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7 HYPERPARAMETERS AND ABLATION STUDIES

In this section, we report the hyperparameters of LASIUM-MAML in Table 5 and LASIUM-ProtoNets
in Table 6 for Omniglot, CelebA, CelebA attributes and Mini-ImageNet datasets. Our source code is
also available on Github 2.

Table 5: LASIUM-MAML hyperparameters summary
Hyperparameter Omniglot CelebA CelebA attributes Mini-ImageNet

Number of classes 5 5 2 5
Input size 28× 28× 1 84× 84× 3 84× 84× 3 84× 84× 3
Inner learning rate 0.4 0.05 0.05 0.05
Meta learning rate 0.001 0.001 0.001 0.001
Meta-batch size 4 4 4 4
K(tr) meta-learning 1 1 5 1
K(val) meta-learning 5 5 5 5
K(val) evaluation 15 15 5 15
Meta-adaptation steps 5 5 5 5
Evaluation adaptation steps 50 50 50 50

Table 6: LASIUM-ProtoNets hyperparameters summary
Hyperparameter Omniglot CelebA CelebA attributes Mini-ImageNet

Number of classes 5 5 2 5
Input size 28× 28× 1 84× 84× 3 84× 84× 3 84× 84× 3
Meta learning rate 0.001 0.001 0.001 0.001
Meta-batch size 4 4 4 4
K(tr) meta-learning 1 1 5 1
K(val) meta-learning 5 5 5 5
K(val) evaluation 15 15 5 15

We also report the ablation studies on different strategies for task construction in Table 7. We run all
the algorithm for just 1000 iterations and compared between them. We also apply a small translation
to Omniglot images.

Table 7: Accuracy of different proposed strategies on Omniglot. For the sake of comparison, we
stop meta-learning after 1000 iterations. Results are reported on 1000 tasks with a 95% confidence
interval.

Sampling Strategy Hyperparameters GAN-MAML VAE-MAML GAN-Proto VAE-Proto

LASIUM-N σ2=0.5 77.16±0.65 70.41± 0.71 62.16± 0.79 61.57± 0.80
LASIUM-N σ2=1.0 71.10± 0.70 68.26± 0.71 60.95± 0.78 62.17± 0.80
LASIUM-N σ2=2.0 63.18± 0.71 65.18± 0.71 59.81± 0.78 64.88±0.78

LASIUM-RO α=0.2 77.62±0.64 75.02±0.66 62.24±0.79 62.17± 0.80
LASIUM-RO α=0.4 75.79±0.65 71.31±0.70 64.19±0.76 62.20±0.80

LASIUM-OC α=0.2 74.70± 0.68 74.98±0.67 61.79± 0.79 62.16± 0.78
LASIUM-OC α=0.4 73.40± 0.68 68.79± 0.73 64.59±0.76 63.08±0.79

Besides, we perform a hyperparameter search on CelebA attributes benchmark. Table 8 demonstrates
the results for our experiments. We see that searching for hyperparameters for CelebA is almost as
easy as doing the same thing for Omniglot. LASIUM-N with σ2 = 0.25 outperforms state-of-the-art
in this benchmark. We also see a bad performance in the case of LASIUM-OC, which we expected
as the number of classes in this benchmark’s tasks is N = 2. Thus samples generated during
meta-learning are limited to only instances on the line connecting two anchor latent vectors. It is not
the case for LASIUM-N and LASIUM-RO since we can sample latent codes in the neighborhood or
any direction from anchor points in the latent space.

2https://github.com/siavash-khodadadeh/MetaLearning-TF2.0
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Table 8: Accuracy of different proposed strategies on CelebA attributes task for GAN with 2-way,
5-shot tasks with K(val) = 5. The results are averaged over 1000 downstream tasks and ± indicates
95% confidence interval.

Sampling Strategy Hyperparameters GAN-MAML GAN-Proto

LASIUM-N σ2=0.1 71.83± 1.08 62.99± 1.14
LASIUM-N σ2=0.25 75.07± 1.08 70.49± 1.14
LASIUM-N σ2=0.5 71.41± 1.13 69.96± 1.15
LASIUM-N σ2=1.0 60.37± 1.01 69.98± 1.16
LASIUM-N σ2=2.0 50.00± 0.00 70.33± 1.14

LASIUM-RO α=0.2 62.06± 1.06 62.73± 1.18
LASIUM-RO α=0.4 67.57± 1.11 68.19± 1.12
LASIUM-RO α=0.5 71.04± 1.03 68.94± 1.12

LASIUM-OC α=0.25 59.69± 1.11 53.67± 1.02
LASIUM-OC α=0.5 60.25± 1.08 56.05± 1.08

7.1 NEURAL NETWORK ARCHITECTURES

For Omniglot, our VAE model is constructed symmetrically. The encoder is composed of four
convolutional blocks, with batch normalization and ReLU activation following each of them. A
dense layer is connected to the end such that given an input image of shape 28 × 28, the encoder
produces a latent vector of length 20. On the other side, the decoder starts from a dense layer whose
output has length 7 × 7 × 64 = 3136. It is then fed into four modules each of which consists of
a transposed convolutional layer, batch normalization and the ReLU non-linearity. We use 3 × 3
kernels, 64 channels and a stride of 2 for all the convolutional and transposed convolutional layers.
Hence, the generated image has the size of 28× 28 that is identical to the input images. This VAE
model is trained for 1000 epochs with a learning rate of 0.001.

Our GAN generator gets an input of size l which is the dimensionality of the latent space and feeds it
into a dense layer of size 7× 7× 128. After applying a Leaky ReLU with α = 0.2, we reshape the
output of dense layer to 128 channels of shape 7× 7. Then we feed it into two upsampling blocks,
where each block has a transposed convolution with 128 channels, 4× 4 kernels and 2× 2 strides.
Finally, we feed the outcome of the upsampling blocks into a convolution layer with 1 channel and a
7× 7 kernel with sigmoid activaiton. The discriminator takes a 28× 28× 1 input and feeds it into
three 3×3 convolution layers with 64, 128 and 128 channels and 2×2 strides. We apply leaky ReLU
activation after each convolution layer with α = 0.2. Finally we apply a global 2D max pooling layer
and feed it into a dense layer with 1 neuron to classify the output as real or fake. We use the same
loss function for training as MSGAN (aka Miss-GAN) described in Mao et al. (2019).

For the CelebA GAN experiments, we use the pre-trained network architecture, progressive growing
of GANs (ProGAN), described in Karras et al. (2018). For VAE, we use the same architecture as
we described for Omniglot VAE with one more convolution block and more channels to handle the
larger input size of 84× 84× 3. The exact architecture is described in the supplemental material.

7.2 IMPACT OF GAN TRAINING ON LASIUM

Do we need a generative model that generates very high-quality images from data or can a premature
trained GAN also work? We performed an ablation study to evaluate the impact of GAN training on
LASIUM. First, we trained a generative network on Omniglot dataset with adversarial training for
500 epochs and saved the corresponding weights at every epoch. Then we trained LASIUM with
various generative networks at different epochs. For the sake of comparison, we stopped LASIUM
after 1000 iterations.

Figure 5 demonstrates the impact of GAN training on LASIUM. We visualize an image generated
with the same exact latent code after different epochs. We can see that eventually, this latent code
result in generating character “R” (after epoch 400 and 500). We see that GAN stabilizes after 400
epochs while LASIUM stabilizes sooner around epoch 200. Nevertheless, the impact of training
GAN for at least 50 epochs is correlated with LASIUM performance.
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Figure 5: The impact of GAN training on LASIUM accuracy. The blue line shows test accuracy after
1000 iterations of LASIUM-N training with a 95% confidence interval on 1000 one-shot tasks with
K(val) = 15. The images generated by GAN are shown at epochs 0, 10, 30, 50, 100, 200, 300, 400,
and 500. All of the images are generated from the same latent vector. The red line shows the training
from scratch baseline.

7.3 ABLATION STUDY ON IMPACT OF ε ON LASIUM

In this section, we evaluate the accuracy of LASIUM with respect to the value of ε. For the sake of
comparison, we consider LASIUM-N with σ2 = 0.5 and stop the training after 1000 iterations on
Omniglot. The results are reported on the same 1000 one-shot tasks with K(val) = 15 in Table 9.
Furthermore, the last column shows the number of times resampling occurred since at least two of the
initial sampled latent codes were in a distance smaller than ε from each other. We found that (within
reasonable bounds) the choice of this hyperparameter has a small but not negligible impact on the
performance of the algorithm.

7.4 TRAINING LASIUM ON FUNGI

We also tried LASIUM on Fungi dataset. We report LASIUM-N-GAN-MAML accuracy over 1000
downstream tasks generated randomly from test dataset following Meta-dataset evaluation protocol
proposed by Triantafillou et al. (2020). For the choice of generative network, we used state-of-the-art
StyleGAN-v2 by Karras et al. (2020), and we trained it on Fungi images. Figure 6 shows some of
the examples generated by StyleGAN-v2. Table 10 shows the results on LASIUM and some other
relevant algorithms.
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Table 9: Accuracy of LASIUM-N with σ2 = 0.5 on Omniglot dataset with respect to different values
of ε. ± indicates 95% confidence interval.

ε Accuracy (%) # Resampling Task

0.0 77.27± 0.62 0
0.1 77.34± 0.62 0
1 77.21± 0.62 0
10.0 77.54± 0.62 0
100.0 77.08± 0.63 0
125.0 79.51± 0.61 0
187.5 78.87± 0.60 395
218.75 77.95± 0.62 6012
234.375 77.15± 0.63 27432
242.1875 77.15± 0.64 61118
250.0 78.49± 0.61 155499
253.15625 78.48± 0.62 238714
256.3125 78.05± 0.62 378742
265.625 78.56± 0.61 1472860
281.25 77.73± 0.63 25936957
312.5 − All
375 − All
500.0 − All
1000.0 − All

... ...

Train Validation

Figure 6: Meta-training tasks for Fungi constructed by LASIUM-N with σ2 = 0.25

Table 10: Accuracy of 5-way 1-shot learning on the Fungi dataset (part of the proposed Meta-dataset
by Triantafillou et al. (2020)). For each system we indicate the dataset on which the meta-training
phase was performed. The results for supervised first-order MAML are from Triantafillou et al.
(2020). LASIUM-N was run with σ2 = 0.25 and used the StyleGAN-v2 trained on the unsupervised
version of the Fungi dataset, as discussed in the text.

Method Dataset Accuracy (%)

Training from scratch - 26.10± 0.42
fo-UMTRA Unsupervised Fungi 28.27± 0.46

LASIUM-N-GAN-fo-MAML Unsupervised Fungi 29.43± 0.49
LASIUM-N-GAN-MAML Unsupervised Fungi 31.29± 0.52

fo-MAML Supervised Imagenet 32.10± 1.10
fo-MAML Supervised Meta-dataset 33.54± 1.11
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