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A. Visualization of Decomposed Features 

To better understand and validate the discriminativeness of the positive and the negative features, 
similar to Figure 4 in our manuscript, here we show more visualization results of the spatial maps F 
with channels modulated by wcls (corresponding to positive features) and −wcls (corresponding to 
negative features) following [10, 15]. We can observe that the positive information is more related to 
the foreground objects that provide the discriminative information for the classifcation task, while 
the negative one is more in connection with the non-discriminative background regions. 

Figure 1: Visualization of task-discriminative and task-irrelevant features. The images are sampled 
from different domains of Offce-Home. 
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Figure 2: Pipelines of two representative domain alignment based UDA methods. (a) DANNP [12]. 
(b) HDA [2]. Lheu denotes a heuristic loss which is implemented by L1−norm loss [2]. 

Figure 3: Error bars of ToAlign on top of DANNP and HDA on Offce-Home. 

B. Experiments 

B.1 More Implementation Details 

We use two domain alignment based methods as our baselines: 1) DANNP [12] is an improved 
variant of DANN [4], where the domain discrimination D in DANNP is conditioned on the predicted 
class probabilities instead of extracted features as illustrated in Figure 2 (a). 2) HDA [2] draws 
inspiration from heuristic search and incorporates the domain-specifc representations as heuristics to 
help learn domain-invariant ones. Figure 2 (b) shows its architecture. 

All experimental results are obtained by running three times with different seeds. To evaluate the 
stableness of our ToAlign, we visualize error bars of our schemes DANNP+ToAlign and HDA+ToAlign 
on Offce-Home in Figure 3, where we also present the error bars for the two baseline schemes 
DANNP and HDA. The variances between our ToAlign and the corresponding baselines are close 
(0.41 vs. 0.40 for DANNP and 0.40 vs. 0.35 for HDA) and our ToAlign dose not introduce much 
additional unstability. 

B.2 Experimental Results of SUDA 

As referred to in our main manuscript, the experimental results on Visda-2017 for SUDA are presented 
in Appendix. Here, Table 1 shows the results, where our ToAlign introduces 0.9% improvements over 
the baseline HDA. 

B.3 Feature Visualization 

We visualize more results of the feature response maps on the target test images in Figure 4, as a 
supplement to Figure 5 in our main manuscript. Baseline sometimes focuses on the background 
features which are useless to the image classifcation task, since it aligns the holistic features without 
considering the discriminativeness of different channels/sub-features. Thanks to our task-oriented 
alignment, in ToAlign, the features with higher responses are in general related to task-discriminative 
features, which is more consistent with human perception. 
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Figure 4: Visualization of the feature response maps on target test images. The Category (Domain) 
information is shown on each sample. 

Method Avg. 
Source-Only [5] 

DANN(ICML’15) [4] 
CDAN(NeurIPS’18) [7] 
MDD(ICML’19) [14] 
GVB(CVPR’20) [3] 

55.3 
57.4 
70.0 
74.6 
75.3 

HDA(NeurIPS’20) [2] 
HDA+ToAlign 

74.6 
75.5 

Table 1: Classifcation accuracy (%) of the Synthetic → Real setting on Visda-2017 for SUDA using 
ResNet-50 as backbone. Note that HDA [2] does not report the result on this dataset and we obtain 
the result by running their released source code. 

We further visualize the learned source (red) and target (blue) feature representations (i.e., fs and ft) 
using t-SNE [9] for different methods in Figure 5. Figure 5 (a) shows the embedded features of the 
Source-Only method where no adaptation technique is used, where we can see that the samples are 
very scattered. In comparison, the samples for HDA [2] (cf. Figure 5 (b)) and our HDA+ToAlign (cf. 
Figure 5 (c)) form more compact clusters, where the clusters of ours are more compact and the target 
samples are located closer to the source samples than HDA. 

C. Broader Impact 

Unsupervised domain adaptation aims to obtain better performance on unlabeled target data based 
on the knowledge from labeled source data and unlabeled target data, which is an important and 
practical problem in both the academic and industry. Our proposed ToAlign emphasizes that domain 
alignment task should assist/serve classifcation task, where we perform alignment under the guidance 
of the meta-knowledge induced from classifcation task. We also provide some understanding from 
the meta-knowledge perspective, where we pass the meta-train task knowledge in a simple and 
effective way to the meta-test task. This provides some insights on how to pass meta-knowledge 
more effectively for the meta-learning based multi-task communication [6, 12, 1]. 

The major societal impact of our ToAlign arises from the UDA task itself, which aims to transfer 
knowledge from labeled source domain to unlabeled target domain, leading to heavy dependency on 
source domain. The major limitation of our ToAlign is that it is only applicable to domain adversarial 
learning based UDAs, which though dominates in the top performance methods. How to apply the 
idea to other category of methods, e.g., pseudo-label based ones [8, 13, 11], will be investigated in 
future. 

ToAlign could be further improved from two perspectives. First, other ways to derive classifcation 
meta-knowledge could be exploited, where we now use the gradients as guidance which is drawn 
inspiration from Grad-CAM [10]. Second, ToAlign could be further expanded to more challenging 
tasks like semantic segmentation and object detection. 
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Figure 5: T-sne visualization of different methods on Ar→Pr of Offce-Home. Red: source. Blue: 
target. 
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