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Here, we provide the proof of Proposition 5. The proof makes use of the following two propositions,518

which we present and prove next.519

Proposition 6. Let {✓t}t2N be a sequence generated by Algorithm 2. Then, for all t 2 N and520

0  k  K � 1, we have521
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Proof. Let t 2 N. From the Fw-strong convexity of w ! H(✓t, w), we obtain that522
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which means that523
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Moreover, in light of the fixed-point characterization of TD, namely that rwH(✓?, ✓?) = 0, we can524
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Here, the first inequality follows from the fact that for any two vectors a and b we have526

a
>
b  (1/2d)kak2 + (d/2)kbk2 for any d > 0. In this case, we chose d = Fw. Also the last527

inequality follows from the F✓-Lipschitz property of rwH , which is our assumption.528

Now, by combining (8) with (9) we obtain that529
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From the Lipschitz assumption we can write, due to the Descent Lemma [19] applied to the function530

w ! H(✓t, w), that:531
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Now, notice that according to Algorithm 2 we have w
t,k+1 = w

t,k � ↵rwH(✓t, wt,k), and so we532

can write:533
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Adding both sides of (10) with (11) yields:534
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which proves the desired result.535
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Now, we can prove the following result.536

Proposition 7. Let {✓t}t2N be a sequence generated by Algorithm 2. Then, for all t 2 N and537

0  k  K � 1, we have538
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In particular, when ↵ = 1/L, we have539
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Proof. Let t 2 N. From the definition of steps of Algorithm 2, that is, w
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Using the Fw-strong convexity of w ! H(✓t, w), we have542
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Combining (12) and (13), we get:543
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Hence, from Proposition 6, we obtain544
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which completes the first desired result.545

Moreover, by specifically choosing the step-size ↵ = 1/L we obtain that:546
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This concludes the proof of this proposition.547
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Using these two results, we are ready to present the proof of Proposition 5548

proof of Proposition 5. Let t 2 N. From Proposition 7 (recall that ↵ = 1/L) and the fact that549
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where the last inequality follows from the fact that wt,0 = ✓
t. Because  2 [0, 1], the geometric551

series on the right hand side is convergent, and so we can write:552
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which completes the desired result.553
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