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9 Appendix

Here, we provide the proof of Proposition 5. The proof makes use of the following two propositions,
which we present and prove next.

Proposition 6. Let {6'};cn be a sequence generated by Algorithm 2. Then, for all ¢ € N and
0 <k < K —1,wehave

H(at 9*) o H(Gt wt,k) < F92 ”975 _ 9*H2 _ l _ £ ”wt,kJrl o ,wt,k”?.
’ ’ — 2F, a 2

Proof. Lett € N. From the F,,-strong convexity of w — H (6%, w), we obtain that
H(et’wt,k‘—‘rl) 2 H(et’e*) + <va(9t79*),’LUt’k+1 _ 0*> 4 %Hwt,k—kl _ 9*”2,
which means that
H(0',6%) — H(O, w1y < (Vo H(6',0%), 0% — whh+1) — %”wt,k+1 — 0|2 ®)

Moreover, in light of the fixed-point characterization of TD, namely that V., H (6*,6*) = 0, we can
write

(Vo H (8',6%),0" —w ) = (Vo H(6',6%) = Vo, H(8",67),6" —w" )
= (Vo H(8,6%) — Vi, H(#*,67)) " (6" — w' )
L F,
< —IIVwH(Ht,Q*) Vo H(6*,0%)| + . T bRt g2

P2 F,
S 9 ||9t H*HQ + 7||wt,k+1 _ 9*||2. (9)

Here, the first inequality follows from the fact that for any two vectors ¢ and b we have
a’b < (1/2d)||a||* + (d/2)||b||* for any d > 0. In this case, we chose d = F,,. Also the last
inequality follows from the Fy-Lipschitz property of V,, H, which is our assumption.

Now, by combining (8) with (9) we obtain that

F2 F, F,
H(Qt,9*> _ H(Qt,wt’k+1) < 0 Het 9*||2 + 7”wt,k-',-l _ 9*||2 _ 7||wt,lc+1 _ 9*||2

:‘%Hw 0*||%. (10)

From the Lipschitz assumption we can write, due to the Descent Lemma [19] applied to the function
w — H(6',w), that:

L
H(9t7wt,k+1> _ H(9t7wt,k) < <VwH(9t, wt,k)7wt,k+1 _ wt,k) + 7||wt,k+1 _ wt,k”Q

Now, notice that according to Algorithm 2 we have w**+! = w** — oV, H(6*, w"*), and so we

can write:

IN

, W w

1 L

:_<a—2)wwﬂ—www. (11)
Adding both sides of (10) with (11) yields:

1 L
H(9t7wt,k+1) o H(@t,wt’k) 7<wt,k: o wt,kJrl t,k+1 t,k:> + §||wt,k+1 o wt,k”Q

Q

1 L

H(0 0%) — H(0t. wt* t R tk+l k)2
(00— ") < 310 =072 = (1= 2) Jutt ke,

which proves the desired result. O
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Now, we can prove the following result.

Proposition 7. Let {0'};cn be a sequence generated by Algorithm 2. Then, for all ¢ € N and
0<k<K—1,wehave

F2
[ — %2 < (1 = aFy) [w"* — 67> + C}Jllé’t —0"|* = (2 = aL) [ —whF 2,

In particular, when o = 1/L, we have

F, F2
= 0t < (1= 5 )t = 0P + o - 0,

Proof. Let t € N. From the definition of steps of Algorithm 2, that is, w’*+!1 = wiF —
aV ., H (0%, whF), forany 0 < k < K — 1, we obtain that
[ = 072 = [ = 07) — V., H(O' )
= [ — 07> + 20({V, H (6%, w"") 0% — w"*) + aV, H (6", w"")|?
— Hwt,k _ 9*||2 4 2a<va (9t7wt,k) 79* _ wt,k> + ”wt,k—i-l _ ’wt’kHZ. (12)

Using the F,-strong convexity of w — H (6%, w), we have
F,
H(0",6%) > H (0", w"*) + (V. H (0", w"*) , 0" — w"*) + 7’“|\wt’k —0%2.  (13)
Combining (12) and (13), we get:
Fy
ot 0 — 072 < ™t — 07|12+ 20 (H (6", 6%) — H (6" w"*) = ||t —6°[?)
4 Hwt,kJrl _ wt,kHZ
= (1 — aFy,) |w"* — 6% + 2a (H (Qt,G*) - H (Qt,wt7k)) + [JwhFFE — wpt k2,
Hence, from Proposition 6, we obtain

F? 1 L
= 0 < (1= ) fut* = 0117 + 20 (10 = 0712 - (5 = 5 ) It - ut )
+ Hwt,k—i—l _ wt,kn?
* an *
= (1= aky) w" = "% + 516" = 0*]|* = (2 = aL) w"* — w"¥|%,
which completes the first desired result.

Moreover, by specifically choosing the step-size « = 1/L we obtain that:
F, F?
L (R L e L e
F F?
< (122 t,k_9*2 [% 9t_9*2.
S A

This concludes the proof of this proposition. O
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s4s  Using these two results, we are ready to present the proof of Proposition 5

B

549 proof of Proposition 5. Let t € N. From Proposition 7 (recall that « = 1/L) and the fact that
s50 0T = whE | we have

e e A &

e e L en A &

< (U= 8) [(1L= 8) 052 = %2 1P| 0" — 0° ] + ]} 0" — 07
(1= w)? 52 = 0% g2 (1+ (1 = 1)) 10" — 07|

IN

K—-1
K * k *
< (1 =rR)" " =[P+ 0Pk Y (1= r)"(10° — 677
k=0

K-1
= (L=w) 0" = 0% + Pk Y (1—r)" 6" = 077,
k=0

551 where the last inequality follows from the fact that w*® = 6'. Because x € [0, 1], the geometric
s52  series on the right hand side is convergent, and so we can write:

(1_)K+2K_1 Nk K gﬂ_ CONK 211 K
K n mZ(l k) '=(1-kr)+n°k T =(1-k)"4+n (1 (1-k) ),
k=0

553 which completes the desired result.
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