
A Prerequisite: Subgaussian Random Variables

We will consider the commonly used subgaussian distributions ([41]). Loosely speaking, a random
variable is subgaussian if its tail vanishes at a rate faster than some Gaussian distributions.
Definition 4 (Subgaussian norm). Let X be a random variable, its subgaussian norm is defined as
kXk 2 := inf{t : E[eX2/t2

]  2}. Moreover, X is called subgaussian if kXk 2 <1.

Many commonly used distributions satisfy this assumption, e.g., Bernoulli, uniform, and Gaussian
distributions. We introduce a standard concentration bound for subgaussian random variables.
Theorem 6 (Hoeffding Inequality [41]). Let X1, ..., Xn be independent subgaussian random vari-
ables. Then for any ⌘ > 0, it holds that

P
"�����

nX

i=1

Xi �
nX

i=1

E(Xi)

����� � ⌘

#
 2 exp

� 2⌘2Pn

i=1
kXik2 2

!
.

To show the correctness of our algorithm, we need to consider the log-likelihood ratio (LLR), formally
defined as follows:
Definition 5. For any a 2 A and h, g 2 H , define Z(h, g; a) = log

Ph,a(⇠)
Pg,a(⇠)

where ⇠ ⇠ Dµ(h,a).

We will assume that the subgaussian norm of the LLR between two hypotheses is not too large when
compared to the difference of their parameters, as formalized below:
Definition 6. Let ⇢ > 0 be the minimal number s.t. for any pair of distinct hypotheses h, g 2 H and
action a 2 A, it holds that kZ(h, g; a)k 2  ⇢ · |µ(g, a)� µ(h, a)|.

We will present an error analysis for general ⇢. Prior to that, we first point out that many common
distributions satisfy ⇢ = O(1).

Examples. It is straightforward to verify that ⇢ = O(1) for the following common distributions:

• Bernoulli distributions: D✓ = Ber(✓) where ✓ 2 [✓min, ✓max] for constants ✓min, ✓max 2
(0, 1), and

• Gaussian distributions: D✓ = N(✓, 1) where ✓ 2 [✓min, ✓max] for constants ✓min < ✓max.

Take Bernoulli distribution as an example. Fix any hypotheses h, g 2 H and action a 2 A, write
� = µ(h, a)� µ(g, a). Then, Z = Z(h, g; a) can be rewritten as

Z =

(
log(1 +

�

µ(g,a)), w.p. µ(h, a),
log(1� �

1�µ(g,a)), w.p. 1� µ(h, a).

Since 0 < ✓min  µ(g, a)  ✓max < 1, we have |Z|  C|�| almost surely where C = 2max{(1�
✓max)

�1, ✓�1

min}. Moreover, it is known that (see [41]) any subgaussian random variable Z satisfies
kZk 2  1

ln 2
kZk1, so it follows that

kZk 2 
1

ln 2
kZk1 

C�

ln 2
= O(�).

Thus ⇢ = O(1).

B Proof of Proposition 1

B.1 Error Analysis

We first prove that at each timestamp ⌧(h), with high probability our algorithm terminates and returns
h.
Lemma 1. Let B > 0. If h 2 H is the true hypothesis, then w.p. 1 � e�⌦(⇢�2↵B), it holds
log⇤(h, g; ⌧(h)) � 1

2
↵B for all g 6= h.

14

Proof. Let �̃ = (a1, a2, ...) be the sequence after the boosting step, so a1 = ... = a↵, a↵+1 = ... =
a2↵, so on so forth. Write Zi = Z(h, g; ai), then for any t � 1, it holds log⇤(h, g; t) =

Pt
i=1

Zi.
By the definition of cover time,

P⌧(h)
i=1

d(h, g; ai) =
P⌧(h)

i=1
E(Zi) � ↵B. Thus,

Ph


log⇤

�
h, g; ⌧(h)

�
<

1

2
↵B

�
= Ph

2

4
⌧(h)X

i=1

Zi <
1

2
↵B

3

5

 Ph

2

4

������

⌧(h)X

i=1

Zi �
⌧(h)X

i=1

E(Zi)

������
>

1

2

⌧(h)X

i=1

E(Zi)

3

5 . (2)

By Theorem 6,

Equation (2)  exp

�⌦

(↵B)

2

P⌧(h)
i=1
kZik2 2

!!
. (3)

We next show that
P⌧(h)

i=1
kZik2 2

 O(⇢2↵B). Write �i = µ(h, ai) � µ(g, ai), then by Assump-
tion 2, �2

i  C2 · d(h, g; ai). Note that kZik 2  ⇢�i, so it follows that

⌧(h)X

i=1

kZik2 2
 ⇢2

⌧(h)X

i=1

�
2

i  C2⇢
2

⌧(h)X

i=1

d(h, g; ai). (4)

Recall that � is the sequence before boosting. Write t = CT (fB
h ,�) for simplicity. By the definition

of cover time,

↵tX

i=1

d(h, g; ai) � ↵B �
↵(t�1)X

i=1

d(h, g; ai).

Note that ⌧(h) = ↵t, so

↵tX

i=1

d(h, g; ai)  2

↵(t�1)X

i=1

d(h, g; ai)  2↵B.

Combining the above with Equation (4), we have
X

i

kZik2 2
 2C2⇢

2↵B.

Substituting into Equation (3), we obtain

Ph


log⇤

�
h, g; ⌧(h)

�
<

1

2
↵B

�
 e�⌦(⇢�2↵B).

The proof completes by applying the union bound over all g 2 H\{h}.

By a similar approach we may also show that it is unlikely that the algorithm terminates at a wrong
time stamp before scanning the correct one.

Lemma 2. Let B > 0. If h 2 H is the true hypothesis, then for any g 6= h, it holds that
log⇤(g, h; ⌧(g)) < 1

2
↵B with probability 1� e�⌦(⇢�2↵B).

We are able to bound the error of the RnB algorithm by combining Lemma 1 and Lemma 2.

Proposition 3. For any true hypothesis h 2 H , algorithm RnB(B,↵) returns h with probability at
least 1 � |H|e�⌦(⇢�2↵B). In particular, if the outcome distribution Dµ is Ber(µ), then ⇢ = O(1)

and the above probability becomes 1� |H|e�⌦(↵B).

15

B.2 Cost Analysis

Recall that in Section 4, only Step (C) remains to be shown, which we formally state below.
Proposition 4. Let (�, T) be a �-PAC-error partially adaptive algorithm. For any B  log ��1 and
h 2 H , it holds that Eh[T] � ⌦

�
s · CT(fB

h ,�)
�
.

We fix an arbitrary h 2 H and write CTh := CT(fB
h ,�), where we recall that � is the sequence of

actions before boosting (do not confuse with �̃). To relate the stopping time T (under h) to the cover
time of the submodular function for h in �, we introduce a linear program. We will show that for
suitable choice of d, we have

• LP ⇤
(d,CTh � 1)  Eh[T], and

• LP ⇤
(d,CTh � 1) � ⌦(s · CTh).

Hence proving Step (C) in the high-level proof sketched in Section 4.

We now specify our choice of d. For any d1, ..., dN 2 R+, write dt :=
Pt

i=1
di for any t and

consider

LP (d, t) : min
z

NX

i=1

i · zi

s.t.
NX

i=1

dizi � dt,

NX

i=1

zi = 1,

z � 0.

We will consider the following choice of di’s. Suppose (�, T) has �-PAC-error where � 2 (0, 1/4].
For any pair of hypotheses h, g and any set of actions S, define

KB
h,g(S) = min

(
1, B�1

X

a2S

d(h, g; a)

)
.

Hence,

fB
h (S) =

1

|H|� 1

X

g2H\{h}

KB
h,g(S).

Fix any B  log ��1 and let g be the last hypothesis separated from h, i.e.,

g := arg max
h02H\{h}

�
CT(KB

h,h0 ,�)

.

Then by the definition of cover time, we have CTh = CT(fB
h ,�) = CT(KB

hg,�). Without loss of
generality,6 we assume that all actions a satisfy µ(h, a) = µ(g, a) in �̃ = (a1, .., aN). We choose
the LP parameters to be di = d(h, g, ai) for i 2 [N].

Outline. We will first show that the LP optimum is upper bounded by the expected termination time
T (Proposition 5). We then lower bound it in terms of CTh (Proposition 6).
Proposition 5. Suppose (�, T) has �-PAC-error for some 0 < �  1

4
. Let zi = Ph[T = i] for

i 2 [N], then z = (z1, ..., zN) is feasible to LP (d,CTh � 1).

Note that Eh(T) is simply the objective value of z, thus Proposition 5 immediately implies:
Corollary 1. Eh(T) � LP ⇤

(d,CTh � 1).

We next lower bound the expected log-likelihood when the algorithm stops.

6If there is some action a with d(h, g; a) = 0, then we simply remove it. This will not change the argument.

16

Lemma 3. [36] Let A be any algorithm (not necessarily partially adaptive) for the ASHT problem.
Let h, g 2 H be any pair of distinct hypotheses and O be the random output of A. Define the error
probabilities Phh = Ph(O = h) and Phg = Ph(O = g). Let ⇤ be the likelihood ratio between h and
g when A terminates. Then,

Eh(log⇤) � Phh log
Phh

Phg
+ (1� Phh) log

1� Phh

1� Phg
.

Proof. Let E be the event that the output is h. Then by Jensen’s inequality, we have

Eh(log⇤T |E) � � logEh

�
⇤
�1|E

�
= � log

Eh

�
(E) · ⇤�1

�

Ph(E)
. (5)

Recall that an algorithm can be viewed as a decision tree in the following way: each internal node
is labeled with an action, and each edge below it corresponds to a possible outcome; each leaf
corresponds to termination and is labeled with a hypothesis corresponding to the output. Write

P
x

as the summation over all leaves and let ph(x) (resp. pg(x)) be the probability that the algorithm
terminates in leaf x under h (resp. g), then,

Eh

�
(E) · ⇤�1

�
=

X

x

(x 2 E) · ⇤�1
(x) · ph(x)

=

X

x

(x 2 E) · pg(x)
ph(x)

ph(x)

=

X

x

(x 2 E) · ph(x)

= Eh((x 2 E)) = Phg.

Combining the above with Equation (5), we obtain

Eh(log⇤|E) � log
Phh

Phg
.

Similarly, we have Eh

�
log⇤|Ē

�
� log

1�Phh
1�Phg

, where Ē is the event that the output is not h. The
proof follows immediately by combining these two inequalities.

To show Proposition 5, we need a standard concept—stopping time.
Definition 7 (Stopping time [33]). Let {Xi} be a sequence of random variables and T be an integer-
valued random variable. If for any integer t, the event {T = t} is independent with Xt+1, Xt+2, ...,
then T is called a stopping time for Xi’s.
Lemma 4 (Wald’s Identity). Let {Xi}i2N be independent random variables with means {µi}i2N,
and let T be a stopping time w.r.t. Xi’s. Then, E

⇣PT
i=1

Xi

⌘
= E

⇣PT
i=1

µi

⌘
.

Proof of Proposition 5. One may verify that the lower bound in Lemma 3 is increasing w.r.t Phh

and decreasing w.r.t Phg . Therefore, since A has �-PAC-error, by Lemma 3 it holds that

Eh (log⇤(h, g;T)) � (1� �) log
1� �

�
+ � log

�

1� �
� 1

2
log

1

�
� B � dCTh�1.

By Lemma 4,
NX

i=1

dizi =
NX

i=1

di · Ph(T = i) = Eh (log⇤(h, g;T)) .

The proof follows by combining the above.

So far we have upper bounded LP ⇤
(d,CTh� 1) using Eh(T). To complete the proof, we next lower

bound LP ⇤
(d,CTh � 1) by ⌦(s · CTh).

Lemma 5. LP ⇤
= minit<j LP ⇤

ij where LP ⇤
ij = i+ (j � i) d

t�di

dj�di .

17

Proof. Observe that for any optimal solution, the inequality constraint must be tight. By linear
algebra, we deduce that any basic feasible solution has support size two.

Consider the solutions whose only nonzero entries are i, j. Then, LP (d, t) becomes

LPij(d, t) : min
zi,zj

izi + jzj

s.t. dizi + djzj = dt,

zi + zj = 1,

z � 0.

Note that since di < dj , LPi,j(d, t) admits exactly one feasible solution, whose objective value can
be easily verified to be LP ⇤

ij := i+ (j � i) d
t�di

dj�di .

Now we are ready to lower bound the LP optimum.
Proposition 6. For any d = (d1, ..., dN) 2 RN and t 2 N, it holds that LP ⇤

(d, t) � t·min{di}i2[N].

Proof. By Lemma 5, it suffices to show that LP ⇤
ij � dt for any i  t < j. Since dk < k for any

integer k,
(j � dt)(dt � di) � (dj � dt)(dt � i).

Rearranging, the above becomes

i(dj � di) + (j � i)(dt � di) � dt(dj � di),

i.e.,

i+ (j � i)
dt � di

dj � di
� dt.

Note that the LHS is exactly LP ⇤
ij , thus LP ⇤

(d, t) � dt � t ·min{di}i2[N] for any t 2 N.

It immediately follows that LP ⇤
(d, t) � st, completing the proof of Proposition 1.

C Proof of Proposition 2

We first formally define a decision tree, not only for mathematical rigor but more importantly, for the
sake of introducing a novel variant of ODT. Recall that ⌦ is the space of the test outcomes, which we
assume to be discrete for simplicity.
Definition 8 (Decision Trees). A decision tree is a rooted tree, each of whose interior (i.e., non-leaf)
node v is associated with a state (Av, Tv), where Tv is a test and Av ✓ H . Each interior node has
|⌦| children, each of whose edge to v is labeled with some outcome. Moreover, for any interior node
v, the set of alive hypotheses Av is the set of hypotheses consistent with the outcomes on the edges
of the path from the root to v. A node ` is a leaf if |A`| = 1. The decision tree terminates and outputs
the only alive hypothesis when it reaches a leaf.

To relate OPTFA
� to the optimum of a suitable ODT instance, we introduce a novel variant of ODT.

As opposed to the ordinary ODT where the output needs to be correct with probability 1, in the
following variant, we consider decision trees which may err sometimes:
Definition 9 (Incomplete Decision Tree). An incomplete decision tree is a decision tree whose leaves
`’s are associated with states (A`, p`)’s, where A` represents the subset of hypotheses consistent with
all outcomes so far, and p` is a distribution over A`. A hypothesis is randomly drawn from p` and is
returned as the identified hypothesis (possibly wrong).

Now we already to introduce chance-constrained ODT problem (CC-ODT). Given an error budget
� > 0, we aim to find the minimal cost decision tree whose error is within �. There are two natural
ways to interpret “error”, which both will be considered in Appendices C and D. In the first one, we
require the error probability under any hypothesis to be lower than the given error budget. In the
other one, we only require the expected error probability over all hypotheses to be within the budget.
Intuitively, the second version allows for more flexibility since the errors under different hypotheses

18

may differ significantly, rendering the analysis more challenging since we do not know how the error
budget is allocated to each hypothesis. We formalize these two versions below. Let O be the random
outcome returned by the tree.

CC-ODT with PAC-Error. An incomplete decision tree is �-PAC-Valid if, for any true hypothesis
h, it returns h with probability at least 1� �, formally,

Ph(O 6= h)  �, 8h 2 H.

CC-ODT with Total-Error. An incomplete decision tree is �-Total-Valid if, for the total error
probability is at most �, formally,

X

h2H

⇡(h) · Ph(O 6= h)  �,

where ⇡ is the prior distribution. The goal in both versions is to find an incomplete decision tree with
minimal expected cost, subject to the corresponding error constraint.

For the proof of Proposition 2, consider the PAC-error version of CC-ODT. It turns out that this
version of CC-ODT is indeed quite trivial (unlike the total-error version): below we show that under
PAC-error, CC-ODT is almost equivalent to the ordinary ODT problem.
Lemma 6. Suppose � 2 (0, 1

2
), and T is a �-PAC-valid decision tree. Then, T must also be 0-valid.

Proof. It suffices to show that there is no incomplete node in T. For the sake of contradiction,
assume T has an incomplete node ` with state (A`, p`). By the definition of incomplete node,
|A`| � 2, so there is an h 2 A` with p`(h)  1

2
. Now suppose h is the true hypothesis. Since each

hypothesis traces a unique path in any decision tree, regardless of whether or not it is incomplete,
h will reach node ` with probability 1. Then at `, the decision tree returns h with probability
p`(h) = 1�

P
g2A`:g 6=h p`(g) 

1

2
, and hence Ph[O 6= h] � 1

2
, reaching a contradiction.

For the reader’s convenience, we recall that an ASHT instance I is associated with an ODT instance
IODT , defined as follows. Each action corresponds to a test Ta : H ! ⌦a with Ta(h) = µ(h, a),
where ⌦a = {µ(h, a) : h 2 H}, and the cost Ta is c(a) = ds(a)�1

log(|H|/�)e. Denote ODT ⇤
� the

minimal cost of any �-PAC-valid decision tree for IODT . Then we immediately obtain the following
from the Lemma 6.
Corollary 2. If � 2 (0, 1

2
), then ODT ⇤

0
= ODT ⇤

� .

Now we are able to complete the proof of the main proposition.

Proof of Proposition 2. Given a �-PAC-error algorithm A, we show how to construct a �-PAC-valid
decision tree T as follows. View A as a decision tree (discretize the outcome space if it is continuous).
Replace each action a in A with the test Ta. Note that the cost of Ta is s(a)�1

log(|H|/�) 
s�1

log(|H|/�). Therefore by Lemma 6,

ODT ⇤
0
= ODT ⇤

�  c(T)  s�1
log

|H|
�

·OPTFA
� .

D Total Error Version

In the last section we defined the total-error version of the CC-ODT problem. The total error version
of the ASHT problem can be defined analogously, so we do not repeat it here. We say an algorithm is
said to be �-total-error if the total probability (averaged with respect to the prior ⇡) of erroneously
identified a wrong hypothesis is at most �. The following is our main result for the total-error version.

Theorem 3. Given an s-separated instance with uniform prior ⇡ and any � 2 (0, 1/4), for both
the partially and fully adaptive versions, there exist polynomial-time �-total-error algorithms with
expected cost O

�
s�1

�
1 + |H|�2

�
log

�
|H|��1

�
log |H|

�
times the optimum.

In particular, if �  O(|H|�1/2
), then the above is polylog-approximation for fixed s.

19

We will first prove Theorem 3 for the fully adaptive version, and then show how the same proof works
for the partially adaptive version. Unlike the PAC-error version where CC-ODT is almost equivalent
to ODT, in the total-error version their optima can differ by a ⌦(|H|) factor. We construct a sequence
of ODT instances In, where n 2 Z+, with ODT ⇤

� (In)/ODT ⇤
0
(In) = O(

1

n). Suppose there are
n+ 2 hypotheses h1, ..., hn and g, h, with ⇡(g) = ⇡(h) = 0.49 and ⇡(hi) =

1

50n for i = 1, ..., 50.
Each (binary) test partitions [n+2] into a singleton and its complement. Consider error budget � =

1

4
,

then for each n we have ODT ⇤
� (In) = 1. In fact, we may simply perform a test to separate g and h,

and then return the one (out of g and h) that is consistent with the outcome. The total error of this
algorithm is 1/50 < �. On the other hand, ODT ⇤

0
(In) = n+ 1.

However, for uniform prior, this gap is bounded:
Proposition 7. Suppose the prior ⇡ is uniform. Then, for any � 2 (0, 1

4
), it holds

ODT ⇤
0

�
1 +O(|H|�2)

�
·ODT ⇤

� .

To show the above, we need the following building block.
Lemma 7. Suppose the prior ⇡ is uniform. Then, for any � 2 [0, 1

4
), the total prior probability

density on the incomplete nodes is bounded by
P
` inc. ⇡(A`)  2�.

Proof. Let ` be an incomplete node with state (A`, p`) and write p = p` for simplicity. Then, the
error probability contributed by ` is

X

h2A`

⇡(h) · (1� p(h)) =
X

h2A`

⇡(h)�
X

h2A`

⇡(h) · p(h)

= ⇡(A`)�
1

n

X

h2A`

p(h)

=
|A`|
n
� 1

n
� 1

2
⇡(A`),

where the last inequality follows since |A`| � 2. By the definition of �-PAC-error, it follows that

� �
X

` inc.

X

h2A`

⇡(h) · (1� p(h)) � 1

2

X

` inc.

⇡(A`),

i.e.,
P
` inc. ⇡(A`)  2�.

Proof of Proposition 7. It suffices to show how to convert a decision tree T with �-total-error to
one with 0-total-error, without increasing the cost by too much. Consider each incomplete node
A` in T. We will replace A` with a (small) decision tree that uniquely identifies a hypothesis in
A`. Consider any distinct hypotheses g, h 2 A`. Then by Assumption 2, there is an action a 2 A
with d(g, h; a) � s. So if we select Ta, then by Hoeffding bound (Theorem 6), we have that with
high probability at least one of g and h will be eliminated, and the number of alive hypotheses
in A` reduces by at least 1. Thus, by repeating this procedure iteratively for at most |A`| � 1

times, we can identify a unique hypothesis. Since each test Ta corresponds to selecting a for
c(a) = s(a)�1

log(|H|/�)  s�1
log(|H|/�) times in a row, this procedure increases the total cost

by
P
` inc. ⇡(A`) · (|A`| · s�1

log(|H|/�). Therefore,

ODT ⇤
0
 ODT ⇤

� +

X

` inc.

⇡(A`)|A`|s�1
log

|H|
�

= ODT ⇤
� +

X

` inc.

⇡(A`)|H|⇡(A`) · s�1
log

|H|
�

= ODT ⇤
� +O

�
s�1|H| log |H|

�
·
X

` inc.

⇡(A`)
2
�
. (6)

Since
P
` inc. ⇡(A`)  2� and each ⇡(A`)’s is non-negative, we have

P
` inc. ⇡(A`)

2 �P
` inc. ⇡(A`)

�2  4�2. Further, by Pinsker’s inequality, we have ODT ⇤
� = ⌦(s�1

log
|H|
�).

Combining these two facts with Equation (6), we obtain ODT ⇤
0

�
1 +O(|H|�2)

�
·ODT ⇤

� .

The following lemma can be proved using the same idea of the proof of Proposition 2.

20

Algorithm 3 Partially Adaptive Algorithm in the COSMIC Experiment
1: Parameters: Coverage saturation level B > 0 and maximum sequence length ⌘ > 0.
2: Input: ASHT instance (H,A,⇡, µ)
3: Output: actions sequence �
4: Initialize: � ; % Store the selected of actions
5: for t = 1, 2, ..., ⌘ do % Rank: Compute a sequence of actions of length ⌘
6: S {�(1), ...,�(t� 1)}. % Actions selected so far
7: for a 2 A do, % Compute scores for each action

Score(a;S)
X

h:fB
h (S)<1

⇡(h)
fB
h (S [{a})� fB

h (S)

1� fB
h (S)

.

8: end for
9: �(t) argmax{Score(a;S) : a 2 A}. % Select the greediest action and break ties

according the heuristic described in Algorithm 4
10: end for
11: Let i be the largest index for which the an action appears the first time in sequence �, then we

return the sequence (�(1),,�(i)).

Lemma 8. ODT ⇤
�  O

�
s�1

log(|H|/�)
�
OPTFA

� .

Now we are ready to show Theorem 3.

GRE  O(log |H|) ·ODT ⇤
0

(Theorem 5)

 O
�
(1 +O(|H|�2)

�
log |H|) ·ODT ⇤

� (Lemma 7)

 O
�
(1 +O(|H|�2)

�
s�1

log
2 |H|

�
log |H|) ·OPTFA

� . (Lemma 8)

The above proof can be adapted to the partially adaptive version straightforwardly as follows.
Observing that partially adaptive algorithms can be viewed as a special case of the fully adaptive,
we can define ODT ⇤

0,PA and ODT ⇤
�,PA (analogous to ODT ⇤

0
and ODT ⇤

�) for the partially adaptive
version, as the optimal cost of any partially adaptive decision tree with 0 or � error. By replacing
ODT ⇤

� and ODT ⇤
0

with ODT ⇤
0,PA and ODT ⇤

�,PA, one may immediatly verify that inequalities in
Lemma 7 and 8 hold for the partially adaptive version. Furthermore, the first inequality above can
be established for the partially adaptive version by replacing Theorem 5 with Theorem 4, hence
completing the proof.

E Partially Adaptive Algorithm in Experiments

In our synthetic experiments, we implement Algorithm 1 described in Section 4 exactly, and set the
boosting factor, ↵, to be 1. In our real-world experiments, we consider a variant of our algorithm
where the boosting intensity is now built-in in the algorithm, and breaking ties according to some
heuristic. Algorithm 3 describes our modified algorithm. In particular, we consider the amount of
boosting as a built-in feature of the algorithm. We first generate a sequence of actions of length ⌘
for some large ⌘ value (with replacement) and then truncate the sequence to the minimum length to
include all unique actions that have appeared in the sequence. When all actions in sequence � has
performed and we did not reach the target accuracy, then we repeat the entire sequence again. Our
partially adaptive algorithm on the COSMIC data was generated by initializing ⌘ to be 800. Across
all accuracy levels, the maximum truncated sequence length is 97.

F Fully Adaptive Algorithm in Experiments

Similar to NJ’s algorithm, we maintain a probability distribution, ⇢, over the set of hypotheses to
indicate the likelihood of each hypothesis being the true hypothesis h⇤. A hypothesis is considered to
be ruled out at each step if the probability of that hypothesis is below a threshold in ⇢. Throughout
our experiments, we set this threshold to be �/|H|. At each step, after an action is chosen with certain
repetitions and observation(s) is (are) revealed, we update ⇢ according to the realizations that we

21

observed. Thus, under this setup, a hypothesis that was considered to be ruled out in the previous
steps (due to “bad luck”) could potentially become alive again.

At each iteration, for each action a 2 A and k 2 N, we define Ta,k to be the meta-test that repeats
action a for k times consecutively, and we define its cost to be c(Ta,k) = kca. By Chernoff bound,
with k i.i.d. samples, we may construct a confidence interval of width ⇠ k�1/2. This motivates us to
rule out the following hypotheses when Ta,k is performed. Let µ̄ be the observed mean outcome of
these k samples. We define the elimination set to be

Eµ̄(Ta,k) := {h : |µ(h, a)� µ̄| � Ck�1/2},

where C is set to be 1/2 throughout our experiments. To define greedy, we need to formalize the
notion of bang-per-buck. Suppose Halive is the current set of alive hypotheses. We define the score of
a test as the number of alive hypotheses ruled out in the worst-case over all possible mean outcomes
µ̄. Formally, the score of Ta,k w.r.t mean outcome µ̄ is

Scoreµ̄(Ta,k) = Scoreµ̄(Ta,k;Halive) =
|E(Ta,k; µ̄) \Halive|

c(Ta,k)
,

and define its worst-case score to be

Score(Ta,k) = min{Scoreµ̄(Ta,k) : µ̄ 2 {0, 1/k, ..., 1}}.

Our greedy policy simply selects the test T with the highest score, formally, select

Ta,k = argmax{Score(T) : k  kmax, a 2 A}.

In the synthetic experiments, we set kmax = 5. In the real-world experiments, we consider the cases
where k 2 {15, 20, 25, 30} (with kmax = 30).

If several actions have the same greedy score, then we choose the action a⇤ whose sum of the KL
divergence of pairs of µ(h, a⇤) is the largest, and breaking ties arbitrarily.

If no action can further distinguish any hypotheses in the alive set, then we set the boosting factor to
be 1 and use the above heuristic to choose the action to perform. The algorithm is formally stated in
Algorithm 4.

22

Algorithm 4 Adaptive experiments: FA(kmax, �)
1: Parameters: maximum boosting factor kmax > 0 and convergence threshold � > 0

2: Input: ASHT instance (H,A,⇡, µ), current posterior about the true hypothesis vector ⇢
3: Output: the test Ta,k to perform in the next iteration
4: Let Halive be the set of hypotheses i whose posterior probability ⇢i is above �/|H|.
5: for k = 1, 2, ..., kmax do
6: For each a 2 eA define:

Scoreµ̄(Ta,k) = Scoreµ̄(Ta,k;Halive) =
|E(Ta,k; µ̄) \Halive|

c(Ta,k)
,

where Eµ̄(Ta,k) := {h : |µ(h, a) � µ̄| � Ck�1/2}, and c(Ta,k) = kca. We define the
worst-case score of a test to be:

Score(Ta,k) = min{Scoreµ̄(Ta,k) : µ̄ 2 {0, 1/k, ..., 1}}.

7: end for
8: Compute greediest action

G = argmax{Score(T) : k  kmax, a 2 A}.

9: if the Score of each test in G equals to 0, i.e, no test can further distinguish between the alive
hypotheses under kmax then

10: we choose the action a⇤ such that a⇤ = argmax
P

h,g2Halive
KL(µ(h, a), µ(g, a)), breaking

ties randomly, and return k = 1.
11: else
12: if G is a singleton, then we return G. Else, we choose the action a⇤ such that a⇤ =

argmaxG
P

h,g2Halive
KL(µ(h, a), µ(g, a)), and breaking ties randomly.

13: end if

23

	Introduction
	Model
	Our Approximation Guarantees
	Partially Adaptive Algorithm
	Fully Adaptive Algorithm
	Experiments
	Synthetic Experiments
	Real-World Experiments

	Conclusions
	Prerequisite: Subgaussian Random Variables
	Proof of Proposition 1
	Error Analysis
	Cost Analysis

	Proof of Proposition 2
	Total Error Version
	Partially Adaptive Algorithm in Experiments
	Fully Adaptive Algorithm in Experiments

