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STOCHSYNC: STOCHASTIC DIFFUSION SYNCHRONIZA-
TION FOR IMAGE GENERATION IN ARBITRARY SPACES
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Figure 1: Assorted mesh textures and panoramas generated using StochSync, including one in the
background (environment map), which is a 360° panorama. StochSync extends the capabilities
of image diffusion models trained in square spaces to produce images in arbitrary spaces such as
cylinders, spheres, tori, and mesh surfaces.

ABSTRACT
We propose a zero-shot method for generating images in arbitrary spaces (e.g.,
a sphere for 360◦ panoramas and a mesh surface for texture) using a pretrained
image diffusion model. The zero-shot generation of various visual content using a
pretrained image diffusion model has been explored mainly in two directions. First,
Diffusion Synchronization–performing reverse diffusion processes jointly across
different projected spaces while synchronizing them in the target space–generates
high-quality outputs when enough conditioning is provided, but it struggles in
its absence. Second, Score Distillation Sampling–gradually updating the target
space data through gradient descent–results in better coherence but often lacks
detail. In this paper, we reveal for the first time the interconnection between
these two methods while highlighting their differences. To this end, we propose
StochSync, a novel approach that combines the strengths of both, enabling
effective performance with weak conditioning. Our experiments demonstrate
that StochSync provides the best performance in 360◦ panorama generation
(where image conditioning is not given), outperforming previous finetuning-based
methods, and also delivers comparable results in 3D mesh texturing (where depth
conditioning is provided) with previous methods.

1 INTRODUCTION

Diffusion models pretrained on billions of images (Rombach et al., 2022; Midjourney) have demon-
strated remarkable capabilities in various zero-shot applications. A notable example is the zero-shot
generation of diverse visual data, including arbitrary-sized images (Bar-Tal et al., 2023; Lee et al.,
2023), 3D mesh textures (Cao et al., 2023), ambiguous images (Geng et al., 2024b), and zoomed-in
images (Wang et al., 2024a; Geng et al., 2024a). This extension to other types of data is achieved
through mapping from the space in which the diffusion models are trained (referred to as the instance
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space) to the space where the new data is generated (the canonical space). For instance, while a 2D
square is the instance space for typical image diffusion models, a cylinder or a sphere serves as the
canonical space for generating 360◦ panoramic images, and a 3D mesh surface becomes the canonical
space for mesh texture generation. Examples are shown in Fig. 1. Such zero-shot generation in the
canonical space allows for the effective production of various types of data without the need for new
data collection or training a separate generative model for each data type.

There have been two main approaches to addressing this problem. The first is Diffusion Synchroniza-
tion (DS) (Bar-Tal et al., 2023; Kim et al., 2024a), which performs the reverse generative process of
diffusion models jointly across multiple instance spaces while synchronizing intermediate outputs
by mapping them to the canonical space. This approach has been successfully applied to generating
various types of data, though it has a notable limitation: synchronization often fails to converge
when strong conditioning, such as depth images, is not provided. As a result, the generated outputs
frequently exhibit visible seams and fail to smoothly combine multiple projections from the instance
spaces. This becomes a critical drawback for certain applications, such as 360◦ panoramic images,
where image conditioning may not be available.

The other line of work is Score Distillation Sampling (SDS) (Poole et al., 2023) and its vari-
ants (Lukoianov et al., 2024; Liang et al., 2024). Unlike DS, SDS does not perform the reverse
diffusion process but instead uses gradient-descent-based updates from various instance spaces to the
canonical space. SDS has been widely applied to the generation of different types of visual data and,
compared to DS, has shown greater robustness in scenarios where no image conditioning is provided.
However, its quality is less realistic, as the generation process is not based on the reverse diffusion
process, which diffusion models are specifically designed for.

In this work, we introduce a novel method named Stochastic Diffusion Synchronization, StochSync
for short, which combines the best features of the two aforementioned approaches to achieve superior
performance in unconditional canonical data generation. StochSync is based on our key insights
from analysis on the similarities and differences between DS and SDS. Specifically, we observe
that each step of SDS can be interpreted as a one-step refinement in DDIM Song et al. (2021a)
while maximizing stochasticity in the denoising. We incorporate this maximum stochasticity into
DS, resulting in better coherence across instance spaces and improved convergence. To enhance the
realism as well, we propose replacing the prediction of the clean sample at each denoising step from
Tweedie’s formula with a multi-step denoising process, and also using non-overlapping views for
the instance space while achieving synchronization over time through the overlap of views across
different time steps. Notably, from the SDS perspective, StochSync can also be seen as modifying
SDS by changing the random time sampling to a decreasing time schedule, resembling the reverse
process, and by replacing the gradient descent with fully minimizing the l2 loss.

In the experiments, we test StochSync on two applications: 360◦ panoramic image generation and
mesh texture generation. The former represents the unconditional case (except for a text prompt),
while the latter is the conditional case with a depth map as the input. For the panoramic image
generation, we demonstrate state-of-the-art performance compared to previous zero-shot (Cai et al.,
2024) and finetuning-based methods (Tang et al., 2023b; Zhang et al., 2024a). Notably, our zero-shot
method does not suffer from overfitting issues, unlike methods finetuned on small-scale panorama
datasets (Chang et al., 2017), and it avoids geometric distortions that occur with inpainting-based
methods (Cai et al., 2024). For mesh texture generation, although our method is designed to focus
on the unconditional case, it demonstrates comparable results to previous DS methods (Kim et al.,
2024a) and outperforms other prior works (Youwang et al., 2023; Zeng et al., 2024; Chen et al.,
2023a; Richardson et al., 2023).

2 RELATED WORK

In this section, we first review two approaches that generate samples in canonical space by leveraging
pretrained diffusion models trained in instance space: Diffusion Synchronization and Score Distilla-
tion Sampling. We then discuss these approaches, along with other related works, in the context of
two applications: panorama generation and 3D mesh texturing.

Diffusion Synchronization (DS). Liu et al. (2022) was among the first works to utilize DS, focusing
on compositional image generation. Subsequent works, such as (Bar-Tal et al., 2023; Lee et al., 2023),
extended DS to support image generation at arbitrary resolutions. Beyond images, DS has been
widely applied to generate textures for 3D meshes (Liu et al., 2023; Zhang et al., 2024b; Chen et al.,
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2024a), long animations (Shafir et al., 2024), and visual spectrograms (Chen et al., 2024b). Recently,
Kim et al. (2024a) provided an in-depth analysis of previous DS-based methods and introduced a
method demonstrating superior performance across diverse applications, which we will use as the
base DS method. While DS performs well under strong input conditions (e.g.,depth images), it
struggles to generate plausible data points when the input conditions are weak.

Score Distillation Sampling (SDS). DreamFusion (Poole et al., 2023) first introduced SDS to
generate 3D objects from text prompts, and several subsequent works have aimed to improve its
quality (Wang et al., 2024b; Katzir et al., 2023; Zhu et al., 2023) and running time (Huang et al.,
2023; Tang et al., 2023a). ISM (Liang et al., 2024) and SDI (Lukoianov et al., 2024) utilized DDIM
inversion to obtain noisy data points. Beyond 3D generation, SDS has been widely applied in
various fields, including image editing (Hertz et al., 2023), 3D scene editing (Koo et al., 2024; Park
et al., 2023), and mesh deformation (Yoo et al., 2024). However, SDS-based methods often produce
suboptimal samples lacking fine details compared to reverse process outputs. We also discuss the
differences between our method and recent variants of SDS in Sec. 6.

Panorama Generation. In text-conditioned panorama generation, Text2Light (Chen et al., 2022)
employed VQGAN (Esser et al., 2021) with a multi-stage pipeline. With the release of image diffusion
models trained on large-scale datasets (Rombach et al., 2022), approaches leveraging pretrained
diffusion models have gained attention. MVDiffusion (Tang et al., 2023b) and PanFusion (Zhang
et al., 2024a) finetune these pretrained models using a panoramic images dataset (Chang et al.,
2017). However, finetuning diffusion models on a small dataset risks overfitting, reducing their
generalizability. In contrast, SyncTweedies (Kim et al., 2024a) employs DS for zero-shot panorama
generation but relies on depth map conditions, which are not commonly available in practice. L-
MAGIC (Cai et al., 2024), on the other hand, adopts an inpainting diffusion model, sequentially
filling in the panoramic images. However, this iterative process cannot refine previous predictions,
leading to error accumulation and often resulting in wavy panoramas.

Mesh Texturing. 3D mesh texturing using image diffusion models has gained significant attention.
Among these approaches, Paint3D (Zeng et al., 2024) finetunes a pretrained diffusion model on a
synthetic 3D mesh dataset (Deitke et al., 2023), but this often results in unrealistic texture images due
to overfitting to the synthetic dataset. For zero-shot approaches, previous works have utilized SDS
to update the texture of 3D meshes (Metzer et al., 2023; Chen et al., 2023b; Youwang et al., 2023).
DS is also widely used for 3D mesh texturing, with previous works (Liu et al., 2023; Zhang et al.,
2024b; Kim et al., 2024a) averaging the one-step predicted clean samples across multiple denoising
processes. Another line of research explores the outpainting approach (Chen et al., 2023a; Richardson
et al., 2023), where the 3D mesh is textured iteratively, often resulting in textures with visible seams.

“Majestically rising towards the heavens, the snow-capped mountain stood.”

(a) SyncTweedies (Kim et al., 2024a) (b) SDS (Poole et al., 2023)

(c) SyncTweedies + Max σt (d) SyncTweedies + Max σt + Impr.x0|t

(e) SDI (Lukoianov et al., 2024) (f) StochSync

Figure 2: A comparison of SyncTweedies (Kim et al., 2024a), a synchronization method, SDS (Poole
et al., 2023), and StochSync which uses SyncTweedies as a base and incorporates maximum
stochasticity (Max σt), multi-step x0|t computation (Impr. x0|t), and non-overlapping view sampling
(N.O. Views), alongside others that use only a subset of these components.

3 PROBLEM DEFINITION AND OVERVIEW
We propose a method for generating data points in one space (referred to as the canonical space
Z) using a pretrained diffusion model that has been trained on another space (referred to as the
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instance space X ), where the mapping from the canonical space to the instance space is known. For
example, the canonical space could be a sphere representing 360◦ panoramas, or a 3D mesh surface
for creating mesh textures, and the instance space is a 2D square, the space for most pretrained
image diffusion models. In general, a region of the canonical space is mapped to the instance space
through a specific view. The mapping from a region of the canonical space to the instance space
through a view c is represented by the projection operation fc(z) : Zc → X , where z ∈ Zc ⊆ Z .
Our objective is to produce realistic data points in the canonical space without using any generative
model trained on samples in that space, but by leveraging pretrained diffusion models in the instance
spaces and their multiple denoising processes from different views. This approach can extend the
capabilities of pretrained diffusion models to produce diverse types of data, eliminating the need to
collect large-scale data and train separate generative models.

In the following sections, we first review the reverse process of a diffusion model (Section 4) and
two approaches, Diffusion Synchronization (DS) and Score Distillation Sampling (SDS), which
generate data points in the canonical space by leveraging pretrained diffusion models in instance
spaces (Section 5). Based on our analysis of the connections and differences between these methods,
we propose a novel approach that combines the best features of both and provides an interpretation of
the method from the perspectives of DS and SDS (Section 6).

4 DIFFUSION REVERSE PROCESS

The forward process of a diffusion model (Sohl-Dickstein et al. (2015); Ho et al. (2020); Song et al.
(2021b)) sequentially corrupts sample data using a predefined variance schedule α1, . . . , αT , where
one can sample xt at arbitrary timestep t from a clean sample x0:

xt =
√
αtx0 +

√
1− αtϵ, where ϵ ∼ N (0, I). (1)

Song et al. (2021a) propose DDIM, a diffusion reverse process generalizing DDPM Ho et al. (2020),
by defining the posterior distribution qσt

(xt−1|xt,x0) with a parameter σt determining the level of
stochasticity as follows:

qσt
(xt−1|xt,x0) = N

(
µσt

(x0,xt), σ
2
t I
)
, (2)

where µσt(x0,xt) =
√
αt−1x0 +

√
1− αt−1 − σ2

t ·
xt −

√
αtx0√

1− αt
. (3)

In the reverse process, the transitional likelihood distribution pθ (xt−1|xt) becomes the same with
the posterior distribution in Eq. 2 while the clean sample x0 is approximated using the noise predictor
ϵθ(xt, y), where y is the input condition (e.g.,a text prompt); note that the time input is omitted for
simplicity. When ϵt = ϵθ(xt, y), the prediction of clean sample x0 at timestep t, denoted as x0|t, is
derived as follows based on Tweedie’s formula (Robbins (1956)):

x0|t = ψ(xt, ϵt) =
xt −

√
1− αtϵt√
αt

. (4)

A clean data sample x0 is then generated by first sampling standard Gaussian noise xT ∼ N (0, I)
and gradually denoising it over time by iteratively sampling a noisy data point xt from pθ (xt−1|xt).
The mapping from a noisy data point xt to x0 becomes deterministic when σt = 0 for all t and is is
equivalent to solving an ODE (Song et al., 2021b; Chen et al., 2018) with a specific discretization.

Reverse Process from the Perspective of x0|t. Here, to connect the reverse process of DDIM to
the algorithms to be introduced in the next section, we reinterpret the reverse denoising process as an
iterative refinement process of the prediction of clean sample x0|t. See Alg. 1, where x0|t and ϵt are
computed at each timestep. Note that the mean of the likelihood distribution pθ (xt−1|xt) in Eq. 3
can be rewritten in terms of x0 and ϵt:

µσt
(x0, ϵt) =

√
αt−1x0 +

√
1− αt−1 − σ2

t · ϵt. (5)

Apart from setting σt = 0, one can consider a special case when σt =
√
1− αt−1, which maximizes

the level of stochasticity during the sampling process. This cancels out the noise prediction term ϵt in
Eq. 5. We denote this case by overriding µσt

(·, ·) with µ∗(·), which now takes a single parameter x0:

µ∗(x0) =
√
αt−1x0. (6)
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Algorithm 1: Diffusion Reverse Process
Inputs: y: Input text prompt

Outputs: x0: An instance space sample aligned with y

1 Function Reverse Process(y):
2 xT ∼ N (0, I)
3 ϵT ← ϵθ(xT , y)

4 x0|T ← ψ(xT , ϵT )

5 for t = T . . . 2 do
6 xt−1 ∼ N (µσt (x0|t, ϵt), σ

2
t I) // Eq. 5

7 ϵt−1 ← ϵθ(xt−1, y)

8 x0|t−1 ← ψ(xt−1, ϵt−1) // Eq. 4

9 end

Algorithm 2: Diffusion Synchronization (DS)
Inputs: z: A canonical space sample
y: Input text prompt; c1:N : A set of views.
Outputs: z: Canonical space sample aligned with y

1 Function DS(z, y, c1:N):
2 x1:N

T ∼ N (0, I)
3 for i = 1 . . . N do
4 ϵ

(i)
T ← ϵθ(x

(i)
T , y)

5 x
(i)

0|T ← ψ(x
(i)
T , ϵ

(i)
T ) // Eq. 4

6 end

7 z← argmin
z

N∑
i=1
∥f

c(i)
(z)− x

(i)

0|T ∥
2

8 for t = T . . . 2 do
// c1:N is fixed for all t.

9 for i = 1 . . . N do
10 x

(i)

0|t ← f
c(i)

(z)

11 x
(i)
t−1 ∼ N (µσt (x

(i)

0|t, ϵ
(i)
t ), σ2

t I) // Eq. 5

12 ϵ
(i)
t−1 ← ϵθ(x

(i)
t−1, y)

13 x
(i)

0|t−1
← ψ(x

(i)
t−1, ϵ

(i)
t−1) // Eq. 4

14 end
15 z← argmin

z

N∑
i=1
∥f

c(i)
(z)− x

(i)

0|t−1
∥2

16 end

Algorithm 3: Score Distillation Sampling (SDS)
Inputs: z: A canonical space sample
y: Input text prompt
Outputs: z: Canonical space sample aligned with y

1 Function SDS(z, y):
2 while z not converged do
3 t ∼ U(0, T ); c← SampleRandomView()

4 x0|t ← fc(z)

// Noise prediction is not used and thus omitted.

5 xt−1 ∼ N ( µ∗(x0|t) , σ
2
t I) // Eq. 6

6 x0|t−1 ← ψ(xt−1, ϵθ(xt−1, y))

7 z← z− w(t)
[
fc(z)− x0|t−1

] ∂f
∂z

8 end

Algorithm 4: StochSync
Inputs: z: A canonical space sample
y: Input text prompt
Outputs: z: Canonical space sample aligned with y

1 Function StochSync(z, y):
2 c1:N ← SampleNonOverlappingViews(N)

x1:N
T ∼ N (0, I)

3 for i = 1 . . . N do
4 x

(i)

0|T ← G(x
(i)
T )

5 end

6 z← argmin
z

N∑
i=1
∥f

c(i)
(z)− x

(i)

0|T ∥
2

7 for t = T . . . Tstop + 1 do
8 c1:N ← SampleNonOverlappingViews(N)

for i = 1 . . . N do
9 x

(i)

0|t ← f
c(i)

(z)

// Noise prediction is not used and thus omitted.

10 x
(i)
t−1 ∼ N ( µ∗(x

(i)

0|t) , σ
2
t I) // Eq. 6

11 x
(i)

0|t−1
← G(x(i)

t−1)

12 end
13 z← argmin

z

N∑
i=1
∥f

c(i)
(z)− x

(i)

0|t−1
∥2

14 end

5 DIFFUSION SYNCHRONIZATION AND SCORE DISTILLATION SAMPLING

As methods leveraging pretrained diffusion models to generate data in other spaces, there have
been mainly two approaches: Diffusion Synchronization (DS) (Liu et al., 2022; Geng et al., 2024b;
Kim et al., 2024a) and Score Distillation Sampling (SDS) (Poole et al., 2023; Wang et al., 2024b;
Lukoianov et al., 2024; Liang et al., 2024). In this section, we briefly review these methods, analyze
the connections between them as well as their differences, and discuss the limitations of each method.

5.1 DIFFUSION SYNCHRONIZATION

The idea of Diffusion Synchronization (DS) (Liu et al., 2022; Geng et al., 2024b; Kim et al., 2024a)
is to perform the reverse process jointly across multiple instance spaces while synchronizing the
processes through mapping to the canonical space. Among the various options for synchronization,
Kim et al. (2024a) have demonstrated that averaging the predictions of the clean samples x0|t in the
canonical space and then projecting it back to each instance space provides the best performance
across a broad range of applications. Alg. 2 shows the pseudocode, which, at each step, performs
one-step denoising of DDIM for each view (lines 10-11), updates the data point in the canonical
space z while averaging x0|t by solving a l2-minimization (line 13), and then projects z back to each
space (line 9). The differences from the reverse process of DDIM (Alg. 1) are highlighted in blue.

For the stochasticity of the denoising process, typically deterministic DDIM reverse process
(σt = 0) (Bar-Tal et al., 2023; Zhang et al., 2024b) or DDPM reverse process (σt =√

(1− αt−1)/(1− αt)
√
1− αt/αt−1) (Liu et al., 2023) have been used.
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Previous works have shown the effectiveness of the synchronization approach in generating various
types of visual data using pretrained image diffusion models, including depth-conditioned panoramic
images, textures of 3D meshes and Gaussians (Kim et al., 2024a; Liu et al., 2023). However, we have
observed that this approach requires strong conditioning for each instance–such as depth images–to
achieve optimal quality. In cases where the input condition is not provided, such as generating
depth-free 360◦ panoramas, the outputs tend to show seams as shown in Fig. 2(a), mainly due to the
wider data distribution and thus difficulties in achieving convergence during synchronization.

5.2 SCORE DISTILLATION SAMPLING

Score Distillation Sampling (SDS) (Poole et al., 2023) and its variants (Wang et al., 2024b; Lukoianov
et al., 2024; Liang et al., 2024) are alternatives for generating samples in different spaces. Unlike
DS, SDS does not use the reverse diffusion process but instead employs gradient-descent-based
updates. The motivation behind SDS is to leverage the loss function from noise predictor training to
discriminate real data points while projecting the canonical data point fc(z), corrupting it through
the forward process, and then predicting the added noise from it.

To clarify the similarities and differences between SDS and DS, we provide a different perspective on
understanding SDS, as shown in Alg. 3, aligning each computation with those in DS (Alg. 2). There
are several key differences, highlighted as green in Alg. 3. First, the timestep t is not decreased from
T to 1 but is randomly sampled until convergence (line 3). Second, while synchronization approaches
typically make the reverse process deterministic (Bar-Tal et al., 2023; Zhang et al., 2024b) or identical
to DDPM (Liu et al., 2023), SDS uses maximum stochasticity (σt =

√
1− αt−1), thus eliminating

the need to maintain the noise ϵt. Third, the prediction of the clean sample is updated to the canonical
space not by solving the l2 minimization but by performing a single gradient descent step (line 7).
SDS was originally introduced to perform gradient descent for the loss ∥ϵ− ϵθ(xt−1, y)∥2 (while
omitting the gradient of the U-Net), where ϵ is the standard normal sample used in xt−1 sampling,
i.e.,xt−1 = µ∗(x0|t) + σtϵ (line 5), while it is equivalent to the loss used in DS, ∥fc(z)− x0|t−1∥2,
up to a scale as explained in Appendix (Sec. A).

As observed in previous works (Kim et al., 2024a; Huo et al., 2024), when input conditions are
provided, the quality of SDS-generated outputs is inferior to that of DS-based methods. However,
SDS performs better than DS when no conditions are given (except for the text prompt), effectively
integrating images from the instance spaces without producing seams, although it struggles to
generate fine details (Fig. 2(b)). In the following section, we introduce our novel method that
combines the strengths of both approaches to achieve superior quality in unconditional canonical
data point generation while maintaining performance in conditional generation.

6 STOCHSYNC : STOCHASTIC DIFFUSION SYNCHRONIZATION

Based on our analysis comparing Diffusion Synchronization (DS) and Score Distillation Sampling
(SDS) in Sec. 5, we propose our novel method, Stochastic Diffusion Synchronization, or StochSync
for short, which combines the best features of each method to achieve superior performance in
unconditional canonical sample generation. From the perspective of DS, we introduce three key
changes in the algorithm.

Maximum Stochasticity in Synchronization. One of the key differences between SDS and
previous DS methods is that SDS can be interpreted as utilizing maximum stochasticity in the DDIM
denoising step (setting σt =

√
1− αt−1 in Eq. 5 and thus removing the ϵt term), while earlier DS

methods have not explored this aspect. We investigated whether maximum stochasticity helps DS
achieve better coherence of samples across instance spaces, similar to what is observed in SDS. As
the results shown in Fig. 2(c), it indeed helps remove seams, resulting in much smoother transitions
across views. However, we also observe a trade-off between coherence and realism: increased
stochasticity leads to greater deviation from the data distribution, producing less realistic images.

Multi-Step x0|t Computation. To resolve the trade-off between coherence and realism, we propose
replacing the computation of x0|t from Tweedie’s formula (Eq. 4), the one-step prediction of the
clean sample x0 from xt, with a multi-step deterministic denoising process of DDIM, denoted as
G(xt). We observe that a more accurate prediction of the clean samples x0|t at each step along
with maximum stochasticity level allows us to achieve both high coherence and realism as shown in
Fig. 2(d). Notably, when replacing the computation of x0|t with multi-step denoising, StochSync
can also be viewed as iterating SDEdit (Meng et al., 2021): performing the forward process from

6
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Table 1: Quantitative results of panorama gener-
ation using the prompts provided in PanFusion
(Zhang et al. (2024a)). GIQA is scaled by 103.
The best result in each column is highlighted in
bold, and the runner-up is underlined.

Method FID ↓ IS ↑ GIQA ↑ CLIP ↑

SDS 96.44 8.21 17.90 30.87
SDI 143.70 8.08 15.03 29.12
ISM 114.32 8.16 17.08 31.31

MVDiffusion 70.49 10.87 18.81 30.79
PanFusion 93.85 9.90 17.79 28.21
L-MAGIC 59.83 9.12 19.13 29.73

StochSync 57.88 10.02 20.30 31.01

Table 2: Effectiveness of each components using
the prompts provided in PanFusion (Zhang et al.
(2024a)). GIQA is scaled by 103. The best result
in each column is highlighted in bold, and the
runner-up is underlined.

Id Max
σt

Impr.
x0|t

N.O.
Views

FID ↓ IS ↑ GIQA ↑ CLIP ↑

1 ✗ ✗ ✗ 80.55 8.65 18.22 30.07
2 ✔ ✗ ✗ 138.82 6.98 15.68 27.95
3 ✗ ✔ ✗ 84.87 7.33 19.06 30.49
4 ✔ ✔ ✗ 78.56 8.54 18.44 30.18
5 ✔ ✗ ✔ 117.09 7.56 16.32 28.75

6 ✔ ✔ ✔ 57.88 10.02 20.30 31.01

x0|t to xt−1 at timestep t (Alg.4, line 10), followed by the reverse process back to x0|t−1 (line 11).
As a result, the loop in line 7 can be interpreted not as performing the reverse process but as iterating
SDEdit, meaning it does not need to proceed from timestep T to 1. Empirically, we find that stopping
the iteration earlier with Tstop ≫ 1 provides comparable results while saving computation time. More
details are provided in Appendix.

Non-Overlapping View Sampling. In DS, x0|t is not directly used in the next timestep; instead,
it is first averaged in the canonical space (Alg. 2, line 15) and then projected back to the instance
space (line 10). We note that this modification of x0|t also results in a degradation of realism in
the final output. To address this, we propose to sample views at each step without overlaps. x0|t
is still synchronized over time, as the set of non-overlapping views newly sampled at each step
has overlaps with the views sampled in previous steps. In practice, we alternate between two sets
of non-overlapping views—one being a shift of the other. The result further improved with the
non-overlapping views is also shown in Fig. 2(f).

Pseudocode and Changes from DS. The pseudocode for our StochSync, incorporating the
aforementioned three major changes from DS, is provided in Alg. 4. Compared to DS (Alg. 2), the
ϵt computation is omitted due to the use of maximum stochasticity, Tweedie’s formula is changed
to a multi-step computation G(·) (line 11), and the set of views is not fixed but is sampled without
overlaps within the set at each step (line 8). In Alg. 4, the changes are highlighted in red.

Perspective from SDS. From the SDS perspective, StochSync can also be seen as implementing
three major changes. First, each iteration is performed not with a random timestep t but with a
linearly decreasing timestep (Alg. 4, line 8), following the scheduling of the reverse process. At each
timestep, multiple views are selected and updated simultaneously. Second, instead of reflecting x0|t
to the canonical sample z through gradient descent, we fully minimize the l2 loss (line 13). Third,
the computation of x0|t is changed to a multi-step denoising (line 11). In other words, StochSync
can be seen as a modification of SDS, designed to more closely resemble the reverse process with a
decreasing time schedule, while ensuring tighter alignment between the instance space samples and
the canonical space sample at each step.

Comparisons to SDS Variants. Recent variants of SDS have proposed changes to certain aspects
of SDS, without observing connection to the synchronization framework, which we have explored
for the first time to our knowledge. DreamTime (Huang et al., 2023) suggested decreasing the
timestep instead of random sampling. We find that additionally replacing gradient descent with
solving a minimization leads to significant improvements. SDI (Lukoianov et al., 2024) takes the
opposite approach from ours, reducing the stochasticity of SDS to zero while requiring ϵt. Since
ϵt cannot be maintained when views are randomly sampled, it is computed by performing DDIM
inversion (Mokady et al., 2023) on x0|t at every timestep. We empirically observe that this approach
is not robust and frequently fails to converge for panorama and mesh texture generation, as shown in
Fig. 2(e). ISM (Liang et al., 2024) also discusses the idea of solving an ODE for x0|t (multi-step
computation) at every timestep, but it does not change gradient descent to solving the minimization.
In Section 7, we demonstrate the superior performance of StochSync compared to these methods
in depth-free 360◦ panorama generation.
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7 EXPERIMENT RESULTS

In this section, we present the experimental results of StochSync for two applications: 360◦

panorama generation and 3D mesh texturing. 360◦ panorama generation is an example of uncondi-
tional canonical data point generation (except for text conditioning), while 3D mesh texturing is an
example of using depth maps as conditioning. We provide comparisons with baseline methods, user
study results, as well as ablation study results. In the Appendix, we include implementation details
(Sec. B), details of the user study (Sec. C), and additional qualitative and quantitative results (Sec. D).

7.1 360◦ PANORAMA GENERATION

In the 360◦ panorama generation, the projection operation f is equirectangular projection, which
maps a 360◦ panoramic image to perspective view images. We specifically use ‘Stable Diffusion
2.1 Base’ as the pretrained diffusion model for all methods, except for the baselines that require
finetuned models or inpainting models. We evaluate StochSync on sets of prompts provided by
the previous works: 121 out-of-distribution prompts from PanFusion (Zhang et al., 2024a) and 20
ChatGPT-generated prompts from L-MAGIC (Cai et al., 2024). The results in the rest of this section
are for PanFusion prompts, while the results for L-MAGIC prompts are provided in the Appendix
(Sec. D). For evaluation, we randomly sample 10 perspective view images from each panorama
and generate the same number of images using the pretrained diffusion model, which serves as the
reference set for the evaluation metrics.

7.1.1 COMPARISON TO PREVIOUS WORKS

Quantitative and qualitative comparisons with the baseline methods using PanFusion (Zhang et al.,
2024a) prompts are presented in Tab. 1 and Fig. 3, respectively. For quantitative evaluations, we
report the Fréchet Inception Distance (FID) (Heusel et al., 2018), Inception Score (IS) (Salimans et al.,
2016), and GIQA (Gu et al., 2020) to assess fidelity and diversity, as well as the CLIP score (Radford
et al., 2021) to evaluate text alignment.

As shown in Tab. 1, StochSync outperforms SDS (Poole et al., 2023) and its variants,
SDI (Lukoianov et al., 2024) and ISM (Liang et al., 2024), by significant margins in all metrics,
except for the CLIP score, where ours is still close to the best. Notably, SDI and ISM are not robust
and often generate poor outputs, as examples are shown on the left in rows 2-3 of Fig. 3 and more at
the end of the Appendix.

We also compare StochSync with finetuning-based methods such as MVDiffusion (Tang et al.,
2023b) and PanFusion (Zhang et al., 2024a), which finetune a pretrained image diffusion model using
panoramic images. Due to the lack of large-scale datasets for panoramic images, these finetuning-
based methods tend to overfit to the prompts and images used during training, reducing realism for
unseen prompts. Hence, our zero-shot method outperforms these methods quantitatively across all
metrics, with particularly large margins for FID, except for IS scores where the results are comparable.
Qualitatively, our method also demonstrates superior performance compared to theirs, as shown in
Fig.3 (rows 4–5, left). More examples can be found in at the end of the Appendix.

Lastly, we compare StochSync with the state-of-the-art zero-shot 360◦ panorama generation
method, L-MAGIC (Cai et al., 2024), which uses an inpainting diffusion model to sequentially
fill a panoramic images. Quantitatively, StochSync outperforms this method across all metrics.
Qualitatively, we observe that L-MAGIC often exhibits a "wavy effect" (Brown & Lowe, 2007)
causing the horizon to appear curved, as shown at the bottom left of Fig. 3. While this geometric
distortion may not be fully captured in the quantitative metrics, it can significantly detract from
the visual quality in terms of human perception. To further evaluate this, we conducted a user
study comparing StochSync and L-MAGIC on both the PanFusion prompts and a new set of
20 prompts generated by ChatGPT, specifically including the word “horizon”. StochSync was
preferred over L-MAGIC by 56.20% for the former, with the preference increasing to 64.75% for
the horizon-specific prompts, demonstrating the superior ability of StochSync to avoid producing
curved horizons. Details of the user study are provided in the Appendix (Sec. C).

7.1.2 ABLATION STUDY RESULTS

Tab. 2 and Fig. 3 (right) demonstrate the effectiveness of each component of StochSync dis-
cussed in Sec. 6: maximum stochasticity (Max σt), multi-step denoising for x0|t (Impr. x0|t), and
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non-overlapping view sampling (N.O. Views). As discussed in Sec. 5, DS, represented by SyncTweed-
ies (Kim et al., 2024a), generates plausible local images but lacks global coherence across views and
thus produce visible seams (row 1 of Fig. 3). With maximum stochasticity, global coherence improves
but at the cost of realism (row 2 of Fig. 3), which is also reflected in the poor quantitative results
(row 2 of Tab. 2). Noticeable improvements occur when the computation of x0|t is also replaced with
multi-step denoising, G(xt) (row 4 of Fig. 3 and Tab. 2). Finally, the full version of StochSync,
using sets of non-overlapping views, produces the most realistic and coherent panoramic images both
qualitatively and quantitatively (row 6 of Fig. 3 and Tab. 2). Refer to the other rows for additional
ablation cases. Note that non-overlapping views require maximum stochasticity, as ϵt cannot be
computed when views are not fixed but sampled differently every time.

Metric
Sync-

Tweedies Paint-it Paint3D TEXTure Text2Tex Sync-
Stoch

FID ↓ 21.76 28.23 31.66 34.98 26.10 22.29
KID ↓ 1.46 2.30 5.69 6.83 2.51 1.31
CLIP ↑ 28.89 28.55 28.04 28.63 27.94 28.57

Table 3: Quantitative results of 3D
mesh texturing. KID is scaled by
103. The best result in each row is
highlighted in bold, and the runner-
up is underlined.

7.2 3D MESH TEXTURING

3D mesh texturing is a task where a depth map from each view can be used as a condition for image
generation, allowing the use of conditional diffusion models (e.g., ControlNet (Zhang et al., 2023)).
While previous DS-based methods perform well when strong conditions are provided, we demonstrate
that StochSync, designed to focus on the unconditional case, provides results comparable to
previous DS methods and outperforms other state-of-the-art texture generation methods.

In our experiments, we follow the experiment setup of SyncTweedies (Kim et al., 2024a) while using
the same 429 mesh and prompt pairs. The quantitative and qualitative results are presented in Tab. 3
and Fig. 4, respectively. Note that the results from other baseline methods are sourced from Kim
et al. (2024a). In Tab. 3, StochSync outperforms all other baselines across all metrics, with the
exception of SyncTweedies, our base synchronization framework, which shows comparable results.
This demonstrates the versatility of our method, as it can be adapted to applications regardless of
whether strong conditional inputs are present. In Fig. 4, StochSync generates texture images
with fine details, as seen in the face of the bunny (column 1) and the wood grain patterns of the
crate (column 2), whereas Paint-it(Youwang et al., 2023) leveraging SDS produces images that lack
such details. Paint3D (Zeng et al., 2024), which finetunes a diffusion model on the textured mesh
dataset (Deitke et al., 2023), fails to capture these details, as seen in the globe (column 4) and the
pumpkin (column 6). This aligns with the observation made in the 360◦ panorama generation task,
where finetuning on a small-scale dataset may result in the loss of rich priors learned by a pretrained
diffusion model. Lastly, outpainting-based methods, TEXTure and Text2Tex (Richardson et al., 2023;
Chen et al., 2023a), generate texture images with visible seams due to error accumulation, as shown
in the goldfish (column 7) and the screen of the television (column 8).

Fig. 5 also showcases 3D mesh textures on spheres and tori generated by StochSync without depth
conditioning, showing the potential for various visual content generation (e.g.,game maps).

8 CONCLUSION AND FUTURE WORK

We have introduced StochSync, a novel zero-shot method for data generation in arbitrary spaces
that fuses Diffusion Synchronization (DS) and Score Distillation Sampling (SDS) into the best form
for achieving superior performance in cases where strong conditioning is not provided. Our key
insights, based on analyses of the differences between DS and SDS, were to maximize stochasticity
in the denoising process to achieve coherence across views, while enhancing realism through multi-
step denoising for clean sample predictions at each step and sampling non-overlapping views. We
demonstrated state-of-the-art performance in depth-free 360◦ panorama generation and depth-based
mesh texture generation.

Limitation and Future Work. Synchronization methods, including ours, face challenges in 3D
NeRF (Mildenhall et al., 2021) or Gaussian splat Kerbl et al. (2023) generation, as solving the
l2-minimization at each step typically leads to overfitting to individual views when the intermediate
images are inconsistent. This issue could be resolved by initializing the 3D geometry with 3D
generative models (Hong et al., 2023; Tang et al., 2024), which we plan to explore in future work.
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“Desert sunrise silhouettes.”

SDS (Poole et al., 2023) SyncTweedies (Kim et al., 2024a)

SDI (Lukoianov et al., 2024) SyncTweedies + Max σt

ISM (Liang et al., 2024) SyncTweedies + Impr. x0|t

MVDiffusion (Tang et al., 2023b) SyncTweedies + Max σt + Impr. x0|t

PanFusion (Zhang et al., 2024a) SyncTweedies + Max σt + N.O. Views

L-MAGIC (Cai et al., 2024) StochSync

Figure 3: Qualitative results of panorama generation using PanFusion (Zhang et al., 2024a) prompts.
Comparisons to previous works are presented in the left column, while the ablation cases are shown
in the right column along with StochSync.

A white bunny Crate Cup Globe Pancake Pumpkin Goldfish Television set

SyncTweedies
(Kim et al., 2024a)

Paint-it
(Youwang et al., 2023)

Paint3D
(Zeng et al., 2024)

TEXTure
(Richardson et al., 2023)

Text2Tex
(Chen et al., 2023a)

StochSync

Figure 4: Qualitative result of 3D mesh texturing. StochSync generates realistic texture images,
demonstrating its applicability even in the conditional generation case.

Figure 5: 3D mesh textures on spheres and tori generated by StochSync.
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ETHICS STATEMENT

StochSync leverages a diffusion model (Rombach et al., 2022) trained on the LAION-5B
dataset (Schuhmann et al., 2022), which has been preprocessed to remove unethical content. However,
despite these efforts, the pretrained diffusion model may still generate undesirable content when
presented with misleading or harmful prompts, a limitation that our method also inherits. It is
important to acknowledge this risk, as models like StochSync could inadvertently produce biased
or inappropriate outputs and should be used with caution. Additionally, StochSync may impact the
creative industry by automating parts of the generative process. However, it also offers opportunities
to enhance productivity and accessibility to generative tools.

REPRODUCIBILITY STATEMENT

StochSync uses the ’Stable Diffusion 2.1 Base’ (Rombach et al., 2022) and the depth-conditioned
ControlNet (Zhang et al., 2023), both of which are publicly available. We also provide the pseudocode
of StochSync in Alg. 4 and the implementation details including hyperparameters in Sec. B. We
will also release our code publicly.
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APPENDIX

A REFORMULATION OF SDS LOSS

Here, we show that the SDS loss introduced in Sec. 5.2 of the main paper is equivalent to the original
loss presented in DreamFusion (Poole et al., 2023) up to a scale. In Sec. 5.2, the SDS loss is presented
from the perspective of clean samples:∥∥fc(z)− x0|t−1

∥∥2 =

∥∥∥∥xt−1 −√
1− αt−1ϵ√
αt−1

− xt−1 −
√
1− αt−1ϵθ(xt−1, y)√

αt−1

∥∥∥∥2 (7)

=
1− αt−1
αt−1

∥ϵ− ϵθ(xt−1, y)∥2 , (8)

where the equality in the first line holds from Eq. 4 and ϵ is sampled from a standard Gaussian,
N (0, I). Previous works (Kim et al., 2024b; Lukoianov et al., 2024) have also made a similar
observation.

B IMPLEMENTATION DETAILS

Panorama Generation. We set the resolution of the perspective view images to 512× 512, and
the panorama to 2, 048× 4, 096. A linearly decreasing timestep schedule is employed, starting from
T = 900 and decreasing to Tstop = 270, with a total of 25 denoising steps. For multi-step x0|t
computation, the total number of steps is initially set to 50, decreasing linearly as the denoising
process progresses. For view sampling, we alternate between two sets containing five views each,
with azimuth angles of [0◦, 72◦, 144◦, 216◦, 288◦] and [36◦, 108◦, 180◦, 252◦, 324◦]. The elevation
angle is set to 0◦, and the field of view (FoV) is set to 72◦.

For methods utilizing multi-step x0|t predictions, computing x0|t−1 = G(xt−1) as in line 11 of
Alg. 4, only for the last two steps in the loop of line 7, we leverage the previous x0|t to better preserve
the boundary regions. We perform the denoising process while blending the noisy data point as
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foreground and the previous x0|t as background, as done in RePaint (Lugmayr et al., 2022). For the
background mask, we start from the entire region and gradually decrease the regions over time to be
close to the boundaries.

3D Mesh Texturing. For 3D mesh texturing, we follow the approach in SyncTweedies (Kim et al.,
2024a) and use the same image and texture resolutions. We use the same number of steps as in
the 360◦ panorama generation task with a linearly decreasing time schedule from T = 1, 000 to
Tstop = 270. We use 4 views to minimize overlaps between the views. For multi-step x0|t predictions,
we use the same refinement mentioned above.

(a) Main problem

(b) Vigilance test

Figure 6: Screenshots of the user study. The main test is shown in (a), and the vigilance test in (b).

C USER STUDY DETAILS

In this section, we provide details of the user study described in Sec. 7.1.1 of the main paper. We
evaluated user preferences across two prompt sets: PanFusion (Zhang et al., 2024a) prompts and
horizon-specific prompts. The study was conducted via Amazon Mechanical Turk (AMT).

Screenshots of the user study are shown in Fig. 6. Participants were presented with two panoramic
images (in random order) generated using the same text prompt: one by L-MAGIC(Cai et al., 2024)
and the other by StochSync. They were asked to answer the following question: “Which image
has better quality, fewer seams, fewer distortions, and better alignment with the given text prompt
across the panoramic view?” In each user study, 25 panoramic images were shown in a shuffled order,
including five vigilance tests. For the vigilance tests, participants were shown a wide image composed
of concatenated 2D square images alongside a ground truth 360◦ panorama, with the same resolution
and question format. For the final results, we collected responses from 50 out of 96 participants from
the PanFusion set and 59 out of 100 participants from the horizon set, passing at least three vigilance
tests. We required participants to be AMT Masters and have an approval rate of over 95%.
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“A photo of a savanna in Tanzania with horizon.”

“A photo of a sunflower field in Kansas with horizon.”

“A photo of a tropical island in the Philippines with horizon.”

“A photo of a vineyard in Tuscany with horizon.”

“A photo of Patagonia with horizon.”

“A photo of the salt flats in Bolivia with horizon.”

L-MAGIC (Cai et al., 2024) StochSync

Figure 7: Qualitative comparisons between L-MAGIC (Cai et al., 2024) and StochSync on the
horizon-specific prompts.

Apricot Bookcase Pistol Polar Bear Rifle Shoe Dumpster Key

SyncTweedies

Paint-it

Paint3D

TEXTure

Text2Tex

StochSync

Figure 8: Additional qualitative results of 3D mesh texturing.
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Table 4: Quantitative results of panorama gener-
ation using the prompts provided in L-MAGIC
(Cai et al. (2024)). GIQA is scaled by 103. The
best result in each column is highlighted in bold,
and the runner-up is underlined.

Method FID ↓ IS ↑ GIQA ↑ CLIP ↑

SDS 163.23 5.60 17.41 30.37
SDI 171.69 5.93 16.42 29.33
ISM 197.10 4.92 16.52 29.44

MVDiffusion 111.12 6.17 20.71 31.07
PanFusion 151.60 5.48 18.19 28.46
L-MAGIC 112.72 5.94 19.73 30.39

StochSync 109.41 6.20 20.31 31.22

Table 5: Effectiveness of each components using
the prompts provided in L-MAGIC (Cai et al.
(2024)). GIQA is scaled by 103. The best result
in each column is highlighted in bold, and the
runner-up is underlined.

Id Max
σt

Impr.
x0|t

N.O.
Views

FID ↓ IS ↑ GIQA ↑ CLIP ↑

1 ✗ ✗ ✗ 120.19 5.58 19.68 29.34
2 ✔ ✗ ✗ 178.03 4.76 17.43 28.02
3 ✗ ✔ ✗ 139.34 4.83 18.94 30.08
4 ✔ ✔ ✗ 126.58 5.41 19.34 30.04
5 ✔ ✗ ✔ 169.32 4.74 16.67 28.53

6 ✔ ✔ ✔ 109.41 6.20 20.31 31.22

D ADDITIONAL RESULTS

Quantitative Results of 360◦ Panorama Generation Using L-MAGIC Prompts. The quantitative
results of panorama generation using the prompts from L-MAGIC (Cai et al., 2024), as well as the
ablation study results, are presented in Tab. 4 and Tab. 5, respectively. We observe the same trend as
discussed in Sec. 7.1, where the results with PanFusion (Zhang et al., 2024a) prompts are discussed.
StochSync generates high-fidelity panoramic images, while L-MAGIC tends to produce panoramas
with curved horizons. Refer to Sec. D.2 for qualitative results.

Additional Results of 360◦ Panorama Generation Using Horizon Prompts. Qualitative compar-
isons of StochSync and L-MAGIC (Cai et al., 2024) on the horizon-specific prompt set discussed
in Sec. 7.1.1 are shown in Fig. 7. As discussed in Sec. 7.1.1, L-MAGIC tends to generate wavy
panoramas with global distortions, while StochSync produces more realistic panoramic images.
This aligns with the results of the user preference test presented in Sec. 7.1.1, where StochSync
outperforms L-MAGIC on both the PanFusion and horizon-specific prompts.

Additional Results of 3D Mesh Texturing. Extending the qualitative results presented in Fig. 4,
we provide more qualitative results of 3D mesh texturing in Fig. 8.

More qualitative results of 360◦ panorama generation are presented in the following pages.
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D.1 ADDITIONAL 360◦ PANORAMA GENERATION RESULTS USING PANFUSION PROMPTS
“Desert canyon, sculpted sandstone.”

SDS (Poole et al., 2023) SyncTweedies (Kim et al., 2024a)

SDI (Lukoianov et al., 2024) SyncTweedies + Max σt

ISM (Liang et al., 2024) SyncTweedies + Impr. x0|t

MVDiffusion (Tang et al., 2023b) SyncTweedies + Max σt + Impr. x0|t

PanFusion (Zhang et al., 2024a) SyncTweedies + Max σt + N.O. Views

L-MAGIC (Cai et al., 2024) StochSync

“Beneath a star-studded sky, an ancient oak stands sentinel in a meadow.”

SDS (Poole et al., 2023) SyncTweedies (Kim et al., 2024a)

SDI (Lukoianov et al., 2024) SyncTweedies + Max σt

ISM (Liang et al., 2024) SyncTweedies + Impr. x0|t

MVDiffusion (Tang et al., 2023b) SyncTweedies + Max σt + Impr. x0|t

PanFusion (Zhang et al., 2024a) SyncTweedies + Max σt + N.O. Views

L-MAGIC (Cai et al., 2024) StochSync
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“Desert dunes, endless golden waves.”

SDS (Poole et al., 2023) SyncTweedies (Kim et al., 2024a)

SDI (Lukoianov et al., 2024) SyncTweedies + Max σt

ISM (Liang et al., 2024) SyncTweedies + Impr. x0|t

MVDiffusion (Tang et al., 2023b) SyncTweedies + Max σt + Impr. x0|t

PanFusion (Zhang et al., 2024a) SyncTweedies + Max σt + N.O. Views

L-MAGIC (Cai et al., 2024) StochSync

“Redwood forest, towering tranquility.”

SDS (Poole et al., 2023) SyncTweedies (Kim et al., 2024a)

SDI (Lukoianov et al., 2024) SyncTweedies + Max σt

ISM (Liang et al., 2024) SyncTweedies + Impr. x0|t

MVDiffusion (Tang et al., 2023b) SyncTweedies + Max σt + Impr. x0|t

PanFusion (Zhang et al., 2024a) SyncTweedies + Max σt + N.O. Views

L-MAGIC (Cai et al., 2024) StochSync
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“Moonlit beach, waves whispering secrets.”

SDS (Poole et al., 2023) SyncTweedies (Kim et al., 2024a)

SDI (Lukoianov et al., 2024) SyncTweedies + Max σt

ISM (Liang et al., 2024) SyncTweedies + Impr. x0|t

MVDiffusion (Tang et al., 2023b) SyncTweedies + Max σt + Impr. x0|t

PanFusion (Zhang et al., 2024a) SyncTweedies + Max σt + N.O. Views

L-MAGIC (Cai et al., 2024) StochSync

“On a distant planet surface, towering crystalline structures rise against an alien sky.”

SDS (Poole et al., 2023) SyncTweedies (Kim et al., 2024a)

SDI (Lukoianov et al., 2024) SyncTweedies + Max σt

ISM (Liang et al., 2024) SyncTweedies + Impr. x0|t

MVDiffusion (Tang et al., 2023b) SyncTweedies + Max σt + Impr. x0|t

PanFusion (Zhang et al., 2024a) SyncTweedies + Max σt + N.O. Views

L-MAGIC (Cai et al., 2024) StochSync
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“Nestled in a canyon, a pueblo village stands against the red earth.”

SDS (Poole et al., 2023) SyncTweedies (Kim et al., 2024a)

SDI (Lukoianov et al., 2024) SyncTweedies + Max σt

ISM (Liang et al., 2024) SyncTweedies + Impr. x0|t

MVDiffusion (Tang et al., 2023b) SyncTweedies + Max σt + Impr. x0|t

PanFusion (Zhang et al., 2024a) SyncTweedies + Max σt + N.O. Views

L-MAGIC (Cai et al., 2024) StochSync

“On the surface of a distant planet, a landscape of alien rock formations and swirling, multicolored gases.”

SDS (Poole et al., 2023) SyncTweedies (Kim et al., 2024a)

SDI (Lukoianov et al., 2024) SyncTweedies + Max σt

ISM (Liang et al., 2024) SyncTweedies + Impr. x0|t

MVDiffusion (Tang et al., 2023b) SyncTweedies + Max σt + Impr. x0|t

PanFusion (Zhang et al., 2024a) SyncTweedies + Max σt + N.O. Views

L-MAGIC (Cai et al., 2024) StochSync
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“The interior of a historic library, filled with rows of antique books, leather-bound and dust-covered.”

SDS (Poole et al., 2023) SyncTweedies (Kim et al., 2024a)

SDI (Lukoianov et al., 2024) SyncTweedies + Max σt

ISM (Liang et al., 2024) SyncTweedies + Impr. x0|t

MVDiffusion (Tang et al., 2023b) SyncTweedies + Max σt + Impr. x0|t

PanFusion (Zhang et al., 2024a) SyncTweedies + Max σt + N.O. Views

L-MAGIC (Cai et al., 2024) StochSync

“Hidden waterfall, cascading down moss-covered rocks in a tranquil glade.”

SDS (Poole et al., 2023) SyncTweedies (Kim et al., 2024a)

SDI (Lukoianov et al., 2024) SyncTweedies + Max σt

ISM (Liang et al., 2024) SyncTweedies + Impr. x0|t

MVDiffusion (Tang et al., 2023b) SyncTweedies + Max σt + Impr. x0|t

PanFusion (Zhang et al., 2024a) SyncTweedies + Max σt + N.O. Views

L-MAGIC (Cai et al., 2024) StochSync
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“Surreal desert, mirage of shimmering heat, dunes stretching endlessly.”

SDS (Poole et al., 2023) SyncTweedies (Kim et al., 2024a)

SDI (Lukoianov et al., 2024) SyncTweedies + Max σt

ISM (Liang et al., 2024) SyncTweedies + Impr. x0|t

MVDiffusion (Tang et al., 2023b) SyncTweedies + Max σt + Impr. x0|t

PanFusion (Zhang et al., 2024a) SyncTweedies + Max σt + N.O. Views

L-MAGIC (Cai et al., 2024) StochSync

“Alpine meadow, wildflowers swaying in a mountain breeze, snow-capped peaks embracing a serene panorama—a high-altitude sanctuary.”

SDS (Poole et al., 2023) SyncTweedies (Kim et al., 2024a)

SDI (Lukoianov et al., 2024) SyncTweedies + Max σt

ISM (Liang et al., 2024) SyncTweedies + Impr. x0|t

MVDiffusion (Tang et al., 2023b) SyncTweedies + Max σt + Impr. x0|t

PanFusion (Zhang et al., 2024a) SyncTweedies + Max σt + N.O. Views

L-MAGIC (Cai et al., 2024) StochSync
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“Alpine village, snow-covered rooftops, nestled between majestic peaks—a picture-perfect scene of winter tranquility.”

SDS (Poole et al., 2023) SyncTweedies (Kim et al., 2024a)

SDI (Lukoianov et al., 2024) SyncTweedies + Max σt

ISM (Liang et al., 2024) SyncTweedies + Impr. x0|t

MVDiffusion (Tang et al., 2023b) SyncTweedies + Max σt + Impr. x0|t

PanFusion (Zhang et al., 2024a) SyncTweedies + Max σt + N.O. Views

L-MAGIC (Cai et al., 2024) StochSync

“Inside a floating city above the clouds, suspended by levitating platforms and connected by intricate sky bridges.”

SDS (Poole et al., 2023) SyncTweedies (Kim et al., 2024a)

SDI (Lukoianov et al., 2024) SyncTweedies + Max σt

ISM (Liang et al., 2024) SyncTweedies + Impr. x0|t

MVDiffusion (Tang et al., 2023b) SyncTweedies + Max σt + Impr. x0|t

PanFusion (Zhang et al., 2024a) SyncTweedies + Max σt + N.O. Views

L-MAGIC (Cai et al., 2024) StochSync
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“Desert canyon, ancient rock formations sculpted by time, a vast expanse of terracotta hues—an arid symphony of textures.”

SDS (Poole et al., 2023) SyncTweedies (Kim et al., 2024a)

SDI (Lukoianov et al., 2024) SyncTweedies + Max σt

ISM (Liang et al., 2024) SyncTweedies + Impr. x0|t

MVDiffusion (Tang et al., 2023b) SyncTweedies + Max σt + Impr. x0|t

PanFusion (Zhang et al., 2024a) SyncTweedies + Max σt + N.O. Views

L-MAGIC (Cai et al., 2024) StochSync

“Standing on the edge of a cliff, overlooking a vast desert landscape with towering sand dunes and a distant oasis.”

SDS (Poole et al., 2023) SyncTweedies (Kim et al., 2024a)

SDI (Lukoianov et al., 2024) SyncTweedies + Max σt

ISM (Liang et al., 2024) SyncTweedies + Impr. x0|t

MVDiffusion (Tang et al., 2023b) SyncTweedies + Max σt + Impr. x0|t

PanFusion (Zhang et al., 2024a) SyncTweedies + Max σt + N.O. Views

L-MAGIC (Cai et al., 2024) StochSync
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D.2 MORE 360◦ PANORAMA GENERATION RESULTS USING L-MAGIC PROMPTS
“Desert under starlit sky”

SDS (Poole et al., 2023) SyncTweedies (Kim et al., 2024a)

SDI (Lukoianov et al., 2024) SyncTweedies + Max σt

ISM (Liang et al., 2024) SyncTweedies + Impr. x0|t

MVDiffusion (Tang et al., 2023b) SyncTweedies + Max σt + Impr. x0|t

PanFusion (Zhang et al., 2024a) SyncTweedies + Max σt + N.O. Views

L-MAGIC (Cai et al., 2024) StochSync

“Snowy mountain peak view”

SDS (Poole et al., 2023) SyncTweedies (Kim et al., 2024a)

SDI (Lukoianov et al., 2024) SyncTweedies + Max σt

ISM (Liang et al., 2024) SyncTweedies + Impr. x0|t

MVDiffusion (Tang et al., 2023b) SyncTweedies + Max σt + Impr. x0|t

PanFusion (Zhang et al., 2024a) SyncTweedies + Max σt + N.O. Views

L-MAGIC (Cai et al., 2024) StochSync
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“Japanese Zen meditation room”

SDS (Poole et al., 2023) SyncTweedies (Kim et al., 2024a)

SDI (Lukoianov et al., 2024) SyncTweedies + Max σt

ISM (Liang et al., 2024) SyncTweedies + Impr. x0|t

MVDiffusion (Tang et al., 2023b) SyncTweedies + Max σt + Impr. x0|t

PanFusion (Zhang et al., 2024a) SyncTweedies + Max σt + N.O. Views

L-MAGIC (Cai et al., 2024) StochSync

“Sakura blossom park Kyoto”

SDS (Poole et al., 2023) SyncTweedies (Kim et al., 2024a)

SDI (Lukoianov et al., 2024) SyncTweedies + Max σt

ISM (Liang et al., 2024) SyncTweedies + Impr. x0|t

MVDiffusion (Tang et al., 2023b) SyncTweedies + Max σt + Impr. x0|t

PanFusion (Zhang et al., 2024a) SyncTweedies + Max σt + N.O. Views

L-MAGIC (Cai et al., 2024) StochSync
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E ADDITIONAL QUALITATIVE RESULTS

In this section, we provide qualitative results of additional applications of StochSync including
image inpainting (Fig. 9-10 and Fig. 11), high resolution panorama generation (Fig. 13), 3D mesh
texturing with PBR materials (Fig. 14), panorama generation using a pose-conditioned video diffusion
model (He et al., 2024) (Fig. 15 and Fig. 16), and texturing 3D Gaussians (Kerbl et al., 2023) (Fig. 17).
In Fig. 12, we present qualitative results of image generation using Max. σt over multiple iterations.

“A bowl of cereal with a spoon on a kitchen counter”

t = 1, 000 t = 900 t = 800 t = 700 t = 600 t = 0

Measurement

σt = 0

Max. σt

StochSync

“A simple kitchen with a wooden dining table”

t = 1, 000 t = 900 t = 800 t = 700 t = 600 t = 0

Measurement

σt = 0

Max. σt

StochSync

Figure 9: Qualitative result of image inpainting.
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“A suburban street with houses and a clear blue sky”

t = 1, 000 t = 900 t = 800 t = 700 t = 600 t = 0

Measurement

σt = 0

Max. σt

StochSync

“An elderly man sitting on a bench”

t = 1, 000 t = 900 t = 800 t = 700 t = 600 t = 0

Measurement

σt = 0

Max. σt

StochSync

Figure 10: Qualitative results of image inpainting.
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Figure 11: Measurement error plotted against denosing process timesteps. The measurement error for
the case of σt = 0 remains larger than the cases utilizing the maximum level of stochasticity (Max.
σt and StochSync).

“A DSLR photo of a dog”

Number of Steps = 10 Number of Steps = 100 Number of Steps = 1, 000 Number of Steps = 10, 000

Figure 12: Qualitative results of image generation with Max. σt. Each image is obtained by running
different number of steps. Sampling images with Max. σt for a large number of steps fails to generate
plausible images.
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“Quirky steampunk workshop filled with gears and gadgets”

StochSync

StochSync w/ 8K Res.

“Rocky desert landscape with towering saguaro cacti”

StochSync

StochSync w/ 8K Res.

“Elegant ballroom with crystal chandeliers and marble floors”

StochSync

StochSync w/ 8K Res.

Figure 13: Qualitative results of high resolution panorama generation using StochSync.
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Output Spec. ↑ Spec. ↓ Output Spec. ↑ Spec. ↓
A bronze box A marble dresser

A golden lion A stainless vase

Figure 14: Qualitative results of 3D mesh texturing with PBR materials using StochSync.

“Quaint canal lined with boats and cafes”

“Cozy neighborhood pub with outdoor seating”

“Rocky desert landscape with towering saguaro cacti”

“Quirky steampunk workshop filled with gears and gadgets”

Figure 15: Qualitative results of 360◦ panorama generation using a video diffusion model, CameraC-
trl (He et al., 2024) with StochSync.
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1st frame 5th frame 9th frame 13th frame

Figure 16: Videos generated using a pose-conditioned video diffusion model, CameraCtrl (He et al.,
2024). Each row shows sampled frames from videos conditioned on camera trajectories with rotation
angles of 90◦, 180◦, and 360◦ (from top to bottom).

“A luxury chair” “A microphone made of ruby”

“An excavator covered with moss” “A drum kit made of ruby”

Figure 17: Qualitative results of texturing 3D Gaussians (Kerbl et al., 2023) using StochSync.
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