), where Vr = [Nc + L] corresponds to the Boolean vector of class and concept predictions
in the learning stage. There exists an edge between node j1 ∈ Vr and node j2 ∈ Vr iff they are
connected by an implication rule j1 =⇒ j2 or j2 =⇒ j1. Let Ar(j∀) be the set of nodes in the
connected component of node j∀ except for node j∀ (i.e., j∀ /∈ Ar(j∀)). Let Ar,d(j∀) ⊆ Ar(j∀) be
the set of conditional variables and Ar,s(j∀) ⊆ Ar(j∀) be the set of consequence variables. Denote
Mj be the universal set of assignments except for the j-th element. Let Pd(j) and Ps(j) be the set of
PC index where j appears as conditional variables and consequence variables, respectively.

We consider a mixture of benign and adversarial distributions denoted by Dm, which indicates that
an input x is either a benign example drawn from Db with probability pDb

:= P[x ∼ Db] or an
adversarial example drawn from Da with probability pDa

:= P[x ∼ Da], where pDb
+ pDa

= 1. We
analyze the effectiveness of PCs in four cases: case (1) r ∈ Pd(j) and Y ̸= j, case (2) r ∈ Pd(j) and
Y = j, case (3) r ∈ Ps(j) and Y = j, and case (4) r ∈ Ps(j) and Y ̸= j. We leave the probability
conditions on Y = j or Y ̸= j in each case for simplicity and consider them in the conclusions.
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Case (1) r ∈ Pd(j) and Y ̸= j. We can derive the class conditional probability by PCs as follows:

π̂
(r)
j (x) =

∑
µ∈M, µj=1 exp

{∑Nc+L
j∀=1 T (π̂j∀(x), µj∀)

}
Fr(µ)∑

µ∈M exp
{∑Nc+L

j∀=1 T (π̂j∀(x), µj∀)
}
Fr(µ)

(103)

=
1

1 +

∑
µ∈M, µj=0 exp

{∑Nc+L
j∀=1 T (π̂j∀(x), µj∀)

}
Fr(µ)∑

µ∈M, µj=1 exp
{∑Nc+L

j∀=1 T (π̂j∀(x), µj∀)
}
Fr(µ)

(104)

=

1 +
(1− π̂j(x))

∑
µ∈M, µj=0 exp

{∑
j∀∈[Nc+L]\{j} T (π̂j∀(x), µj∀)

}
Fr(µ)

π̂j(x)
∑

µ∈M, µj=1 exp
{∑

j∀∈[Nc+L]\{j} T (π̂j∀(x), µj∀)
}
Fr(µ)


−1

(105)

Note that since r ∈ Ps(j), we have
∑

µ∈M, µj=0 exp
{∑

j∀∈[Nc+L]\{j} T (π̂j∀(x), µj∀)
}
Fr(µ) ≥∑

µ∈M, µj=1 exp
{∑

j∀∈[Nc+L]\{j} T (π̂j∀(x), µj∀)
}
Fr(µ), and thus, π̂

(r)
j (x) ≤ π̂j(x) holds.

Next, we analyze the gap to get a tight bound based on the distribution of the Boolean vector
of the ground truth class and concepts ν.

Case (1a): If ∃j∀ ∈ Ar,s(j), νj∀ = 0, then we have:∑
µ∈M, µj=0 exp

{∑
j∀∈[Nc+L]\{j} T (π̂j∀(x), µj∀)

}
Fr(µ)∑

µ∈M, µj=1 exp
{∑

j∀∈[Nc+L]\{j} T (π̂j∀(x), µj∀)
}
Fr(µ)

(106)

≥
exp

{∑
j∀∈[Nc+L]\{j} T (π̂j∀(x), νj∀)

}
Fr(ν)∑

µ∈M, µj=1 exp
{∑

j∀∈[Nc+L]\{j} T (π̂j∀(x), µj∀)
}
Fr(µ)

(107)

≥ 1

e−w +
∑

µj=1,µ̸=ν exp
{∑

j∀∈[Nc+L]\{j} (T (π̂j∀(x), µj∀)− T (π̂j∀(x), νj∀))
}
Fr(µ)/Fr(ν)

(108)

When we have models such that π̂j∀(x) > 1 − tj∀,D |νj∀ = 0 or π̂j∀(x) < 1 −
tj∀,D |νj∀ = 1 , ∃j∀ ∈ Ar(j) (with probability 1 − Z

(r)
j,D), we leverage the general bound in

the case,
E[π̂(r)

j (x)|Y ̸= j] ≤ E[π̂j(x)|Y ̸= j] (109)

When we have models of high quality such that π̂j∀(x) ≤ 1 − tj∀,D |νj∀ = 0 and π̂j∀(x) ≥
1− tj∀,D |νj∀ = 1 , ∀j∀ ∈ Ar(j) (with probability Z

(r)
j,D), we can derive a tighter bound as follows:

∑
µj=1,µ̸=ν

exp

 ∑
j∀∈[Nc+L]\{j}

(T (π̂j∀(x), µj∀)− T (π̂j∀(x), νj∀))

Fr(µ)/Fr(ν) (110)

≤
∑

µj=1,µ̸=ν

exp

 ∑
j∀∈[Nc+L]\{j}

(T (π̂j∀(x), µj∀)− T (π̂j∀(x), νj∀))

 (111)

(a)

≤
∏

j∀∈Ar(j)

(
1 +

1− tj∀,D
tj∀,D

)
− 1 (112)

≤ 1

Πj∀∈Ar(j)tj∀,D
− 1 := 1/T

(r)
j,D − 1 (113)
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In inequality (a), we plug in the lower bound of confidence of a correct prediction tj∀,D and the upper
bound of confidence of a wrong prediction 1− tj∀,D for label j∀.

Combining Equations (109) and (113), we get the following bound for case (1a):

E
[
π̂
(r)
j (x)|Y ̸= j

]
≤ E

[
(1− Z

(r)
j,D)π̂j(x) + Z

(r)
j,D

π̂j(x)

π̂j(x) + (1− π̂j(x))/λ
(r)
j,D

|Y ̸= j

]
(114)

where λ
(r)
j,D = (1/T

(r)
j,D + e−w − 1).

Case (1b): If ∀j∀ ∈ Ar,s(j), νj∀ = 1, then we use the general bound in the case:

E[π̂(r)
j (x)|Y ̸= j] ≤ E[π̂j(x)|Y ̸= j] (115)

Note that case (1a) is with probability U
(r)
j and case (1b) is with probability 1− U

(r)
j . Combining

Equation (114) in case (1a) and Equation (115) in case (1b), we have:

E[π̂(r)
j (x)|Y ̸= j] ≤E

[
U

(r)
j

[
(1− Z

(r)
j,D)π̂j(x) + Z

(r)
j,D

π̂j(x)

π̂j(x) + (1− π̂j(x))/λ
(r)
j,D

]
+ (1− U

(r)
j )π̂j(x) |Y ̸= j

]

≤E

[
π̂j(x)− U

(r)
j Z

(r)
j,D

(
π̂j(x)−

π̂j(x)

π̂j(x) + (1− π̂j(x))/λ
(r)
j,D

)
|Y ̸= j

]
(116)

Case (2): r ∈ Pd(j) and Y = j. Since in the r-th PC j is the index of a conditional variable, we have
∀j∀ ∈ Ar,s(j), νj∀ = 1, where ν is the ground truth Boolean vector. Then we have the following:

∑
µ∈M, µj=0 exp

{∑
j∀∈[Nc+L]\{j} T (π̂j∀(x), µj∀)

}
Fr(µ)∑

µ∈M, µj=1 exp
{∑

j∀∈[Nc+L]\{j} T (π̂j∀(x), µj∀)
}
Fr(µ)

(117)

≤

∑
µ∈M, µj=0 exp

{∑
j∀∈[Nc+L]\{j} T (π̂j∀(x), µj∀)

}
Fr(µ)

exp
{∑

j∀∈[Nc+L]\{j} T (π̂j∀(x), νj∀)
}
Fr(ν)

(118)

≤
∏

j∀∈Ar(j)

(
1 +

1− tj∀,D
tj∀,D

)
:= 1/T

(r)
j,D (119)

Then the following holds in case (2):

E
[
π̂
(r)
j (x) |Y = j

]
≥ E

[
π̂j(x)

π̂j(x) + (1− π̂j(x))/T
(r)
j,D

|Y = j

]
(120)

Case (3): r ∈ Ps(j) and Y = j. As in Case (1), we similarly consider cases based on the distribution
of ground truth Boolean vector ν to get a tighter bound.

Case (3a): ∃j∀ ∈ Ar,d(j), νj∀ = 1.

When we have models such that π̂j∀(x) > 1 − tj∀,D |νj∀ = 0 or π̂j∀(x) < 1 −
tj∀,D |νj∀ = 1 , ∃j∀ ∈ Ar(j) (with probability 1 − Z

(r)
j,D), we leverage the general bound in

the case,
E[π̂(r)

j (x)|Y ̸= j] ≤ E[π̂j(x)|Y ̸= j] (121)
Equation (121) holds because in case (3), j corresponds to a consequence variable in the r-th PC, and
thus, we always have:

∑
µ∈M, µj=0

exp

 ∑
j∀∈[Nc+L]\{j}

T (π̂j∀(x), µj∀)

Fr(µ) ≤
∑

µ∈M, µj=1

exp

 ∑
j∀∈[Nc+L]\{j}

T (π̂j∀(x), µj∀)

Fr(µ)

(122)
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When we have models of high quality such that π̂j∀(x) ≤ 1 − tj∀,D |νj∀ = 0 and π̂j∀(x) ≥
1− tj∀,D |νj∀ = 1 , ∀j∀ ∈ Ar(j) (with probability Z

(r)
j,D), we can derive a tighter bound as follows:∑

µ∈M, µj=0 exp
{∑

j∀∈[Nc+L]\{j} T (π̂j∀(x), µj∀)
}
Fr(µ)∑

µ∈M, µj=1 exp
{∑

j∀∈[Nc+L]\{j} T (π̂j∀(x), µj∀)
}
Fr(µ)

(123)

≤

∑
µ∈M, µj=0 exp

{∑
j∀∈[Nc+L]\{j} T (π̂j∀(x), µj∀)

}
Fr(µ)

exp
{∑

j∀∈[Nc+L]\{j} T (π̂j∀(x), νj∀)
}
Fr(ν)

(124)

≤ exp {−w}+
∏

j∀∈Ar(j)

(
1 +

1− tj∀,D
tj∀,D

)
− 1 := λ

(r)
j,D (125)

Therefore, the following holds in case (3a);

E
[
π̂
(r)
j (x) |Y = j

]
≥ E

[
(1− Z

(r)
j,D)π̂j(x) + Z

(r)
j,D

π̂j(x)

π̂j(x) + (1− π̂j(x))λ
(r)
j,D

|Y = j

]
(126)

Case (3b): If ∀j∀ ∈ Ar,d(j), νj∀ = 0, then we leverage the general bound:

E
[
π̂
(r)
j (x) |Y = j

]
≥ E [π̂j(x) |Y = j ] (127)

Note that case (3a) is with probability U
(r)
j and case (3b) is with probability 1− U

(r)
j . Combining

Equations (126) and (127), the following holds:

E
[
π̂
(r)
j (x) |Y = j

]
≥ E

[
π̂j(x) + U

(r)
j Z

(r)
j,D

(
π̂j(x)

π̂j(x) + (1− π̂j(x))λ
(r)
j,D

− π̂j(x)

)
|Y = j

]
(128)

Case (4): r ∈ Ps(j) and Y ̸= j. Since j is the index of a consequence variable, we have ∀j∀ ∈
Ar,d(j), νj∀ = 0. Then we can lower bound the coefficients as follows:∑

µ∈M, µj=0 exp
{∑

j∀∈[Nc+L]\{j} T (π̂j∀(x), µj∀)
}
Fr(µ)∑

µ∈M, µj=1 exp
{∑

j∀∈[Nc+L]\{j} T (π̂j∀(x), µj∀)
}
Fr(µ)

(129)

≥
exp

{∑
j∀∈[Nc+L]\{j} T (π̂j∀(x), νj∀)

}
Fr(ν)∑

µ∈M, µj=1 exp
{∑

j∀∈[Nc+L]\{j} T (π̂j∀(x), µj∀)
}
Fr(µ)

(130)

≥ 1∏
j∀∈Ar(j)

(
1 +

1− tj∀,D
tj∀,D

) := T
(r)
j,D (131)

Thus, in case (4) we have:

E[π̂(r)
j (x) |Y ̸= j ] ≤ E

[
π̂j(x)

π̂j(x) + (1− π̂j(x))T
(r)
j,D

|Y ̸= j

]
(132)

Then we consider all R PCs to get the effectiveness of COLEP on the class conditional probability.
Combining Equation (116) in case (1) and Equation (132) in case (4), we finally have:

E
[
π̂COLEPj (X) |Y ̸= j

]
≤ E[π̂j(X)− ϵj,0 |Y ̸= j ] (133)

where

ϵj,0 =
∑

D∈{Da,Db}

pD

 ∑
r∈Pd(j)

βrU
(r)
j Z

(r)
j,D

(
π̂j −

π̂j

π̂j + (1− π̂j)/λ
(r)
j,D

)
+
∑

r∈Ps(j)

βr

(
π̂j −

π̂j

π̂j + (1− π̂j)T
(r)
j,D

)
(134)
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Combining Equation (120) in case (2) and Equation (128) in case (3), we finally have:

E
[
π̂COLEPj (X) |Y = j

]
≥ E [π̂j(X) + ϵj,1 |Y = j ] (135)

where

ϵj,1 =
∑

D∈{Da,Db}

pD

 ∑
r∈Pd(j)

βr

(
π̂j

π̂j + (1− π̂j)/T
(r)
j,D

− π̂j

)
+
∑

r∈Ps(j)

βrU
(r)
j Z

(r)
j,D

(
π̂j

π̂j + (1− π̂j)λ
(r)
j,D

− π̂j

)
(136)

H.2 PROOF OF THM. 4

Theorem 4 (Recall). Consider the adversary setting that the calibration set Ical consists of nDb

samples drawn from the benign distribution Db, while the new sample (Xn+1, Yn+1) is drawn nDa

times from the adversarial distribution Da. Assume that A(π̂j ,Da) < 0.5 < A(π̂j ,Db) for j ∈ [Nc],
where A(π̂j ,D) is the expectation of prediction accuracy of π̂j on D. Then we have:

P[Yn+1 ∈ ĈCOLEP
n,α (X̃n+1)] > P[Yn+1 ∈ Ĉn,α(X̃n+1)], w.p.

1−max
j∈[Nc]

{exp
{
−2nDa(0.5−A(π̂j ,Da))

2ϵ2j,1,Da

}
+nDbexp

{
− 2nDb

(
(A(π̂j ,Db)− 0.5)

∑
c∈{0,1}

pjcϵj,c,Db

)2}}
(137)

where pj0 = PDb
[I[Y ̸=j]] and pj1 = PDb

[I[Y=j]] are class probabilities on benign distribution.

Proof of Thm. 4. The following holds based on the definition of ĈCOLEP
n,α (·) in Equation (8).

P
[
Yn+1 /∈ ĈCOLEP

n,α (X̃n+1)
]
= P

[
Sπ̂COLEP

Yn+1
(X̃n+1, 1) > Q1−α({Sπ̂COLEP

Yn+1
(Xi, I[Yi=Yn+1])}i∈Ical)

]
(138)

Similarly, the following holds for Ĉn,α(·).

P
[
Yn+1 /∈ Ĉn,α(X̃n+1)

]
= P

[
Sπ̂Yn+1

(X̃n+1, 1) > Q1−α({Sπ̂Yn+1
(Xi, I[Yi=Yn+1])}i∈Ical)

]
(139)

We can transform the objective of comparison of marginal prediction coverage into a comparison of
non-conformity scores as follows:

P
[
P[Yn+1 ∈ ĈCOLEP

n,α (X̃n+1)] > P[Yn+1 ∈ Ĉn,α(X̃n+1)]
]

(140)

=P
[
P
[
Yn+1 /∈ ĈCOLEP

n,α (X̃n+1)
]
≤ P

[
Yn+1 /∈ Ĉn,α(X̃n+1)

]]
(141)

≥P
[
Sπ̂COLEP

Yn+1
(X̃n+1, 1) ≤ Sπ̂Yn+1

(X̃n+1, 1)
]

(142)

× P
[
Q1−α({Sπ̂COLEP

Yn+1
(Xi, I[Yi=Yn+1])}i∈Ical) ≥ Q1−α({Sπ̂Yn+1

(Xi, I[Yi=Yn+1])}i∈Ical)
]

(143)

Next, we individually bound the probability formulation in Equations (142) and (143).

Case (1): to bound P
[
Sπ̂COLEP

Yn+1
(X̃n+1, 1) ≤ Sπ̂Yn+1

(X̃n+1, 1)
]
.

We first compute E
[
Sπ̂COLEP

Yn+1
(X̃n+1, 1)− Sπ̂Yn+1

(X̃n+1, 1)
]

and then leverage tail bounds to derive
the lower bound of the probability formulation.

Case (1a): π̂Yn+1
(·) correctly classifies the sample X̃n+1 ∼ Db (with probability A(π̂Yn+1

(·),Da)).
Since we assume ϵj,c,D > 0 for j ∈ [Nc], c ∈ {0, 1}, and D ∈ {Da,Db}, π̂COLEPYn+1

(X̃n+1) also
correctly classifies the sample X̃n+1 ∼ Db, and thus, we have the following:

E
[
Sπ̂COLEP

Yn+1
(X̃n+1, 1)− Sπ̂Yn+1

(X̃n+1, 1)
]
=

1

2
E
[
π̂COLEPYn+1

(X̃n+1)− π̂Yn+1
(X̃n+1)

]
(144)
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Case (1b): π̂Yn+1
(·)(·) wrongly classifies the sample X̃n+1 (with probability 1−A(π̂Yn+1

(·),Da)).
We have the following:

E
[
Sπ̂COLEP

Yn+1
(X̃n+1, 1)− Sπ̂Yn+1

(X̃n+1, 1)
]
≤ E

[
1− 1

2
π̂COLEPYn+1

(X̃n+1)− (1− 1

2
π̂Yn+1(X̃n+1))

]
(145)

Combining Equation (144) in case (1a) and Equation (145) in case (1b), we have:

E
[
Sπ̂COLEP

Yn+1
(X̃n+1, 1)− Sπ̂Yn+1

(X̃n+1, 1)
]

(146)

≤(A(π̂Yn+1(·),Da)− 0.5)E
[
π̂COLEPYn+1

(X̃n+1)− π̂Yn+1(X̃n+1)
]
≤(A(π̂Yn+1(·),Da)− 0.5)ϵYn+1,1,Da

(147)

Then from Equation (147), the following holds by applying Hoeffding’s inequality.

P
[
Sπ̂COLEP

Yn+1
(X̃n+1, 1)− Sπ̂Yn+1

(X̃n+1, 1) > 0

]
≤ exp

{
−2nDa(A(π̂Yn+1(·),Da)− 0.5)2ϵ2Yn+1,1,Da

}
(148)

Therefore, we have:

P
[
Sπ̂COLEP

Yn+1
(X̃n+1, 1) ≤ Sπ̂Yn+1

(X̃n+1, 1)

]
≥ 1− exp

{
−2nDa(A(π̂Yn+1(·),Da)− 0.5)2ϵ2Yn+1,1,Da

}
(149)

Case (2): to bound P
[
Q1−α({Sπ̂COLEP

Yn+1
(Xi, I[Yi=Yn+1])}i∈Ical) ≥ Q1−α({Sπ̂Yn+1

(Xi, I[Yi=Yn+1])}i∈Ical)

]
.

We first consider an individual sample (Xi, Yi) and then apply the union bound the quantile.

Similar to case (1), we first derive the bound for the expectation of the difference of non-conformity
scores:

E
[
Sπ̂COLEP

Y(n+1)

(Xi, I[Yi=Yn+1])− Sπ̂Yn+1
(Xi, I[Yi=Yn+1]) |Yi ̸= Yn+1

]
≥(A(π̂Yn+1(·),Db)− 0.5)ϵYn+1,0,Db

(150)

E
[
Sπ̂COLEP

Y(n+1)

(Xi, I[Yi=Yn+1])− Sπ̂Yn+1
(Xi, I[Yi=Yn+1]) |Yi = Yn+1

]
≥(A(π̂Yn+1(·),Db)− 0.5)ϵYn+1,1,Db

(151)

Then with Hoeffding’s inequality and the union bound, we have:

P
[
Q1−α({Sπ̂COLEP

Yn+1
(Xi, I[Yi=Yn+1])}i∈Ical) ≥ Q1−α({Sπ̂Yn+1

(Xi, I[Yi=Yn+1])}i∈Ical)

]
≥1− nDb exp

{
− 2nDb

(
(A(π̂Yn+1(·),Db)− 0.5)

∑
c∈{0,1}

pjcϵYn+1,c,Db

)2} (152)

where pj0 = PDb
[I[Y ̸=j]] and pj1 = PDb

[I[Y=j]] are class probabilities on benign distribution.

Combining Equations (149) and (152) and plugging them into Equations (142) and (143), we finally
get:

P
[
P[Yn+1 ∈ ĈCOLEP

n,α (X̃n+1)] > P[Yn+1 ∈ Ĉn,α(X̃n+1)]
]

≥1− exp
{
−2nDa(A(π̂Yn+1(·),Da)− 0.5)2ϵ2Yn+1,1,Da

}
− nDb

exp
{
− 2nDb

(
(A(π̂Yn+1

(·),Db)− 0.5)
∑

c∈{0,1}

pjcϵYn+1,c,Db

)2}
≥1− max

j∈[Nc]

{
exp

{
−2nDa

(A(π̂Yn+1
(·),Da)− 0.5)2ϵ2Yn+1,1,Da

}
+ nDb

exp
{
− 2nDb

(
(A(π̂Yn+1(·),Db)− 0.5)

∑
c∈{0,1}

pjcϵYn+1,c,Db

)2

(153)
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H.3 PROOF OF THM. 5

Theorem 5 (Recall). Suppose that we evaluate the expectation of prediction accuracy of π̂COLEPj (·)
and π̂j(·) on n samples drawn from Dm and denote the prediction accuracy as A(π̂COLEPj (·),Dm)

and A(π̂j(·),Dm). Then we have:

A(π̂COLEPj (·),Dm) ≥ A(π̂j(·),Dm), w.p. 1−
∑

D∈{Da,Db}

pD
∑

c∈{0,1}

PD [Y = j] exp
{
−2n(ϵj,c,D)2

}
.

(154)

Proof of Thm. 5. We can formulate the accuracy of π̂j(·) on Dm as:

A(π̂j(·),Dm) = P[Y ̸= j]P[π̂j(X) < 0.5|Y ̸= j] + P[Y = j]P[π̂j(X) ≥ 0.5|Y = j] (155)

Similarly, A(π̂COLEPj (·),Dm) can be formulated as:

A(π̂COLEPj (·),Dm) = P[Y ̸= j]P[π̂COLEPj (X) < 0.5|Y ̸= j] + P[Y = j]P[π̂COLEPj (X) ≥ 0.5|Y = j]
(156)

Let ∆j(·) := π̂COLEPj (·) − π̂j(·). From the results in Lemma 5.1, we have E[∆j(X) |Y ̸= j ] ≤
−ϵj,0,D and E[∆j(X) |Y = j ] ≥ ϵj,1,D. Note that we have ϵj,0,D > 0 and ϵj,1,D > 0 by assump-
tion.

Then by rearranging the terms and Hoeffding’s inequality, we can derive as follows:

P[π̂COLEPj (X)− π̂j(X) > 0 |Y ̸= j ] =P[∆j(X) > 0 |Y ̸= j ] (157)

=P[∆j(X)− E[∆j(X)] > −E[∆j(X)] |Y ̸= j ] (158)
≤P[∆j(X)− E[∆j(X)] > ϵj,0,D |Y ̸= j ] (159)

≤ exp
{
−2nϵ2j,0,D

}
(160)

Similarly, we consider the case conditioned on Y = j.

P[π̂COLEPj (X)− π̂j(X) < 0 |Y = j ] =P[∆j(X) < 0 |Y = j ] (161)

=P[∆j(X)− E[∆j(X)] < −E[∆j(X)] |Y = j ] (162)
≤P[∆j(X)− E[∆j(X)] < −ϵj,1,D |Y = j ] (163)

≤ exp
{
−2nϵ2j,1,D

}
(164)

Note that from Equations (160) and (164), we have the following relation:

P
[
A(π̂COLEPj (·),Dm)−A(π̂j(·),Dm) ≤ 0

]
(165)

≤P[Y ̸= j]P[π̂COLEPj (X)− π̂j(X) > 0 |Y ̸= j ] + P[Y = j]P[π̂COLEPj (X)− π̂j(X) < 0 |Y = j ]

(166)

≤P[Y ̸= j] exp
{
−2nϵ2j,0,D

}
+ P[Y = j] exp

{
−2nϵ2j,1,D

}
(167)

Finally, by considering both the adversarial distribution and benign distribution, we can conclude
that:

P[A(π̂COLEPj (·),Dm) ≥ A(π̂j(·),Dm)] ≥ 1−
∑

D∈{Da,Db}

pD
∑

c∈{0,1}

PD [Y = j] exp
{
−2n(ϵj,c,D)

2
}
.

(168)

I LOWER BOUND OF A(π̂COLEPj ,Dm)

Theorem 7 (Lower Bound of A(π̂COLEPj ,Dm)). Let ECOLEP
j,d = EDm [π̂COLEPj (X)|I[Y=j] = d] for

d ∈ {0, 1}. Assume that the class probability computed by the r-th PC π̂COLEPj,r is conditinally
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independent of π̂COLEPj,r−1 for 2 ≤ r ≤ R and ECOLEP
j,0 < 0.5 < ECOLEP

j,1 . Assume that we aggregate PCs
by taking the average (i.e., βr = 1/R). Then we have:

A(π̂COLEPj ,Dm) ≥ 1−P[Y ̸= j] exp
{
−3(0.5− ECOLEP

j,0 )2/π2
}
−P[Y = j] exp

{
−3((ECOLEP

j,1 − 0.5)2/π2
}
.

(169)

Proof sketch. We construct a sequence {Jr}Rr=1 in a specific way and prove that it is a super-
martingale or a sub-martingale with bounded differences conditioned based on the true label. Then
we use Azuma’s inequality to bound the objective A(π̂COLEPj ,Dm) in different cases and combine
them with union bound.

Remarks. Lemma 5.1 indicates that better utility of knowledge models and implication rules can
indicate a smaller ECOLEP

j,0 and larger ECOLEP
j,1 , which can further imply a tighter lower bound of

prediction accuracy according toThm. 7. Furthermore, according to the proof, we know that ECOLEP
j,0

negatively correlates with the number of PCs R and ECOLEP
j,1 has a positive correlation with R,

indicating that more PCs (i.e., knowledge rules) implies a better prediction accuracy.

Proof of Thm. 7. Consider R PCs. We construct a sequence {Jr}Rr=1 such that Jr(X) =
1

r

∑
q∈[r] π̂

(q)
j (X), where π̂

(q)
j (·) is defined as Equation (24).

We first consider the case conditioned on Y ̸= j. Without loss of generality, assume that π̂(1)
j (X) ≥

π̂
(2)
j (X) ≥ · · · ≥ π̂

(R)
j (X). Then we can prove {Jr}Rr=1 is a super-martingale since we have the

following:

Jr+1 − Jr =

r+1∑
q=1

1

r + 1
π̂
(q)
j (X)−

r∑
q=1

1

r
π̂
(q)
j (X) (170)

=
1

r + 1
π̂
(r+1)
j (X)− 1

r(r + 1)

r∑
q=1

π̂
(q)
j (X) (171)

≤ 1

r + 1
π̂
(r+1)
j (X)− 1

r(r + 1)
rπ̂

(r+1)
j (X) (172)

≤0 (173)

{Jr}Rr=1 also has bounded difference since we have the following:

Jr − Jr+1 =

r∑
q=1

1

r
π̂
(q)
j (X)−

r+1∑
q=1

1

r + 1
π̂
(q)
j (X) (174)

=
1

r(r + 1)

r∑
q=1

π̂
(q)
j (X)− 1

r + 1
π̂
(r+1)
j (X) (175)

≤ 1

r + 1
:= cr+1 (176)

Also note that we have:

E [Jr+1(X) |J1(X), · · · , Jr(X) ] =
r

r + 1
Jr(X) +

1

r + 1
π̂
(r+1)
j (X) (177)
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Therefore, {Jr}Rr=1 is conditionally independent. Then by using Azuma’s inequality, we can derive
as follows:

P[JR − E[JR] ≥ 0.5− E[JR]] ≤ exp

{
− (0.5− E[JR])2

2
∑R

q=1 c
2
q

}
(178)

≤ exp

− (0.5− E[JR])2

2
∑R

q=1(
1

q
))2

 (179)

(a)

≤ exp

− (0.5− E[JR])2

2
π2

6

 (180)

≤ exp

{
−3(0.5− E[JR])2

π2

}
(181)

Inequality (a) holds because the inequality
∑R

q=1

1

q2
<

π2

6
holds. Finally, the following holds.

P [JR(X) < 0.5 |Y ̸= j ] ≥ 1− exp

{
−3(0.5− E[JR])2

π2

}
(182)

Then we consider the case conditioned on Y = j. Similarly, we construct a sequence {J ′
r}Rr=1

such that J ′
r(X) =

1

r

∑
q∈[r] π̂

(q)
j (X), where π̂

(q)
j (·) is defined as Equation (24). Without loss of

generality, assume that π̂(1)
j (X) ≤ π̂

(2)
j (X) ≤ · · · ≤ π̂

(R)
j (X). Then we can prove {J ′

r}Rr=1 is a
sub-martingale since we have the following:

J ′
r+1 − J ′

r =

r+1∑
q=1

1

r + 1
π̂
(q)
j (X)−

r∑
q=1

1

r
π̂
(q)
j (X) (183)

=
1

r + 1
π̂
(r+1)
j (X)− 1

r(r + 1)

r∑
q=1

π̂
(q)
j (X) (184)

≥ 1

r + 1
π̂
(r+1)
j (X)− 1

r(r + 1)
rπ̂

(r+1)
j (X) (185)

≥0 (186)

Again, we can show that {J ′
r}Rr=1 has bounded difference:

J ′
r+1 − J ′

r =

r+1∑
q=1

1

r + 1
π̂
(q)
j (X)−

r∑
q=1

1

r
π̂
(q)
j (X) (187)

=
1

r + 1
π̂
(r+1)
j (X)− 1

r(r + 1)

r∑
q=1

π̂
(q)
j (X) (188)

≤ 1

r + 1
:= c′r+1 (189)

Also note that we have:

E
[
J ′
r+1(X) |J ′

1(X), · · · , J ′
r(X)

]
=

r

r + 1
J ′
r(X) +

1

r + 1
π̂
(r+1)
j (X) (190)
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Therefore, {J ′
r}Rr=1 is conditionally independent. Then by using Azuma’s inequality, we can derive

as follows:

P[J ′
R − E[J ′

R] ≤ 0.5− E[J ′
R]] ≤ exp

{
− (E[J ′

R]− 0.5)2

2
∑R

q=1(c
′
q)

2

}
(191)

≤ exp

− (E[J ′
R]− 0.5)2

2
∑R

q=1(
1

q
))2

 (192)

≤ exp

− (E[J ′
R]− 0.5)2

2
π2

6

 (193)

≤ exp

{
−3((E[J ′

R]− 0.5)2

π2

}
(194)

Finally, the following holds.

P [JR(X) > 0.5 |Y = j ] ≥ 1− exp

{
−3(E[JR]− 0.5)2

π2

}
(195)

Note that we can formulate A(π̂COLEPj ,Dm) as:

A(π̂COLEPj ,Dm) = P[Y ̸= j]P[π̂COLEPj (X) < 0.5|Y ̸= j] + P[Y = j]P[π̂COLEPj (X) > 0.5|Y = j]
(196)

Combining Equations (182) and (195), we have:

A(π̂COLEPj ,Dm) ≥ 1−P[Y ̸= j] exp
{
−3(0.5− ECOLEP

j,0 )2/π2
}
−P[Y = j] exp

{
−3((ECOLEP

j,1 − 0.5)2/π2
}
.

(197)

J EXPERIMENT

J.1 IMPLEMENTATION DETAILS

Dataset & Model. We evaluate COLEP on three datasets, GTSRB, CIFAR-10, and AwA2. GTSRB
consists of 12 types of German road signs, such as “Stop” and “Speed Limit 20”. CIFAR-10 includes
10 categories of animals and transportation. AwA2 contains 50 animal categories. We use GTSRB-
CNN architecture (Eykholt et al., 2018), ResNet-56 (He et al., 2016), and ResNet-50 (He et al.,
2016) as the architecture of models on them, respectively. For fair comparisons, we use the same
model architecture and training smoothing factors for models in COLEP and SOTA baselines CP
and RSCP. We perform smoothed training (Cohen et al., 2019) with the same smoothing factor
σ for models. We use the official validation set of GTSRB including 973 samples, and randomly
select 1000 samples from the test set of CIFAR-10 and AwA2 as the calibration sets for conformal
prediction with the nominal level 1− α = 0.9 across evaluations. The evaluation is performed on
the test set of GTSRB and the remaining samples of the test set of CIFAR-10 and GTSRB. GTSRB
and CIFAR-10 contain images with the size of 32 × 32. AwA2 contains images with the size of
224× 224. GTSRB and CIFAR-10 are under the MIT license. AwA2 is under the Creative Commons
Attribution-NonCommercial-ShareAlike (CC BY-NC-SA) license.

Implementation details. We run evaluations using three different random seeds and report the
averaged results. We omit the standard deviation of the results since we observe they are of low
variance due to a large sample size used for calibration and testing. All the evaluation is done on
a single A6000 GPU. In the evaluation of certified coverage, we compute the smoothed score or
prediction probability 100, 000 times for randomized smoothing and fix the ratio of perturbation
bound and the smoothing factor during certification δ/σcer as 0.5 for both RSCP and COLEP. In
the evaluation of marginal coverage and set size under PGD attack, we use the attack objective of
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cross-entropy loss for RSCP. For COLEP, the objective is the same cross-entropy loss for the main
model and the binary cross-entropy loss for the knowledge models.

Knowledge Rules & Reasoning. In summary, we have 3 PCs and 28 knowledge rules in GTSRB, 3
PCs and 30 knowledge rules in CIFAR-10, and 4 PCs and 187 knowledge rules in AwA2. Based on
the domain knowledge in each dataset, we encode a set of implication rules into PCs. In each PC, we
encode a type of implication knowledge with disjoint attributes. In GTSRB, we have a PC of shape
knowledge (e.g.,“octagon”, “square”), a PC of boundary color knowledge (e.g., “red boundary”,
“black boundary”), and a PC of content knowledge (e.g., “digit 50”, “Turn Left”). In CIFAR-10,
we have a PC of category knowledge (e.g., “animal”, “transportation”), a PC of space knowledge
(e.g., “in the sky”, “in the water”, “on the ground”), and a PC of feature knowledge (e.g., “has legs”,
“has wheels”). In AwA2, we have a PC of superclass knowledge (e.g., “procyonid”, “big cat”), a PC
of predation knowledge (e.g., “fish”, “meat”, “plant”), a PC of appearance (e.g., “big ears”, “small
eyes”), and a PC of fur color knowledge (e.g., “green”, “gray”, “white”).

For example, in the PC of shape knowledge in GTSRB, we can encode the implication rules
related to the shape knowledge such as IsStopSign =⇒ IsOctagon (stop signs are octagon)
with weight w1, IsSpeedLimit =⇒ IsSquare (speed limit signs are square) with weight w2, and
IsTurnLeft =⇒ IsRound (turn left signs are round) with weight w3. To implement the COLEP
learning-reasoning framework, we follow the steps to encode the rules into PCs. (1) We learn the
main model and knowledge models implemented with DNNs to estimate a preliminary probability
for Nc class labels and L concept labels (e.g., p(IsSpeedLimit = 1) = π̂sp, p(IsSquare = 1) =
π̂sq). (2) We compute the factor value F (µ) for any possible assignment µ ∈ {0, 1}Nc+L as
F (µ) = exp{

∑H
h=1 whI[µ∼Kh]} (e.g.,F ([1, 1, 1, 1, 1, 1]) = ew1+w2+w3 since the assignment satisfy

all three knowledge rules above). (3) We construct a three-layer PC as shown in Figure 1: (a) the
bottom layer consists of leaf nodes representing Bernoulli distributions of all class and concept
labels and the constant factor values of assignments (e.g., B(π̂sp), B(1 − π̂sp), B(π̂sq), B(1 −
π̂sq), ..., F ([1, 1, 1, 1, 1, 0]), F ([1, 1, 1, 1, 1, 1]), ...), (b) the second layer consists of product nodes
computing the likelihood of each assignment by multiplying the likelihood of the instantiations of
Bernoulli variables and the correction factor values (e.g., π̂sp × π̂sq × . . . × F ([1, 1, 1, 1, 1, 1])),
and (c) the top layer is a sum node computing the summation of the products. (4) We linearly
combine multiple PCs that encode different types of knowledge rules (e.g., 3 PCs in GTSRB: PCs of
shape/color/content knowledge). We compute βk based on the utility of the k-th PC on the calibration
set and manually set the weights of knowledge rules based on their utility.

Codes are available at https://github.com/kangmintong/COLEP.

J.2 ADDITIONAL EVALUATION OF COLEP

Table 1: Comparison of the runtime (millisecond) of COLEP per forward time between a standard
model and COLEP. The evaluation is done on RTX A6000 GPUs.

GTSRB CIFAR-10 AwA2

standard model 13.2 15.5 35.2
COLEP 13.5 15.7 35.6

Visualization of the contribution of different knowledge rules. In GTSRB, we consider the
contribution of the shape knowledge rules, color knowledge rules, and content knowledge rules. In
CIFAR-10, we consider the contribution of the category knowledge rules, space knowledge rules, and
feature knowledge rules. More details of the meanings and examples of knowledge rules are provided
in Appendix J.1. We provide the visualization of contributions of different types of knowledge
rules in Figure 5. The results show that the rules related to the color knowledge in GTSRB and
space knowledge in CIFAR-10 benefit the certified coverage more, but collectively applying all
the well-designed knowledge rules leads to even better coverage. The effectiveness of these types
of knowledge attributes to a higher utility of the knowledge models (i.e., the accuracy of concept
detection). Concretely, the feature of these concepts is relatively easy to learn and can be more
accurately detected (e.g., color concepts are more easily learned than shape concepts). The correlation
between the knowledge model utility and effectiveness of COLEP is also theoretically analyzed and
observed in Section 5.
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Figure 5: Certified coverage of COLEP under bounded perturbation δ = 0.25 on GTSRB and CIFAR-
10 with different types of knowledge rules.

Runtime evaluation of COLEP. Since the knowledge models in the learning component are simple
neural networks and can perform forward passes in parallelism, the additional computational com-
plexity of COLEP comes mainly from the overhead of the reasoning component (i.e., PC). Given a
PC defined on the directed graph (V, E), the time complexity of probabilistic inference is O(|V|),
according to the details illustrated in Appendix C.1. Therefore, the additional time complexity of
COLEP is O(|V|), linear to the number of nodes in PC graph. We empirically evaluate the runtime of
a forward pass of COLEP and compare it with a standard model. The results in Table 1 show that
COLEP only achieves a little higher runtime compared with a single standard model.

Table 2: Marginal coverage / average set size of RSCP and COLEP under AutoAttack with ℓ2
bounded perturbation of 0.25 on GTSRB, CIFAR-10, and AwA2. The nominal level 1− α is 0.9.

GTSRB CIFAR-10 AwA2

RSCP 0.9682 / 2.36 0.9102 / 3.56 0.923 / 5.98
COLEP 0.9702 / 2.13 0.9232 / 2.55 0.952 / 4.57

Table 3: Marginal coverage / average set size of RSCP and COLEP under PGD Attack with multiple
desired coverage levels 1− α with ℓ2 bounded perturbation of 0.25 on GTSRB.

1− α = 0.85 1− α = 0.9 1− α = 0.95

RSCP 0.9029 / 1.63 0.9682 / 2.36 0.9829 / 2.96
COLEP 0.9053 / 1.34 0.9702 / 2.13 0.9859 / 2.53

Evaluations with different types of adversarial attacks. To evaluate the robustness of COLEP
under various types of attacks, we further consider the AutoAttack method Croce & Hein (2020),
which uses an ensemble of four diverse attacks to reliably evaluate the robustness: (1) APGD-CE
attack, (2) APGD-DLR attack, (3) FAB attack, and (4) square attack. APGD-CE and APGD-DLR
attacks are step size-free versions of PGD attacks with cross-entropy loss and DLR loss, respectively.
FAB attack optimizes the adversarial sample by minimizing the norm of the adversarial perturbations.
Square attack is a query-efficient black-box attack. We evaluate the prediction coverage and averaged
set size of COLEP and SOTA method RSCP with ℓ2 bounded perturbation of 0.25 on GTSRB,
CIFAR-10, and AwA2. The desired coverage is 1− α = 0.9 in the evaluation. The results in Table 2
show that under diverse and stronger adversarial attacks, COLEP still achieves higher marginal
coverage than the nominal level 0.9 and also demonstrates a better prediction efficiency (i.e., smaller
size of prediction sets) than RSCP.

Evaluations with various nominal levels. We further evaluate COLEP with multiple nominal levels
of coverage 1 − α. We provide the results with multiple coverage levels 1 − α in Table 3. The
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results demonstrate that for different parameters of α, (1) COLEP always achieves a higher marginal
coverage than the nominal level, indicating the validity of the certification in COLEP, and (2) COLEP
shows a better trade-off between the prediction coverage and prediction efficiency (i.e., average set
size) than the SOTA baseline RSCP.

Selection of weights of knowledge rules. The weight w of logical rules is specified based on the
utility of the corresponding knowledge rule. In Section 6, we theoretically show that the robustness
of COLEP correlates with the utility of knowledge rules regarding the uniqueness of the rule, defined
in Equation (17). Specifically, a universal knowledge rule which generally holds for almost all class
labels is of low quality and does not benefit the robustness and should be assigned with a low weight
w. For example, if all the traffic signs in the dataset are of octagon shape, then the implication rule
IsStopSign =⇒ IsOctagon should be useless and assigned with a low weight w, which also
aligns with the intuition. In the empirical evaluations, since we already designed knowledge rules
of high quality (i.e., good uniqueness) as shown in Section 7, we do not need to spend great efforts
selecting weights for each knowledge rule individually. We assume that all the knowledge rules have
the same weight w and select a proper weight w for all the knowledge rules via grid searching. The
results inspire us to fix w as 1.5, and the evaluations demonstrate that it is sufficient to achieve good
robustness in different settings. One can also model the weight selection problem as a combinatorial
optimization, which is non-trivial but can better unleash the power of COLEP. We leave a more
intelligent and automatic approach of knowledge weight selection for future work.

K OVERVIEW OF NOTATIONS

In this section, we provide overviews of used notations for a better understanding of the analysis of
COLEP. Specifically, we provide an overview of notations related to models in Table 4, notations
related to conformal prediction in Table 5, notations related to certification in Section 4 in Table 6,
and notations related to analysis in Section 5 in Table 4.

Table 4: Notations related to models in COLEP.

Notation Meaning

Nc number of class labels
j j ∈ [Nc] to index the output of the main model
L number of concept labels, number of knowledge models
l l ∈ [L] to index L knowledge models/concept labels

π̂j(x) the output likelihood of the main model for the j-th class label (j ∈ [Nc]) given input x
π̂(l)(x) the output likelihood of the l-th knowledge model (l ∈ [L]) given input l

π̂ π̂ :=
[
[π̂j ]j∈[Nc], [π̂

(l)]l∈[L]

]
∈ RNc+L, concatenated vector of class and concept probabilities

j∀ j∀ ∈ [Nc + L] to index π̂(the concatenation of the output of the main model and concept models)
π̂j∀(x) the output likelihood of the j-th class label (j∀ ∈ [Nc + L]) before the reasoning component

π̂COLEPj (x) the output likelihood of the j-th class label (j ∈ [Nc]) after the reasoning component
{Kh}Hh=1 H propositional logic rules

wh the weight of the h-th logic rule (h ∈ [H])
I[·] indicator function
µ µ ∈ M := {0, 1}Nc+L, the index variable in the feasible assignment set M

F (µ) F (µ) = exp{
∑H

h=1 whI[µ∼Kh]}, factor value of the assignment µ
T (a, b) T (a, b) := log(ab+ (1− a)(1− b)), introduced for ease of notation

Oleaf, Oroot leaf node and root node in the PC
R number of probabilistic circuits
r r ∈ [R] to index the r-th PC
βr the coefficient of the r-th PC
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Table 5: Notations related to conformal predictions.

Notation Meaning

n number of calibration data samples
(Xi, Yi) the i-th data sample with input Xi and label Yi (i ∈ [n])

(Xn+1, Yn+1) the test sample
Y label space [Nc] := {1, 2, ..., Nc}
y y ∈ Y to index labels in the label space Y
u random variable draw from uniform distribution U(0, 1)

Q1−α 1− α quantile value
Sπ̂(x, y) APS non-conformity score of sample (x, y) given probability estimate π̂

Sπ̂COLEP
j

(x, y) APS score with π̂COLEPj (output likelihood of the j-th class label after the reasoning component)
Ĉn,α(x) Ĉn,α(x) ⊆ Y is the conformal prediction set of input x without COLEP

Ĉ
COLEPj
n,αj (x) Ĉ

COLEPj
n,αj (x) ⊆ {0, 1} is the conformal prediction set of the j-th class label

ĈCOLEP
n,α (x) ĈCOLEP

n,α (x) ⊆ Y is the conformal prediction set of input x with COLEP
qy qy ∈ {0, 1} to index in label space {0, 1}

Table 6: Notations related to certification in Section 4.

Notation Meaning

π̂j∀(x) upper bound of π̂j∀(x) (likelihood without reasoning component) with bounded perturbation
π̂j∀(x) lower bound of π̂j∀(x) (likelihood without reasoning component) with bounded perturbation

U[π̂COLEPj (x)] upper bound of π̂COLEPj (x) (likelihood with reasoning component) with bounded perturbation
L[π̂COLEPj (x)] lower bound of π̂COLEPj (x) (likelihood with reasoning component) with bounded perturbation

V j
d index set of conditional variables (left operand of rule A =⇒ B) in the PC except for j

V j
s index set of conditional variables (right operand of rule A =⇒ B) in the PC except for j
µj the j-th element of assignment µ
ϵ adversarial perturbation
δ bound of perturbations such that ∥ϵ∥2 ≤ δ

X̃n+1 X̃n+1 = Xn+1 + ϵ adversarial test sample
ĈCOLEPδ

n,α (X̃n+1) certified prediction set with perturbation bound δ
S
π̂
COLEPδ
j

worst-case non-conformity score for the j-th class label with bounded perturbation δ

τCOLEPcer lower bound of the coverage guarantee within bounded perturbation
τCOLEPcer
j lower bound of the coverage guarantee of the j-th class label within bounded perturbation

Table 7: Notations related to analysis in Section 5.

Db benign data distribution
Da adversarial data distribution
Dm mixed data distribution
pD portion of distribution D in Dm

Gr = (Vr, Er) undirected graph encoded with rules in the r-th PC
Ar(j∀) node set in connected components of node j∀ in graph Gr

Ar,d(j∀) node set of conditional variables in connected components of node j∀ in graph Gr

Ar,s(j∀) node set of consequence variables in connected components of node j∀ in graph Gr

ν(x) boolean vector of ground truth class and concepts given sample x as input
tj∀,D the threshold of confidence for the j∀-th label
zj∀,D probability matching this threshold for the j∀-th label
T

(r)
j,D multiplication of tj∀,D in the r-th PC

Z
(r)
j,D multiplication of zj∀,D in the r-th PC

Pd(j),Ps(j) the set of PC index where j appears as conditional variables and consequence variables
U

(r)
j utility of associated knowledge rules within the r-th PC for the j-th class

ϵj,0,ϵj,1 characterization of probability correction by COLEP conditioned on ground truth label 0 and 1
ϵj,0,D ϵj,0,D = E(X,Y )∼D[ϵj,0|νj = 0], expectation of ϵj,0
ϵj,1,D ϵj,1,D = E(X,Y )∼D[ϵj,1|νj = 1], expectation of ϵj,1
A(π̂,D) accuracy of probability estimator π̂ on data distribution D
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