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A Dataset Descriptions
SIMSv2 [1] contains 4403 labeled instances from 145 video clips,
with an average clip duration of 3.67s. The original videos are col-
lected from 11 different scenarios, simulating real-world situations
and including numerous instances with weaker textual dependen-
cies. The sentiment annotations assigned to each instance in the
dataset range from Strong Negative (-1, -0.8), Weak Negative (-0.6,
-0.4, -0.2), Neutral (0), Weak Positive (0.2, 0.4, 0.6), and Strong Posi-
tive (0.8, 1). The data is split into three subsets: a training set (2722),
a validation set (647), and a test set (1034). CHERMA [2] is a large
Chinese multimodal emotion recognition dataset, containing 28,717
utterances mainly acquired from TV series. The samples are divided
into training, validation, and test datasets using a 6:2:2 ratio. The
annotations adhere to Ekman’s system of emotion theory, encom-
passing seven categories: happiness, sadness, fear, anger, surprise,
disgust, and neutrality.

B Data Pre-processing
The inputs of the model from the two public datasets are prepro-
cessed feature sequences, and the detailed process is described as
follows.

SIMSv2: The length of the text is fixed to 50 by padding or
truncation, and then the features are obtained by a pre-trained
Chinese BERT model with dimension 768. OpenSMILE is used
to extract audio features, generating a feature sequence with a
dimension of 25 and a length of 925. For visual data, the image
stream is passed through OpenFace to extract 177-dimensional
features, with a fixed length of 232.

CHERMA: The pre-trained Chinese BERT model is also used
for the pre-processing of the text. The length of the raw data is
padded to 78. By adding CLS and SEP tokens, the 768-dimensional
text features of length 80 are obtained. The audio is pre-processed
using the pre-trained wav2vec, which generates 768-dimensional
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feature sequences with the original data length. After cropping
facial images using MTCNN, the visual data is passed through a
pre-trained Resnet 18 to obtain a feature sequence with a length of
64 and a dimension of 512.

C Effect of Initial Pool and Budget
We conduct experiments on SIMSv2, varying the initial pools and
budgets to investigate how these factors influence model perfor-
mance. Figure 1 illustrates the scenario where both the initial pool
and budget are set at 50, while Figure 2 showcases the case where
the initial pool and budget are both 200. Across both figures, it
is evident that GRACE consistently outperforms other methods,
demonstrating its robustness and superiority under different initial
pools and budgets.When the number of labeled samples reaches 800,
the MAE metrics of GRACE in Figure 1 and Figure 2 are both 0.322,
rounded to three decimal places. In addition, it is observed that the
performance improvement of all methods in Figure 1 is small at
the early stages. This can be attributed to the extremely limited
initial data, leading to a cold start failure and subsequently trapping
the network in a local optimum. As more data becomes available,
the model gradually commences a normal learning process. On
the other hand, Figure 2 shows a more significant performance im-
provement as the active learning cycle increases, due to the larger
size of the initial pool. However, the performance of Figure 2 at
800 samples is slightly lower than the experiment in Sec. 4.2 of the
main paper at the same data volume. This is because of the limited
number of active cycles. Overall, these experiments highlight the
importance of the initial pool and budget.

D Emotion-wise Comparison
To further analyze performance on the classification task over
SIMSv2, we report the overall and emotion-wise F1 scores for the
compared methods in Table 1. Our approach outperforms other
methods in terms of the overall F1 score, once again demonstrating
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Table 1: Experimental results of F1 score on CHERMA. The results are reported when the number of selected samples reaches
5000. The best results are highlighted in bold.

Methods anger disgust fear happy neutral sad surprise overall

Full data 75.08 43.72 66.52 77.94 66.55 79.37 65.08 69.22

BALD 72.22 20.09 44.43 76.01 63.14 72.97 49.08 60.53
BADGE 72.54 13.80 40.11 75.89 63.52 74.03 52.85 60.13
BMMAL 70.07 32.71 56.15 76.41 63.49 73.26 56.47 63.53
Random 70.38 14.11 40.88 75.49 61.77 72.27 45.54 58.37
GRACE 71.24 35.39 52.92 75.68 64.03 75.87 57.91 64.11

Table 2: Experimental results of multiple metrics on SIMSv2 using LFMIM. The results are reported when the number of
selected samples reaches 800. The best results are highlighted in bold.

Methods MAE (↓) Acc-2 (↑) Acc-3 (↑) Acc-5 (↑) F1 score (↑) Corr (↑)
Full data 0.258 83.46 77.47 61.99 83.55 76.78

CoreSet 0.311 81.33 75.53 55.13 81.42 70.86
GCNAL 0.297 81.53 76.21 56.38 81.64 72.29
DBAL 0.312 81.82 75.15 52.90 81.93 72.17
Random 0.318 80.95 72.44 51.84 81.05 69.44
GRACE 0.289 82.11 76.60 58.80 82.16 73.56

Figure 1: Model performance comparison on SIMSv2. The ini-
tial pool contains 50 samples and increases to 800 by fifteen
AL cycles. A smallerMAE score indicates better performance.

its superiority. We also achieve the best performance across mul-
tiple emotions, particularly with a significant margin surpassing
other methods in terms of emotion disgust, one of the most diffi-
cult categories to recognize. In emotion anger, fear, and happy, our
performance does not reach the optimal level, but the gap is quite
small. This might be due to the fact that GRACE prematurely selects
difficult samples with emotions like disgust, while the learning of
simpler samples is not sufficient. Therefore, we can introduce adap-
tive adjustment strategies of the curriculum factor in future studies.
It is worth noting that the active learning method BMMAL, which
also considers multimodal properties, performs well across multiple
metrics, far exceeding other active learning methods designed for
unimodal tasks.

Figure 2: Model performance comparison on SIMSv2. The
initial pool contains 200 samples and increases to 800 by three
AL cycles. A smallerMAE score indicates better performance.

E Robustness to Task Model
In order to verify the robustness of GRACE to the task model, we
choose LFMIM [2], a transformer-based architecture, as the task
model for comparison on SIMSv2. The LFMIM comprises three
unimodal transformers and a multimodal transformer. The outputs
of each layer of the unimodal transformers are concatenated and
used as the input for each layer of the multimodal transformer. As
can be seen from Table 2, all methods show superior performance
compared to previous experiments shown in Sec. 4.2 due to the
strong task model. Compared with the full data, the difference in
MAE of GRACE is 0.031, and the difference in other metrics is
also less than 3.3%. Overall, our method still outperforms other
active learning methods on the LFMIM model across all metrics,
demonstrating the insensitivity of GRACE to the task model.
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F Algorithm Procedure
The full procedure of our GRACE is depicted in Algorithm 1. Ini-
tially, a small number of randomly selected labeled samples forms
the labeled dataset 𝐿, while the remaining unlabeled data constitutes
the unlabeled dataset𝑈 . A curriculum factor 𝛼 and its correspond-
ing curriculum decay 𝛼𝑑 are introduced for curriculum learning.
Before the phase of active learning, the network 𝐹 (·;𝜃 ) is initially
trained using 𝐿. For each active learning cycle, we begin by comput-
ing both the unimodal and multimodal gradients G for each sample
in 𝑈 . Subsequently, we iterate over 𝑈 and calculate the informa-
tiveness and easiness scores for each unlabeled data 𝑥𝑝 . Due to the
representativeness criterion considering the overall distribution of
data, we compute the sum of distances between 𝑥𝑝 and all other 𝑥𝑞
in the unlabeled dataset, excluding 𝑥𝑝 itself. After normalization,
the final score is computed. Next, we select the top 𝐾 samples from
𝑈 based on their final scores and obtain labels for them through
Oracle. The datasets 𝐿, 𝑈 , and the curriculum factor 𝛼 are then
updated. Finally, we train the task model 𝐹 (·;𝜃 ) using the current
labeled dataset 𝐿. This process is repeated until the termination
condition is met.

Algorithm 1: The Sketch of GRACE Method
Input: initial labeled dataset 𝐿 and unlabeled dataset𝑈 ,

curriculum factor 𝛼 and decay 𝛼𝑑 .
1 Initialize the task model 𝐹 (·;𝜃 ) using the labeled dataset 𝐿.
2 for 𝑖 to 𝑞𝑢𝑒𝑟𝑦_𝑟𝑜𝑢𝑛𝑑𝑠 do
3 Get the gradients G = {g𝑡 , g𝑎, g𝑣, g𝑚𝑡

, g𝑚𝑎
, g𝑚𝑣

} of the
unlabeled dataset𝑈 .

4 for 𝑥𝑝 ∈ 𝑈 do
5 Calculate 𝑠𝑖 (𝑥𝑝 ), 𝑠𝑒 (𝑥𝑝 ) using G(𝑥𝑝 ). Eq.(4,6)
6 Initialize 𝑠𝑟 (𝑥𝑝 ) = 0.
7 for 𝑥𝑞 ∈ 𝑈 \𝑥𝑝 do
8 Accumulate 𝑠𝑟 (𝑥𝑝 ) by the distance between 𝑥𝑝

and 𝑥𝑞 using G(𝑥𝑝 ) and G(𝑥𝑞). Eq.(5)
9 end

10 Normalize to obtain 𝑠𝑖 (𝑥𝑝 ), 𝑠𝑟 (𝑥𝑝 ), 𝑠𝑒 (𝑥𝑝 ).
11 𝑠 (𝑥𝑝 ) = 𝑠𝑒 (𝑥𝑝 ) · 𝛼 + 𝑠𝑖 (𝑥𝑝 ) · 𝑠𝑟 (𝑥𝑝 ). Eq.(7)
12 end
13 𝑄 ← Query top 𝐾 samples from𝑈 based on 𝑠 .
14 Oracle labeling 𝑌𝑛𝑒𝑤 for samples in 𝑄 .
15 Update dataset: 𝐿 ← 𝐿

⋃(𝑄,𝑌𝑛𝑒𝑤),𝑈 ← 𝑈 \𝑄 .
16 Update curriculum factor: 𝛼 ← 𝛼 − 𝛼𝑑 .
17 Train the task model 𝐹 (·;𝜃 ) using the labeled dataset 𝐿.
18 end

G Training Efficiency
We compare training efficiency across methods in two aspects. 1)
Querying time. The time for one AL cycle and the overall train-
ing process using an RTX 3090 GPU are shown in Table 3. For
small datasets (like SIMSv2), the querying time for AL is negligible
compared to overall training. For large datasets (like CHERMA),
GRACE demonstrates advantages in efficiency. 2) Learning speed.
Taking Figure 4 in the paper as an example, GRACE reaches MAE
0.35 requiring 200 fewer labeled data than other methods, and thus

incurs 2X fewer model training and querying rounds. This indicates
GRACE achieves the same performance faster. In practical applica-
tions, we can collect more unlabeled data, which is less costly than
labeling, to enhance model capacity.

Time TimeMethods querying overall Methods querying overall

CoreSet 5.09s 15m 46s BALD 211.92s 35m 48s
GCNAL 16.04s 16m 33s BADGE 256.62s 42m 52s
DBAL 5.01s 15m 31s BMMAL 301.96s 53m 13s
GRACE 25.73s 18m 13s GRACE 161.24s 28m 13s

Table 3: Time taken on SIMSv2 and CHERMA datasets.

H Further Study on Representativeness
We replace the calculation method with the sum of distances be-
tween representations of the four modalities (GRACE-rp), and the
distance between the fusion modality representations (GRACE-
rp(m)). The results are shown in Row 1 & 2 of Table 4. The original
GRACE remains the best in all metrics. This is because represen-
tations are the mappings of data in feature space, while gradient
embeddings reflect the underlying parameter update directions and
magnitudes of the network. Therefore, gradient embeddings can
effectively guide the AL process.

Methods MAE Acc-2 Acc-3 Acc-5 F1 score Corr
GRACE-rp 0.326 79.37 70.76 48.87 79.49 69.31

GRACE-rp(m) 0.329 79.05 70.73 48.55 79.17 68.32
𝛽 = 1, 𝛾 = 1 0.322 80.46 71.56 49.03 80.57 69.85
𝛽 = 10, 𝛾 = 1 0.325 80.08 70.56 48.42 80.30 70.12
𝛽 = 1, 𝛾 = 10 0.329 79.66 70.31 48.48 79.78 69.66
GRACE 0.319 81.17 72.86 50.52 81.26 70.75

Table 4: Additional experimental results on SIMSv2.

I Balance between Criteria
We have proposed a curriculum factor to balance sample difficulty
and active value. The active value is the product of informativeness
and representativeness since we aim to select samples with both
scores being high. However, the easiness doesn’t always need to be
high and should decrease with training, so the additive relationship
is adopted. To further study the balance, we propose a new additive
relation as a comparison: 𝑠 (𝑥𝑝 ) = 𝛼 · 𝑠𝑒 (𝑥𝑝 ) + 𝛽 · 𝑠𝑖 (𝑥𝑝 ) +𝛾 · 𝑠𝑟 (𝑥𝑝 ).
The setting of 𝛼 is consistent with the paper, and the experiments
of 𝛽 and 𝛾 are shown in Row 3-5 of Table 4. The original GRACE
remains the best in all metrics. Using the sum leads to reduced
performance by selecting unexpected samples, such as those with
𝑠𝑖 being extremely high yet 𝑠𝑟 extremely low.
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