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ABSTRACT
Insufficient labeled training samples pose a critical challenge in
multi-label classification, potentially leading to overfitting of the
model. This paper delineates a criterion for establishing a common
domain among different datasets, whereby datasets sharing analo-
gous object descriptions and label structures are considered part of
the same field. Integrating samples from disparate datasets within
this shared field for training purposes effectively mitigates overfit-
ting and enhances model accuracy. Motivated by this approach, we
introduce a novel method for multi-label classification termed Non-
Overlapped Multi-View Weak-Label Learning Guided by Multiple
Correlations (NOMWM). Our method strategically amalgamates
samples from diverse datasets within the shared field to enrich
the training dataset. Furthermore, we project samples from various
datasets onto a unified subspace to facilitate learning in a consistent
latent space. Additionally, we address the challenge of weak labels
stemming from incomplete label overlaps across datasets. Lever-
aging weak-label indicator matrices and label correlation mining
techniques, we effectively mitigate the impact of weak labels. Ex-
tensive experimentation on multiple benchmark datasets validates
the efficacy of our method, demonstrating clear improvements over
existing state-of-the-art approaches.

KEYWORDS
multi-label classification, sample augmentation, weak-label learn-
ing, label correlations

1 INTRODUCTION
Multi-label learning stands as a prominent area within machine
learning and pattern recognition. This paradigm involves repre-
senting each sample with a feature vector while allowing for the
simultaneous association of multiple category labels. The overar-
ching objective revolves around inducing a function capable of
assigning multiple appropriate labels, drawn from a predefined la-
bel set, to unseen instances [30, 34]. The introduction of multi-label
learning has spurred significant scholarly interest, leading to the
development of numerous efficient algorithms.

However, a common challenge arises in scenarios where the
available number of labeled samples proves insufficient for train-
ing an effective multi-label classification model. Addressing this
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limitation becomes imperative in the quest to enhance model accu-
racy. In practical scenarios, datasets often describe akin objects
with overlapping label sets, thereby forming what we term as
a ’same field’ within multi-label data. For instance, consider the
multi-label image datasets portraying natural scenes depicted in
Figure 1. These datasets frequently feature analogous objects such
as ’beach’,’sky’,’ocaen’ and ’water’, and exhibit comparable label
sets. Leveraging datasets within the same field for joint training
holds the promise of significantly augmenting the sample pool,
thereby effectively mitigating the challenge of insufficient training
samples-a common precursor to overfitting in multi-label classifica-
tion models. This strategy effectively embodies a Non-Overlapped
Multi-View Weak-Label Learning framework (sample augmenta-
tion multi-label framework), offering a viable solution to counteract
overfitting resulting from limited training samples.

The Non-Overlapped Multi-View Weak-Label Learning frame-
work encounters two primary challenges. Firstly, samples from
distinct datasets often exhibit disparate feature types and lack in-
tersection, as depicted in Figure 2(c). Consequently, conventional
multi-view multi-label classification approaches [22] are unsuitable
for direct application. Secondly, corresponding label sets across
datasets may not align precisely. For instance, in Figure 1, data set
A includes the label ’clouds,’ which is absent in data set B. Thus,
when jointly training these datasets, ’clouds’ becomes a missing
label for images in data set B featuring clouds, exacerbating the
weak-label problem. Weak-label learning primarily addresses multi-
label learning scenarios with partially relevant label sets [24] [13]
[4].

To tackle these challenges, researchers typically explore multi-
view and weak-label learning strategies. However, existing method-
ologies struggle to effectively address both challenges simultane-
ously. Notably, two frameworks closely related to our problem have
been proposed in prior works (refer to Figure 2). The multi-view
multi-label framework [22, 35] (depicted in Figure 2(a)) concur-
rently handles multi-view and multi-label classification. Building
upon this framework, Tan et al. [25] introduced an extension termed
incomplete multi-view multi-label classification (illustrated in Fig-
ure 2(b)), focusing on addressing incomplete views and missing
labels concurrently [29] [26] [15] [16]. Nevertheless, these frame-
works encounter difficulty in addressing the two challenges posed
by sample augmentation multi-label learning (illustrated in Figure
2(c)). A comparison among the three sub-figures (a, b, c) in Figure 2
reveals that our proposed Non-Overlapped Multi-View Weak-Label
Learning Guided by Multiple Correlations (NOMWM) offers a more
general solution compared to the aforementioned frameworks.

To this end, we designed our model to specifically address the
aforementioned challenges. Firstly, to leverage samples with di-
verse features comprehensively, we adopt a multi-view learning
approach to jointly handle datasets with varying features. By learn-
ing a common subspace, we fuse information from different datasets
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Figure 1: Examples of multi-label data sets that belong to the ’same field’. In this paper, we define that data sets belong to
the ’same field’ if they describe similar objects and have similar label sets. Data set A and data set B in Figure 1 both describe
natural scenes, and they have similar label sets. We consider such two data sets belong to the ’same field’ in this paper. The
samples of these two data sets do not overlap, and their label sets partially overlap but are not completely consistent.

...
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Figure 2: The proposed Non-Overlapped Multi-View Weak-Label Learning Guided by Multiple Correlations (in sub-figure(c)) is
more challenging to deal with compared with the existing two famous frameworks (in sub-figure(a) and sub-figure(b)).

to enhance model training collectively. Secondly, to contend with
inconsistent label sets, we frame the issue as a weak-label learning
problem. Specifically, we employ a missing label indicator matrix
and label correlation mining techniques. The missing label indi-
cator matrix mitigates the impact of missing labels on the model,
while label correlation mining enhances prediction accuracy from
a label space perspective. Integration of these aspects facilitates ef-
fective sample augmentation for training a more robust multi-label
classification model.

In summary, the main contributions of this paper are delineated
as follows:

(1) Proposing a novel multi-label learning framework facili-
tating effective sample augmentation to alleviate overfitting aris-
ing from insufficient training samples in multi-label classification.
This framework integrates samples from diverse-featured datasets
within the ’same field’ and addresses weak-label issues stemming
from label set mismatches between datasets.

(2) Introducing a novel common subspace learning method to de-
rive a unified representation from disparate training datasets. This
method leverages multi-view learning to enhance model prediction
accuracy.

(3) Introducing a weak-label learning module to tackle label set
inconsistencies across datasets. This module incorporates a label
indicator matrix and label correlation mining techniques to mitigate
the impact of missing labels and enhance framework robustness.

2 RELATEDWORK
The landscape of existing multi-label learning algorithms [[30],
[34]] broadly divides into two categories: problem transformation
methods (PTMs) and algorithm adaptation methods (AAMs). Despite
their differences, both PTMs and AAMs grapple with a common
challenge in multi-label learning tasks-namely, the scarcity of in-
stances featuring identical features and complete label sets for
training classification models. Frequently, practitioners can only
access diverse datasets describing similar objects with comparable
label sets. Consequently, the crucial issue becomes how to amal-
gamate instances with differing features and incomplete label sets
during the learning process. Our work closely relates to two key
aspects: weak-label learning and multi-view multi-label learning,
which we review as follows.

In weak-label learning, a large number of samples have incom-
plete labels, focusing on multi-label learning scenarios with par-
tially relevant label sets. Noteworthy methodologies include WELL
proposed by Sun et al. [24], which employs a low-rank similarity
matrix hypothesis to uncover instance correlations and complete
label dissemination. DM2L by Chen et al. [33] leverages the low-
rank structure of the label matrix to integrate global and local
low-rank label structures alongside discriminative label informa-
tion. KWLRL by Zhao [32] reconstructs the label semantic space
through joint label correlation, leveraging label information con-
sistency and feature-label dependency assumptions, which also

2
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extends the linear model to a nonlinear kernel method to han-
dle data separability challenges. Regarding multi-view multi-label
learning, LVSL by Zhao et al. [31] tackles non-alignment issues
among views and labels through a unified framework, leverag-
ing global and local structural information and view contribution
weights. Similarly, NAIM3L by Li et al. [11] addresses missing la-
bels, incomplete views, and non-alignment based on global and
local label structures, introducing an indicator matrix for handling
missing labels and aligning labels in a common space. AIMNet by
Liu [14] proposed an attention-driven technique to address the
widespread incompleteness issue in multi-view features and labels,
which also utilizing statistical weak label correlations and graph
attention networks to improve classification accuracy.

While the aforementioned methods are closely related to our
work, they predominantly address weak-label learning and multi-
view multi-label learning separately. Directly applying these meth-
ods to multi-label learning tasks involving multiple datasets with
differing features and incongruent label sets proves challenging.
Specifically, we face two primary challenges when addressing sam-
ple augmentation in these tasks: (1) effectively leveraging multi-
ple datasets with diverse features lacking sample overlap, and (2)
addressing inconsistencies in label sets among datasets involved
in sample augmentation. To tackle these challenges concurrently,
we propose our method, Non-Overlapped Multi-View Weak-Label
Learning Guided by Multiple Correlations (NOMWM). Our ap-
proach seamlessly integrates datasets with varying features within
the ’same field’ to learn a multi-label classification model while
adeptly handling the issue of incomplete label set matching across
multiple datasets. Further details are elaborated in the subsequent
section.

3 PROPOSED APPROACH
For multi-label classification, let 𝐷 = {(𝑥𝑖 , 𝑦𝑖 )}𝑚𝑖=1 = {𝑋,𝑌 } repre-
sent a collection of 𝑑-dimensional training instances 𝑋 ∈ R𝑚×𝑑

paired with their associated labels 𝑌 ∈ {0, 1}𝑚×𝑛 , where𝑚 and 𝑛
denote the number of instances and label attributes, respectively.
The primary objective of multi-label classification algorithms is
to train a predictor 𝑓 : 𝑋 → 𝑌 from 𝐷 during the training stage,
enabling the prediction of the label 𝑦 for a given test instance 𝑥 .

Our proposed Non-Overlapped Multi-View Weak-Label Learn-
ing Guided by Multiple Correlations (NOMWM) aims to develop
a novel multi-label classification model capable of effectively han-
dling datasets with disparate features within the ’same field’ to facil-
itate sample augmentation. Moreover, the model adeptly addresses
the weak-label problem, efficiently managing the issue of incom-
plete label set matching across multiple datasets. The NOMWM
model comprises two core components: latent space representation
learning (Figure 3) and weak-label classification model (Figure 4).

We leverage the concept of multi-view learning to jointly train
multiple datasets featuring distinct features and extract informative
patterns from the samples. While traditional multi-view learning
primarily focuses on amalgamating information from diverse views
within a single dataset, NOMWM extends this concept to integrate
different datasets lacking intersection, thus achieving sample aug-
mentation.

Within this framework, we denote 𝑋𝑣 ∈ R𝑚𝑣×𝑑𝑣 as the training
datasets with the 𝑣th feature vector, 𝑌𝑣 ∈ {0, 1}𝑚𝑣×𝑛𝑣 as the cor-
responding label sets, 𝑉𝑣 ∈ R𝑚𝑣×𝑑𝑐 and𝑈𝑣 ∈ R𝑑𝑐×𝑑𝑣 as the latent
space representation and transformation matrix, respectively.𝑊
represents the mapping matrix from the latent space to the label
space, 𝑆𝑣 indicates the similarity between instances in the 𝑣th train-
ing dataset, and 𝐿 denotes the similarity between labels. Given the
need to amalgamate diverse datasets for learning, we first unify the
label sets. Herein, 𝑌 ∈ {0, 1}𝑚×𝑛 represents the integrated label
set. However, due to label set expansion, certain labels present in
the original label set 𝑌𝑣 ∈ {0, 1}𝑚𝑣×𝑛𝑣 may become missing labels
in the new label set 𝑌 ∈ {0, 1}𝑚×𝑛 . Thus, we introduce 𝑀 as the
indicator matrix to denote missing labels.

Then the objective function of our proposed NOMWM can be
written as follows.

min
𝑉𝑣 ,𝑈𝑣 ,𝑊 ,𝐿

Φ(𝑋𝑣,𝑉𝑣,𝑈𝑣) + Ψ(𝑉𝑣,𝑊 ,𝑌, 𝑆𝑣, 𝐿) (1)

where Φ(𝑋𝑣,𝑉𝑣,𝑈𝑣) and Ψ(𝑉𝑣,𝑊 ,𝑌, 𝑆𝑣, 𝐿) denote the losses of la-
tent space representation learning (Figure 3(a)) and weak-label
classification with label correlation (Figure 3(b)).

3.1 Latent space representation learning
In the realm of latent space representation learning, our approach
entails projecting datasets 𝑋1, 𝑋2, . . . , 𝑋𝑠 originating from diverse
feature spaces into a unified common subspace denoted as𝑉 , while
preserving the consistency of feature magnitudes across samples
within this shared subspace (depicted in Figure 3(a)).

Observing Figure 2(c), it becomes apparent that integrating
insights from multiple disparate datasets is imperative for joint
learning. These datasets feature non-overlapping training data
and exhibit distinct feature characteristics. Drawing inspiration
from multi-view learning, we achieve information amalgamation
by learning a common subspace. This involves projecting datasets
from various spaces into the shared subspace 𝑉 , thereby stream-
lining subsequent multi-label classification tasks. To foster greater
consistency in the learned latent space representations 𝑉𝑣 , we im-
pose distribution-based constraints, a concept we delve into further
in the subsequent discussion.

The feature alignment module stands as a pivotal component of
our proposed NOMWM, particularly in scenarios involving datasets
with substantial disparities in feature characteristics. Hence, we
introduce the feature alignment module of NOMWM, grounded in a
distribution-centric perspective. This viewpoint posits that different
datasets inherently belong to distinct distributions, necessitating a
holistic approach to fusion from a distributional standpoint.

In pursuit of aligning multiple datasets from a distributional
perspective, we endeavor to minimize the separation between the
centers of each dataset in the latent space. To this end, we leverage
the center 𝜇𝑣 of each dataset 𝑉𝑣 to encapsulate its distribution,
imposing constraints to bring these centers into closer proximity.
This endeavor enhances the consistency of learned low-dimensional
representations, thus facilitating subsequent classification tasks.

By leveraging the learning of a common subspace, we harness
the diverse features present across samples to their fullest extent.
This approach optimally utilizes the informative content of all
samples, thereby enhancing the predictive capacity of the model.

3
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Figure 3: The specific process of our proposedNOMWM. It consists of the part of latent space representation learning subfigure(a)
and the weak-label classification subfigure(b).
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We expand these label space matrices 𝑌𝑣 ∈ 𝑅𝑚𝑣×𝑛𝑣 to full-
dimension label matrix 𝐹𝑌𝑣 ∈ 𝑅𝑚𝑣×𝑛 . Then the integrated
label set 𝑌 ∈ 𝑅𝑚×𝑛 can be obtained by cascading the full-
dimension label matrix 𝐹𝑌𝑣 ∈ 𝑅𝑚𝑣×𝑛 , and the corresponding
label indicator matrix𝑀 can be obtained.

Subsequently, we utilize the latent space representation as input to
train the weak-label classification component. In summary, the loss
incurred in latent space representation learning can be articulated
as follows:

Φ(𝑋𝑣,𝑉𝑣,𝑈𝑣) =
𝑠∑︁

𝑣=1
∥𝑋𝑣 −𝑉𝑣𝑈𝑣 ∥2𝐹 + 𝛼

𝑠∑︁
𝑣=1

𝑠∑︁
𝑘≠𝑣

∥𝜇𝑣 − 𝜇𝑘 ∥22 (2)

where 𝜇𝑣 is the center of data sets in latent space. 𝑉𝑣 . 𝑉𝑣 ∈ 𝑅𝑚𝑣×𝑑𝑐

and𝑈𝑣 ∈ 𝑅𝑑𝑐×𝑑𝑣 are the corresponding latent space representation
and transform matrix. Besides, we have the parameter 𝛼 to balance
the losses of projection and alignment.

To mine the dependencies between features and labels for better
common subspace, this study uses the Transformer encoder based
on feature embedding and label embedding [10, 28]. In this study,

image feature embeddings are represented as 𝑃 , each vector 𝑝𝑖 ∈ 𝑅𝑑𝑐
of 𝑃 ∈ 𝑅𝑑𝑐×𝑠 corresponds to the feature maps from each view of
the image. The label embeddings, which are represented as 𝑄 , are
denoted by 𝑄 = {𝑞1, 𝑞2, · · · , 𝑞𝑛} ∈ 𝑅𝑑𝑐×𝑛 , with 𝑛 representing the
number of label attributes and 𝑑𝑐 indicating the dimensionality of
the word-embedding vector. We consider a set of embeddings 𝐻 =

{𝑝1, . . . , 𝑝𝑠 , 𝑞1, . . . , 𝑝𝑛} as input for the Transformer encoder. With
Transformers, the self-attention mechanism learns the importance,
or weight, of embedding ℎ 𝑗 ∈ 𝐻 with respect to ℎ𝑖 ∈ 𝐻 . We input
both feature embedding and label embedding information into the
Transformer encoder to obtain the new representation.

𝐻 = softmax

(
𝑊 𝑞𝐻 (𝑊 𝑘𝐻 )𝑇

√
𝑑

)
𝑊 𝑣𝐻 (3)

ℎ′𝑖 = ReLU
(
ℎ𝑖𝑊

𝑟 + 𝑏1
)
𝑊 𝑜 + 𝑏2 (4)

where𝑊 𝑘 is the key weight matrix,𝑊 𝑞 is the query weight matrix,
𝑊 𝑣 is the value weight matrix,𝑊 𝑟 and𝑊 𝑜 are transformation
matrices, and 𝑏1 and 𝑏2 are bias vectors. We denote the final output
of the Transformer encoder as 𝐻 ′ =

{
𝑝′1, . . . , 𝑝

′
𝑠 , 𝑞

′
1, . . . , 𝑞

′
𝑛

}
. Dur-

ing the model learning process, 𝑉𝑣 in Eq.(2) will be obtained after
transformer transformation, correspondingly, here the transformer
network will be learned based on the loss and gradient passed back
from the optimization process.

3.2 Weak-label classification with label
correlation

In this section, we delve into our weak-label learning component,
devised to address the challenge of weak-label instances stemming
from diverse training datasets. We focus on two key aspects: the uti-
lization of an indicatormatrix to signifymissing labels and the incor-
poration of label correlation mining inspired by [5] [18]. The central
concept behind label correlation mining involves reconstructing the
label space through instance and label similarity, thereby enhancing
classification performance.
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Real-world datasets within the ’same field’ often exhibit vary-
ing label compositions. In other words, the label sets 𝑌1, 𝑌2, . . . , 𝑌𝑠
corresponding to these datasets may encompass different labels.
Resolving the issue of inconsistent label sets constitutes a pivotal
aspect of our multi-label sample augmentation strategy. To this
end, we tackle this challenge in two steps. Firstly, we consolidate
the label sets 𝑌𝑣 ∈ {0, 1}𝑚𝑣×𝑛𝑣 from different datasets to derive
a unified label set 𝑌 ∈ {0, 1}𝑚×𝑛 . Subsequently, we leverage this
integrated label set 𝑌 for weak-label classification.

Addressing the integration of all label sets, we adopt a straight-
forward yet effective approach. We identify all unique labels across
the datasets and record their total count as 𝑛. Subsequently, we ex-
pand each label space matrix𝑌𝑣 ∈ {0, 1}𝑚𝑣×𝑛𝑣 to a full-dimensional
label matrix 𝐹𝑌𝑣 ∈ {0, 1}𝑚𝑣×𝑛 . This involves filling the expanded
label positions with 0, as illustrated by label 𝐿3 in 𝐹𝑌1 (refer to
Figure 4). By concatenating these full-dimensional label matrices
𝐹𝑌𝑣 ∈ {0, 1}𝑚𝑣×𝑛 , we obtain the integrated label set 𝑌 ∈ {0, 1}𝑚×𝑛 .

However, the integration of full-dimensional label sets 𝐹𝑌𝑣 ∈
𝑅𝑚𝑣×𝑛 may lack precision across all datasets. Despite expanding
the label space to encompass𝑛 labels, not all corresponding datasets
have been relabeled, resulting in potential omissions within the
integrated label set 𝑌 . For instance, an instance from dataset 𝑋𝑖
may possess labels absent in its original label set 𝑌𝑖 but present
in another dataset 𝑌𝑗 . This integration method may inadvertently
classify such labels as missing within the integrated set𝑌 . To rectify
this issue, we employ weak-label learning methodologies and label
correlation mining in subsequent steps.

To address the impact of inaccuracies within the integrated label
set 𝑌 , we propose leveraging weak-label learning alongside label
correlations mining strategies. This approach encompasses two
key facets. Firstly, we employ a missing indicator matrix𝑀 to flag
missing labels, enabling the reduction of their influence on the
overall model training error. Secondly, we enhance the precision
of weak-label learning by exploring label correlations. Drawing
inspiration from [5], we incorporate a regularization term into
our label correlation mining strategy, crafted with a view towards
smoothness assumption. This regularization term encapsulates the
smoothness of both instance and label similarities.

In addition to these strategies, we endeavor to capture the local
geometric structures of the feature space by defining an undirected
weighted graph for each dataset within 𝑋1, 𝑋2, . . . , 𝑋𝑠 . Herein, we
denote the weight matrix (i.e., similarity matrix) for 𝑋𝑣 as 𝑆𝑣 =

(𝑠𝑖 𝑗 )𝑚𝑣 ×𝑚𝑣 , where 𝑠𝑖 𝑗 signifies the similarity measure between
samples 𝑥𝑖 and 𝑥 𝑗 . This similarity measure can be defined as:

𝑠𝑖 𝑗 = 𝑒
−
∥𝑥𝑖 − 𝑥 𝑗 ∥2

𝜎2 (5)

where 𝜎2 is a parameter that can be adjusted.
In sum, the loss of weak-label classification with label correlation

can be expressed as:

Ψ(𝑉𝑣,𝑊 ,𝑌, 𝑆𝑣, 𝐿) = 𝛽 ∥(𝑉𝑊 − 𝑌 ) ◦𝑀 ∥2𝐹

+ 𝛾
𝑠∑︁

𝑣=1
∥𝑉𝑣𝑊 − 𝑆𝑣𝑉𝑣𝑊𝐿∥2𝐹

(6)

In the above two subsections, we introduce latent space represen-
tation learning and weak-label classification with label correlation

respectively. According to the introduction of these two parts, the
objective function Eq.(1) can now be detailed as follows:

min
𝑊,𝑉𝑣 ,𝑈𝑣 ,𝐿

𝑠∑︁
𝑣=1

∥𝑋𝑣 −𝑉𝑣𝑈𝑣 ∥2𝐹 + 𝛼

𝑠∑︁
𝑣=1

𝑠∑︁
𝑘≠𝑣

∥𝜇𝑣 − 𝜇𝑘 ∥22

+ 𝛽 ∥(𝑉𝑊 − 𝑌 ) ◦𝑀 ∥2𝐹 + 𝛾
𝑠∑︁

𝑣=1
∥𝑉𝑣𝑊 − 𝑆𝑣𝑉𝑣𝑊𝐿∥2𝐹

(7)

The proposed NOMWM consists of four different parts. The
first part

∑𝑠
𝑣=1 ∥𝑋𝑣 −𝑉𝑣𝑈𝑣 ∥2𝐹 is the information fusion for different

data sets, and the second part
∑𝑠

𝑣=1
∑𝑠
𝑘≠𝑣

∥𝜇𝑣 − 𝜇𝑘 ∥22 is to complete
the feature alignment. These two parts correspond to Figure 3(a).
The third part ∥(𝑉𝑊 − 𝑌 ) ◦ 𝑀 ∥2

𝐹
is to complete the weak label

learning based on the label indication matrix𝑀 , and the last part∑𝑠
𝑣=1 ∥𝑉𝑣𝑊 − 𝑆𝑣𝑉𝑣𝑊𝐿∥2

𝐹
is the label correlation mining module.

These two parts are illustrated in Figure 3(b). The specific optimiza-
tion solution for the above model is presented as follows.

3.3 Optimization
For the model we built, we use the iterative minimization approach
to optimize its loss function. When one of the variables is fixed,
the original optimization problem will degenerate into a convex
subproblem, which is convenient to solve. We adopt the MANOPT
toolbox [1] to implement gradient descent with line search for the
update of𝑊,𝑉𝑣,𝑈𝑣 and 𝐿. The specific steps will be described as
follows:

When 𝑉𝑣 , 𝑈𝑣 and 𝐿 are fixed, the subproblem of Eq.(7) is convex
to𝑊 , then the gradient corresponding to𝑊 can be easily obtained
andwe use gradient descent to update it. Similarly, with𝑊 ,𝑈𝑣 and 𝐿
are fixed, the subproblem of Eq.(7) is convex to𝑉𝑣 , then the gradient
corresponding to 𝑉𝑣 can be easily obtained and we use gradient
descent to update it. With𝑊 ,𝑉𝑣 and 𝐿 are fixed, the subproblem of
Eq.(7) is convex to𝑈𝑣 , then the gradient corresponding to𝑈𝑣 can
be easily obtained and we use gradient descent to update it.

When 𝑉𝑣 ,𝑈𝑣 and𝑊 are fixed, we have the following equation
for 𝐿 by setting the derivative of Eq.(7) w.r.t 𝐿 to zero,

(
𝑠∑︁

𝑣=1
(𝑆𝑣𝑉𝑣𝑊 )′ (𝑆𝑣𝑉𝑣𝑊 ))𝐿 =

𝑠∑︁
𝑣=1

(𝑆𝑣𝑉𝑣𝑊 )′𝑉𝑣𝑊 (8)

Then the closed-form solution for 𝐿 can be written as follows:

𝐿 = 𝑍+
𝑠∑︁

𝑣=1
(𝑆𝑣𝑉𝑣𝑊 )′𝑉𝑣𝑊 (9)

where 𝑍 =
∑𝑠

𝑣=1 (𝑆𝑣𝑉𝑣𝑊 )′ (𝑆𝑣𝑉𝑣𝑊 ) and 𝑍+ indicates the pseudo
inverse matrix of 𝑍 .

4 EXPERIMENTAL RESULT
In this section, we first introduce the data sets we choose and the
reasons for choosing them; secondly, we introduce the relevant
evaluation metrics; then we introduce the experimental settings.
Finally, specific experiments and corresponding analysis are given.

4.1 Data sets
To validate the efficacy of our proposed Non-Overlapped Multi-
View Weak-Label Learning Guided by Multiple Correlations, we
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Table 1: Data sets properties

Data sets Domain labels Instances Cardinality

Corel5k image 374 5000 3.5
Mirflickr image 38 25000 4.7
IAPRTC12 image 291 19627 5.7
ESPGame image 268 20770 4.7
MS-COCO image 80 122585 2.9

have chosen five benchmark datasets for experimentation, aim-
ing to ascertain the effectiveness of our method. Table 1 provides
an overview of the statistics pertaining to these datasets, namely
Corel5k [6], IAPRTC12 [7], ESPGame [8], Mirflickr [9], and MS-
COCO [12]. For feature extraction in our experiments, we employ
various methodologies across these datasets, encompassing Colour
[27], GIST [21], HOG [3], SIFT [19], LBP [20], and VGG [23]. The
former five are traditional features, while the latter constitute deep
features, all extensively utilized in the domain of image processing.
The combination of these datasets and features serves to compre-
hensively evaluate the effectiveness of our proposed method across
diverse scenarios, detailed further in the Experimental Settings
section.

It is essential to underscore that our proposed method primarily
addresses scenarios characterized by a relative insufficiency of train-
ing samples in multi-label classification. NOMWM leverages sample
augmentation to tackle the challenge of integrating information
from different datasets and handling missing labels in multi-label
learning. However, due to the absence of established benchmark
datasets directly applicable to validating our method, we resort to
integrating and repurposing existing benchmark datasets to em-
ulate varied datasets within the ’same field’, as elaborated in the
Experimental Settings section. Notably, the datasets utilized in our
experiments predominantly revolve around images, owing to the
ease of extracting diverse features for conducting simulation ex-
periments. Nonetheless, it’s crucial to highlight that the NOMWM
method we propose is applicable across various domains beyond
images, extending to fields like music, text, and beyond.

In the multi-label learning problem, since each sample may have
multiple category labels at the same time, the single-label evalua-
tion metrics which are commonly used in traditional supervised
learning, such as accuracy, precision, and recall, cannot be directly
used for the performance evaluation of the multi-label learning
system. Therefore, researchers have successively proposed a series
of multi-label evaluation metrics. Here we consider three evalua-
tion metrics, i.e., Macro-F1 and Micro-F1, which are widely used in
multi-label learning to evaluate the prediction performance [30].

4.2 Experimental Settings
We propose a simulation experiment based on the division of sin-
gle dataset to further validate our method. This approach lever-
ages readily available data from four datasets (Corel5k, Mirflickr,
IAPRTC12, and ESPGame), already partitioned into training and
test sets. For each dataset, we further partition the training set into
six sub-datasets and extract six different features: Colour, GIST,

HOG, SIFT, LBP, and VGG. These sub-datasets, each possessing dis-
tinct features, simulate six independent datasets within the ’same
field’ for our experiments.

Both sets of experiments encompass scenarios with full labels
and weak labels. In the former, the focus is on multi-label train-
ing datasets with complete label sets, while in the latter, we ran-
domly remove a portion of labels from the label matrix to simulate
weak-label learning. Specifically, we randomly nullify 20% of label
elements from each sample to generate weak-label datasets.

In our experiments, we compare our proposed approach with
five state-of-the-art multi-label classification methods: Incomplete
Multi-View Weak-Label Learning (iMVWL) [25], Hybrid Noise-
Oriented Multi-label Learning (HNOML) [2], Low-Rank Multi-View
Learning in Matrix Completion for Multi-Label Image Classification
(lrMMC) [17], Expand globally, shrink locally: Discriminant Multi-
Label Learning with Missing Labels (DM2L) [33], and Non-Aligned
Incomplete Multi-view and Missing Multi-label Learning (NAIM3L)
[11].

In the experimental comparisons, iMVWL, lrMMC, and NAIM3L
focus on multi-view multi-label classification, with adaptations
made to accommodate incomplete features by imputing average
values. On the other hand, HNOML and DM2L are designed for
multi-label classification with single-view data and incomplete label
sets, where we incorporate the latent feature 𝑉 learned by our pro-
posed method for experimentation. Parameter selection for these
methods involves random holdout of one-fifth of training data for
validation. We adopt predefined parameter settings from related
works for iMVWL, HNOML, lrMMC, and DM2L, while selecting
parameters 𝛼 , 𝛽 , and 𝛾 from the range 10−10, 10−9, · · · , 1010 for our
method. All experiments are conducted on a 64-bit Linux worksta-
tion with an Intel E5-2650 CPU and 256GB memory.

We evaluate NOMWM, NAIM3L, iMVWL, HNOML, lrMMC, and
DM2L on multi-label data. Tables 2 and 3 present the performance
of multi-label classification under scenarios of weak and full la-
bels across four datasets. These tables encompass three evaluation
metrics: Macro-F1 and Micro-F1. The second column in each table
denotes the features of the test datasets during prediction, reflecting
the method’s robustness across different feature sets. Our experi-
mental results yield several noteworthy observations:

NOMWM consistently outperforms most state-of-the-art meth-
ods across the four datasets. For instance, under the full label sce-
nario in Table 2 and 3, NOMWM achieves improvements of 2.15%
(Micro-F1) and 1.55% (Macro-F1) on the IAPRTC12 dataset using the
Gist feature. Under weak label conditions in Table 2 and 3, NOMWM
enhances performance by 0.81% (Micro-F1) and 2.18% (Macro-F1) on
the ESPGame dataset using the SIFT feature. These results validate
the efficacy of our proposed method. Across Micro-F1 andMacro-F1
metrics, NOMWM consistently outperforms existing methods by
1%-3%, showcasing its overall superiority.

NOMWM is compared against NAIM3L, iMVWL, HNOML, lr-
MMC, and DM2L. Among these methods, NAIM3L, iMVWL, and
lrMMC effectively handle multi-view datasets, while HNOML and
DM2L utilize the latent feature 𝑉 derived from our method. More-
over, all four methods adeptly address weak-label scenarios. This
comprehensive comparison underscores the superiority of our ap-
proach.
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Table 2: Quantitative results on validation sets on evaluation criteria Micro-F1, where the best ones are highlighted in bold.

Data sets Feature Results on validation sets with missing 20% labels
NOMWM NAIM3L iMVWL HNOML lrMMC DM2L

Corel5k

Colour 0.0320 0.0362 0.0273 0.0327 0.0285 0.0302
Gist 0.0739 0.0715 0.0645 0.0546 0.0615 0.0518
HOG 0.0779 0.0745 0.0717 0.0739 0.0694 0.0682
SIFT 0.1095 0.1081 0.0686 0.0740 0.0856 0.0721
LBP 0.0528 0.0472 0.0498 0.0332 0.0406 0.0525
VGG 0.0958 0.0871 0.0768 0.0790 0.0620 0.0768

IAPRTC12

Colour 0.0786 0.0947 0.0762 0.0830 0.0608 0.0712
Gist 0.1370 0.1155 0.0808 0.0602 0.0732 0.0793
HOG 0.1013 0.0923 0.0664 0.0786 0.0980 0.0836
SIFT 0.1185 0.1053 0.0732 0.0840 0.0855 0.0722
LBP 0.0801 0.0716 0.0883 0.0935 0.0752 0.0837
VGG 0.2281 0.1936 0.1485 0.1656 0.1254 0.1389

ESPGame

Colour 0.0377 0.0516 0.0575 0.0513 0.0620 0.0621
Gist 0.1039 0.0958 0.0840 0.0784 0.0549 0.0681
HOG 0.0907 0.0964 0.0862 0.0727 0.0680 0.0773
SIFT 0.0883 0.0811 0.0891 0.0735 0.0849 0.0739
LBP 0.1180 0.1003 0.0714 0.0732 0.0711 0.0602
VGG 0.1846 0.1748 0.1553 0.1658 0.1526 0.1464

Mirflickr

Colour 0.4273 0.4054 0.3682 0.3898 0.3127 0.3136
Gist 0.3807 0.3992 0.3150 0.3043 0.3570 0.3290
HOG 0.4658 0.4221 0.3054 0.3531 0.3828 0.3867
SIFT 0.4387 0.4138 0.3648 0.3416 0.3342 0.3028
LBP 0.4155 0.4032 0.4261 0.3497 0.3116 0.3195
VGG 0.6084 0.5851 0.5760 0.5600 0.5698 0.5360

Data sets Feature Results on validation sets with full labels
NOMWM NAIM3L iMVWL HNOML lrMMC DM2L

Corel5k

Colour 0.0547 0.0487 0.0404 0.0446 0.0414 0.0410
Gist 0.0725 0.0702 0.0587 0.0601 0.0626 0.0596
HOG 0.0938 0.0832 0.0740 0.0842 0.0739 0.0686
SIFT 0.0855 0.0993 0.0622 0.0795 0.0739 0.0873
LBP 0.0797 0.0756 0.0565 0.0519 0.0540 0.0683
VGG 0.0913 0.0909 0.0810 0.0885 0.0639 0.0614

IAPRTC12

Colour 0.0943 0.0851 0.0803 0.0654 0.0631 0.0754
Gist 0.1082 0.0917 0.0995 0.0853 0.0769 0.0737
HOG 0.0961 0.0854 0.0782 0.0815 0.0847 0.0819
SIFT 0.1277 0.1012 0.0862 0.0918 0.0760 0.0862
LBP 0.0883 0.0834 0.0902 0.0811 0.0821 0.0854
VGG 0.2296 0.2062 0.1706 0.1983 0.1529 0.1760

ESPGame

Colour 0.0841 0.0810 0.0683 0.0605 0.0693 0.0712
Gist 0.1042 0.0949 0.0861 0.0744 0.0630 0.0738
HOG 0.0766 0.0868 0.0803 0.0880 0.0564 0.0650
SIFT 0.1012 0.0853 0.0714 0.0792 0.0902 0.0820
LBP 0.0982 0.0906 0.0723 0.0828 0.0758 0.0705
VGG 0.1453 0.1836 0.1793 0.1682 0.1384 0.1527

Mirflickr

Colour 0.4584 0.4273 0.3737 0.3905 0.3200 0.3536
Gist 0.4273 0.4104 0.3682 0.3668 0.3591 0.3687
HOG 0.4792 0.4512 0.3750 0.3794 0.3895 0.3747
SIFT 0.4455 0.4167 0.3809 0.3610 0.3549 0.3600
LBP 0.4162 0.4014 0.3812 0.3994 0.3321 0.3656
VGG 0.6352 0.5991 0.5813 0.6054 0.5885 0.5531

Our proposed sample augmentation method significantly en-
hances classification accuracy. Across most cases in the full label
scenario, our method consistently outperforms others. By augment-
ing the model’s adaptability to diverse features through data aug-
mentation, NOMWM provides richer information for training the
classification model. In weak label scenarios where missing labels
disrupt the label set distribution, NOMWM’s label indication matrix

and label correlation mining module mitigate the impact, ensuring
robust classification capabilities.

These observations collectively affirm the efficacy and versatil-
ity of our proposed NOMWM method in addressing multi-label
learning challenges.
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Table 3: Quantitative results on validation sets on evaluation criteria Macro-F1, where the best ones are highlighted in bold.

Data sets Feature Results on validation sets with missing 20% labels
NOMWM NAIM3L iMVWL HNOML lrMMC DM2L

Corel5k

Colour 0.0430 0.0340 0.0334 0.0369 0.0312 0.0362
Gist 0.0865 0.0746 0.0645 0.0643 0.0620 0.0749
HOG 0.0998 0.0818 0.0896 0.0715 0.0830 0.0696
SIFT 0.1145 0.1035 0.0733 0.0950 0.0798 0.0838
LBP 0.0564 0.0415 0.0340 0.0416 0.0475 0.0513
VGG 0.1047 0.0961 0.0738 0.0850 0.0790 0.0702

IAPRTC12

Colour 0.0838 0.0853 0.0473 0.0749 0.0549 0.0656
Gist 0.1130 0.0975 0.0602 0.0811 0.0712 0.0817
HOG 0.1052 0.0951 0.0864 0.0882 0.0824 0.0716
SIFT 0.1061 0.0946 0.0826 0.0816 0.0714 0.0834
LBP 0.0846 0.0757 0.0570 0.0636 0.0816 0.0994
VGG 0.2189 0.1736 0.1122 0.1560 0.1088 0.1203

ESPGame

Colour 0.0365 0.0549 0.0578 0.0499 0.0374 0.0514
Gist 0.0948 0.0846 0.0720 0.0812 0.0792 0.0614
HOG 0.1035 0.0907 0.1076 0.0693 0.0620 0.0744
SIFT 0.0922 0.0860 0.0814 0.0870 0.0734 0.0733
LBP 0.0994 0.0974 0.0544 0.0711 0.0717 0.0509
VGG 0.1749 0.1669 0.1673 0.1752 0.1591 0.1406

Mirflickr

Colour 0.4090 0.3834 0.3974 0.3285 0.3215 0.3104
Gist 0.3568 0.3665 0.3594 0.3277 0.3086 0.3756
HOG 0.4512 0.4133 0.3087 0.3904 0.3921 0.3372
SIFT 0.4185 0.3807 0.3240 0.3144 0.3877 0.3725
LBP 0.3927 0.3885 0.3654 0.3681 0.3594 0.3988
VGG 0.5872 0.5559 0.5060 0.5407 0.5174 0.5240

Data sets Feature Results on validation sets with full labels
NOMWM NAIM3L iMVWL HNOML lrMMC DM2L

Corel5k

Colour 0.0614 0.0582 0.0464 0.0529 0.0435 0.0422
Gist 0.0884 0.0731 0.0785 0.0680 0.0610 0.0617
HOG 0.1037 0.0885 0.0516 0.0960 0.0716 0.0757
SIFT 0.0764 0.0661 0.0762 0.1092 0.0890 0.0843
LBP 0.0585 0.0612 0.0514 0.0623 0.0413 0.0445
VGG 0.1092 0.0910 0.0759 0.0866 0.0871 0.0558

IAPRTC12

Colour 0.1021 0.0885 0.0635 0.0840 0.0526 0.0708
Gist 0.1082 0.0965 0.0893 0.0978 0.0894 0.0822
HOG 0.1078 0.0825 0.0723 0.0902 0.0859 0.0759
SIFT 0.1174 0.0956 0.0843 0.0859 0.0772 0.0809
LBP 0.0886 0.0783 0.0635 0.0782 0.0668 0.0644
VGG 0.2302 0.2027 0.1370 0.1725 0.1360 0.1647

ESPGame

Colour 0.0761 0.0826 0.0602 0.0656 0.0434 0.0506
Gist 0.1049 0.0831 0.0766 0.0890 0.0767 0.0713
HOG 0.0933 0.0867 0.1087 0.0751 0.0756 0.0650
SIFT 0.1056 0.0839 0.0704 0.0532 0.0802 0.0980
LBP 0.0981 0.0818 0.0598 0.0790 0.0798 0.0642
VGG 0.1523 0.1409 0.1592 0.1858 0.1358 0.1503

Mirflickr

Colour 0.4608 0.4433 0.3741 0.4186 0.3647 0.3804
Gist 0.4084 0.3824 0.3631 0.3540 0.3474 0.3256
HOG 0.4671 0.4359 0.3825 0.3916 0.3856 0.3887
SIFT 0.3981 0.3571 0.3737 0.4011 0.3961 0.3846
LBP 0.4489 0.4154 0.3794 0.3696 0.3778 0.3408
VGG 0.6194 0.5763 0.5218 0.5427 0.5440 0.5423

5 CONCLUSION
In this paper, we propose a novel multi-label learning framework,
Non-Overlapped Multi-View Weak-Label Learning Guided by Mul-
tiple Correlations (NOMWM), to address the challenge of insuffi-
cient labeled training samples in multi-label learning scenarios. Our
method effectively integrates datasets with diverse features within
a unified field, facilitating joint learning for sample augmentation

and enhancing model classification accuracy. Additionally, we in-
troduce a weak-label module comprising the label missing indicator
matrix and label correlation mining, which addresses incomplete
label set matching between datasets, enhancing model practicality
and robustness. Experimental results demonstrate that NOMWM
outperforms state-of-the-art multi-label algorithms under both full-
label and weak-label conditions.
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