

000 001 002 003 004 005 006 007 008 009 010 011 012 013 014 015 016 017 018 019 020 021 022 023 024 025 026 027 028 029 030 031 032 033 034 035 036 037 038 039 040 041 042 043 044 045 046 047 048 049 050 051 052 053 GEO-R1: IMPROVING FEW-SHOT GEOSPATIAL RE- FERRING EXPRESSION UNDERSTANDING WITH REIN- FORCEMENT FINE-TUNING

006
007 **Anonymous authors**
008 Paper under double-blind review

011 ABSTRACT

013 Referring expression understanding in remote sensing poses unique challenges,
014 as it requires reasoning over complex object–context relationships. While su-
015 pervised fine-tuning (SFT) on multimodal large language models achieves strong
016 performance with massive labeled datasets, they struggle in data-scarce scenarios,
017 leading to poor generalization. To address this limitation, we propose Geo-R1, a
018 reasoning-centric reinforcement fine-tuning (RFT) paradigm for few-shot geospa-
019 tial referring. Geo-R1 enforces the model to first generate explicit, interpretable
020 reasoning chains that decompose referring expressions, and then leverage these
021 rationales to localize target objects. This “reason first, then act” process enables
022 the model to make more effective use of limited annotations, enhances gener-
023 alization, and provides interpretability. We validate Geo-R1 on three carefully
024 designed few-shot geospatial referring benchmarks, where our model consistently
025 and substantially outperforms SFT baselines. It also demonstrates strong cross-
026 dataset generalization, highlighting its robustness. Code and data will be released
027 at <http://geo-r1.github.io>.

028 1 INTRODUCTION

030 Vision language models (VLMs) have become a critical tool for remote sensing imagery (RSI) un-
031 derstanding (Li et al., 2024c; Weng et al., 2025). By coupling natural language with RSI, VLMs
032 can drive a wide spectrum of tasks in the RS domain, such as image captioning, visual question an-
033 swering, referring expression comprehension (REC), referring expression segmentation (RES) (Li
034 et al., 2024c; Zhou et al., 2024a). Among these capabilities, REC and RES tasks are especially im-
035 portant: both require the model to resolve free-form linguistic descriptions (e.g., “a small vehicle is
036 situated at the bottom right adjacent to a large vehicle”) into concrete, spatially localized predictions
037 (bounding boxes or segmentation masks) in high-resolution aerial images. We henceforth use the
038 term *Referring Expression Understanding* (REU) to denote a unified framework encompassing both
039 REC and RES, where the task is to take an image and a text query as input and output one or more
040 target objects.

041 Although recent works (Kuckreja et al., 2024; Yuan et al., 2024; Zhou et al., 2024b) have achieved
042 remarkable progress on REU tasks with supervised finetuning (SFT), these methods are highly de-
043 pendent on large-scale training labels. High-quality REU supervision demands not only image-level
044 labels but also precise language–region alignment at the object and region levels. Creating such
045 associations in overhead imagery requires expertise and careful tooling: annotators must parse com-
046 plex scene layouts, disambiguate visually similar man-made structures, and write unambiguous re-
047 ferring expressions before drawing spatially accurate boxes or masks. Compared with image-level
048 labels, these fine-grained annotations are orders of magnitude more labor-intensive. For example,
049 VRSBench (Li et al., 2024b) costs 1,004 labor hours for label verification only.

050 This reality makes few-shot learning (e.g., only 10 samples are provided for each category) in REU
051 valuable. Previous works, such as RS-CLIP(Li et al., 2023) and RemoteCLIP (Liu et al., 2024a)
052 have demonstrated that finetuning CLIP (Radford et al., 2021) on a few samples can yield strong
053 results for scene classification. However, these advances cannot be directly carried over to REU
since region-level grounding is harder than scene-level classification. Moreover, object relations

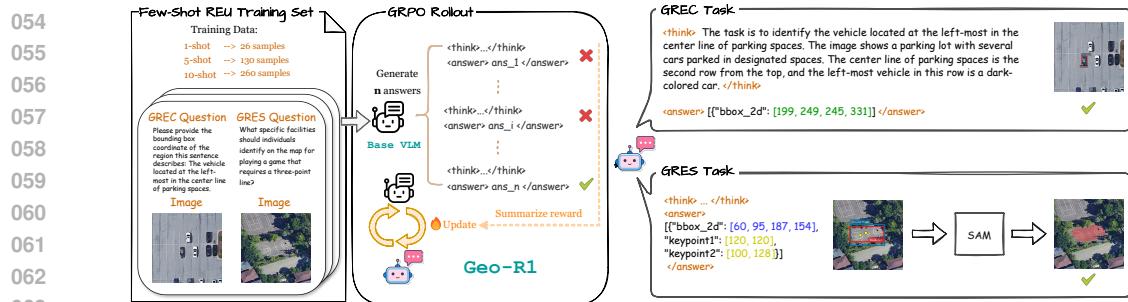


Figure 1: Geo-R1 method overview. Geo-R1 is trained on a few labeled samples with reinforcement learning (e.g., GRPO (Shao et al., 2024)) and can identify target objects (bounding boxes or masks) from an input image and text query while providing the reasoning process.

are complex for REU, requiring relational reasoning and disambiguation among visually similar structures. This raises the question: *with only a handful of aligned examples for each category, can a VLM learn to accurately ground language in remote sensing images?*

Driven by the impressive reasoning capabilities of OpenAI o1 (Jaech et al., 2024) and DeepSeek-R1 (Guo et al., 2025), reinforcement learning (RL) has become a powerful post-training paradigm for augmenting the reasoning capabilities of LLMs during post-training. RL explicitly encourages intermediate “thinking” steps, and forces the model learns to reason before committing to a prediction. This reasoning-first behavior is particularly well suited to few-shot REU: reasoning steps (e.g., “My intuition leads me to identify the vehicle sitting in the circular opening near the roadway as the small vehicle.”) serve as a transferable experience that generalizes better across different text-image samples than directly outputting a box/mask from next-token-prediction supervision.

In this work, we introduce a reasoning-centric RL post-training method, Geo-R1, which leverages task-specific reward functions to address few-shot REU. Geo-R1 encourages the model to generate explicit reasoning—intermediate hypotheses that parse the referring expression, identify contextual anchors, and iteratively refine localization—thereby regularizing learning and improving generalization. Unlike SFT, which relies on a single teacher-forced trajectory with a differentiable surrogate loss, Geo-R1 explores multiple reasoning chains and proposals, extracting advantages from N -way comparisons to provide denser and richer supervision per example, making better use of few-shot samples. Moreover, for RES, Geo-R1 directly optimizes a task-aligned *MaskGIoU* reward through the non-differentiable “BBox + SAM” pipeline (Ravi et al., 2025), enabling end-to-end training for dense prediction—a capability infeasible under SFT. Method overview can be found in Fig. 1.

In our experiments, we observe three consistent advantages from RL over SFT baselines for few-shot REU in remote sensing images. (1) With the same small number of labeled examples, our RFT-based reasoning model substantially outperforms SFT-based models on few-shot REU tasks. (2) In cross-dataset evaluation, our RFT-based model remarkably outperforms SFT counterparts, suggesting the reasoning model has stronger cross-dataset generalization than non-reasoning models. (3) The learned reasoning traces are concise and reasonable, utilizing the spatial and semantic cues that benefit the final localization, which provides a great interpretability. We further establish three few-shot benchmarks and define a few-shot protocol for REU. In summary, our contributions are listed below:

- To the best of our knowledge, we are the first to explore Referring Expression Understanding (REU) for aerial image understanding under few-shot settings. To facilitate rigorous and reproducible evaluation, we create VRSBench-FS, EarthReason-FS, and NWPU-FS, establishing standardized protocols for few-shot REU in remote sensing.
- We define task-aligned rewards and a reasoning-centric RL recipe, including BBoxIoU reward for REC and a MaskGIoU reward for RES. We introduce the RL-trained reasoning models (Geo-R1) that generate concise grounding rationales for these tasks.
- Across all three benchmarks, our Geo-R1 models consistently outperform SFT under identical few-shot budgets, while exhibiting stronger generalization across datasets and providing human-auditable reasoning traces that explain successes and failures.

108

2 TASK AND METHODOLOGY

109
110 This section details the adaptation of the GRPO algorithm from language-only tasks to vision-
111 language tasks. Then, we introduce and formally define the REU task under few-shot settings.
112 Finally, we discuss how to apply GRPO to these tasks with customized task-specific reward func-
113 tions.114
115

2.1 GRPO: FROM LLM TO VLM

116
117 Building upon the foundation of reinforcement learning algorithms like Proximal Policy Optimiza-
118 tion (PPO) (Schulman et al., 2017), Group Relative Policy Optimization (GRPO) (Shao et al.,
119 2024) has become a more effective and memory-efficient evolution for training advanced reasoning
120 models by eliminating the value model and changing the reward model to rule-based reward. The
121 advantage is estimated in a group-relative manner, simplifying the training process.122 The GRPO algorithm begins by sampling N candidate outputs $\{o_1, \dots, o_N\}$ from the current policy
123 π_θ for a given query prompt q . Each response o_i is then evaluated by a reward function $R(q, o_i)$ to
124 obtain a raw reward score r_i . To measure the relative quality of each response within the sampled
125 group, GRPO standardizes the raw rewards to obtain the advantage value, as shown in Eq. 1. The
126 advantage value \hat{A}_i denotes the normalized advantage of the response o_i relative to other samples
127 within the group.

128
129
$$\hat{A}_i = \frac{r_i - \text{mean}\{r_1, r_2, \dots, r_N\}}{\text{std}\{r_1, r_2, \dots, r_N\}} \quad (1)$$

130 The policy π_θ is updated with a training objective (Eq. 2), designed to encourage the generation of
131 responses with higher advantages.

132
133
$$\mathcal{J}_{\text{GRPO}}(\theta) = \mathbb{E}_{\{o_i\}_{i=1}^N \sim \pi_{\theta_{\text{old}}}(\cdot|q)} \left[\frac{1}{N} \sum_{i=1}^N \left(\min \left(c_1 \cdot \hat{A}_i, c_2 \cdot \hat{A}_i \right) - \beta D_{\text{KL}}(\pi_\theta || \pi_{\text{ref}}) \right) \right], \quad (2)$$

134 where

135
136
$$c_1 = \frac{\pi_\theta(o_i | q)}{\pi_{\theta_{\text{old}}}(o_i | q)}, c_2 = \text{clip}\left(\frac{\pi_\theta(o_i | q)}{\pi_{\theta_{\text{old}}}(o_i | q)}, 1 - \varepsilon, 1 + \varepsilon\right). \quad (3)$$

137 Here, $D_{\text{KL}}(\pi_\theta || \pi_{\text{ref}})$ denotes the KL divergence between the current policy π_θ and the reference pol-
138 icy π_{ref} , which serves as a regularization term to prevent large deviations. The clipping mechanism
139 in c_2 stabilizes training by constraining the policy update ratio.140 For LLMs on tasks with definitive answers, like mathematical reasoning, this reward can be calcu-
141 lated using a rule-based verifiable reward function. By applying a reward to the thinking process and
142 using the GRPO algorithm, DeepSeek-R1 (Guo et al., 2025) can provide both final answers and the
143 logical reasoning process that leads to them. This approach can be extended to VLMs by converting
144 visual metrics into tailored reward signals. Recently, there are some works that adapt GRPO for
145 vision-language tasks by engineering task-specific rewards, such as VLM-R1 (Shen et al., 2025),
146 Visual-RFT (Liu et al., 2025b), Seg-Zero (Liu et al., 2025a), etc.147
148

2.2 FEW-SHOT REFERRING EXPRESSION UNDERSTANDING TASK

149
150 Referring Expression Understanding (REU) serves as a unifying framework for Generalized Re-
151 ferring Expression Comprehension (GREC) and Generalized Referring Expression Segmentation
152 (GRES). Given an image I and a textual query q , a vision-language model (VLM) \mathcal{F} predicts one
153 or more target objects, as formulated in Eq. 4:

154
155
$$\{O_1, \dots, O_N\} = \mathcal{F}(I, q), \quad (4)$$

156 where each O_i denotes a predicted object parsed from VLM text outputs, and N denotes the number
157 of parsed objects. In the case of GREC, O_i is represented as a bounding box, while for GRES, O_i is
158 represented as an instance mask.159 Tasks such as REC, RES, Generalized REC (GREC) (He et al., 2023), Generalized RES (GRES)
160 (Liu et al., 2023), Visual Grounding (VG) (Plummer et al., 2015), Open-Vocabulary Detection

(OVD), and Open-Vocabulary Segmentation (OVS) (Wu et al., 2024) can all be seen as specialized forms of REU, each with a different emphasis.

In this work, we focus on three representative REU tasks: (i) REC, which targets single-object detection from complex reasoning queries; (ii) OVD, which addresses multi-object detection from template-based queries; and (iii) GRES, which requires multi-object segmentation from complex reasoning queries. All tasks are studied under few-shot settings. In our formulation, the number of shots refers to the number of annotated bounding boxes or masks. Specifically, in the FS-GREC setup, including FS-REC and FS-OVD, one “shot” is defined as an image–query–box triplet, while in FS-GRES, one “shot” corresponds to an image–query–mask triplet. Importantly, a ground-truth mask may include multiple valid instances for a single query (Li et al., 2025b). Among these tasks, FS-GRES is the most challenging, as it constitutes a pixel-level extension of FS-GREC and requires the model to generate accurate segmentation masks for objects described by natural-language queries in aerial images (Yuan et al., 2024).

The few-shot setting substantially increases task difficulty by requiring models to generalize from only a handful of labeled examples, in contrast to large-scale datasets such as VRSBench (Li et al., 2024b) (36k training examples), and DIOR-RSVG (27k) (Zhan et al., 2023). Few-shot REU is particularly challenging due to: (1) *visual diversity*, arising from large variations in object size, orientation, appearance, and inter-object relationships; and (2) *description diversity*, as natural language queries may vary in structure, vocabulary, abstraction level, and reasoning complexity. These factors jointly make few-shot REU a more realistic yet significantly harder problem compared to conventional large-scale training scenarios.

2.3 REWARD DESIGN

Following DeepSeek-R1, the reward function of Geo-R1 includes a task-agnostic format reward and a task-specific metrics reward.

2.3.1 FORMAT REWARD

To ensure reliable parsing and evaluation, the model’s output must follow a well-defined structure. We define a binary format reward that checks whether the response conforms to this structure. The output must be wrapped in reasoning tags `<think>...</think>` and `<answer>...</answer>`. The format reward is defined as:

$$R_{\text{format}}(q, o) = \begin{cases} 1, & \text{if output follows the expected format} \\ 0, & \text{otherwise} \end{cases} \quad (5)$$

2.3.2 METRICS REWARD

GREC. For the REC task, the VLM predicts a single object bounding box, i.e., $b_{\text{pred}} = \mathcal{F}(I, q)$. An IoU reward can be calculated by comparing b_{pred} with the ground-truth box b_{gt} . For the OVD task, the VLM predicts is a set of box–label pairs, i.e., $\mathbb{B}_{\text{pred}} = \{(b_{\text{pred}}^i, c_{\text{pred}}^i)\}_{i=1}^N$, where b_{pred}^i denotes predicted bounding box, c_{pred}^i denotes category label. We then calculate reward as mAP between \mathbb{B}_{pred} and corresponding ground truth \mathbb{B}_{gt} , along with a penalty coefficient for overlength predictions. The metrics reward for GREC task is defined as follow:

$$R_{\text{metrics}}(q, o) = \begin{cases} \text{IoU}(b_{\text{pred}}, b_{\text{gt}}), & \text{for REC task} \\ \min(1, \sqrt{\frac{N_{\text{gt}}}{N}}) \cdot \text{mAP}(\mathbb{B}_{\text{pred}}, \mathbb{B}_{\text{gt}}), & \text{for OVD task} \end{cases} \quad (6)$$

where N_{gt} denotes the number of ground truth objects.

GRES. For GRES task, the VLM model is prompted to output a set of box–point pairs, $\mathbb{B}_{\text{pred}} = \{(b_{\text{pred}}^i, p_{\text{pred}}^i)\}_{i=1}^N$, where b_{pred}^i denotes a predicted bounding box and p_{pred}^i denotes the associated keypoints. These predictions are then provided as prompts to a frozen SAM to generate final instance masks \mathbb{M}_{pred} . Each predicted instance mask is trimmed to ensure its boundary does not exceed that of the corresponding bounding box. Given ground truth instance masks \mathbb{M}_{gt} , the metrics reward for GRES task is defined as follows:

$$R_{\text{metrics}}(q, o) = \text{MaskGIoU}(\mathbb{M}_{\text{pred}}, \mathbb{M}_{\text{gt}}). \quad (7)$$

We follow LISA (Lai et al., 2024) to calculate mask GIoU.

216

3 MAIN EXPERIMENT

217

3.1 EXPERIMENT SETUP

218 **Datasets.** Unlike conventional few-shot learning (e.g., TPN (Liu et al., 2018) and DPGN (Yang
 219 et al., 2020)), we do not partition the dataset into base and novel classes. Instead, we treat all classes
 220 as novel and provide only a few labeled examples per class. We construct instruction-following few-
 221 shot datasets for the FS-GREC and FS-GRES tasks by deriving them from the training sets of three
 222 widely used remote sensing benchmarks: VRSBench Li et al. (2024b), NWPU VHR-10 (Cheng
 223 et al., 2014), and EarthReason (Li et al., 2025b). Configurations and statistics are summarized
 224 in Table 1. The term “shot” follows the definition in section 2.2. For the OVD task, we select
 225 four classes on which the baseline model (Qwen2.5-VL-3B) demonstrated decent performance. We
 226 select all categories from the training set for other tasks. The low-shot dataset is a subset of the high-
 227 shot dataset. To evaluate cross-dataset generalization, we further evaluate zero-shot performance on
 228 DIOR-RSVG (Zhan et al., 2023) and RRSIS-D (Yuan et al., 2024) datasets.
 229

230

Table 1: Overview of our Few-Shot Referring Expression Understanding Datasets.

Dataset Name	Source Dataset	Task	# Categories	# Shots	# VQAs	# Images	Shot Definition
VRSBench-FS	VRSBench	FS-REC	26	{10, 5, 1}	260	254	image-query-box
NWPU-FS	NWPU VHR-10	FS-OVD	4	{10, 5}	25	25	image-query-box
EarthReason-FS	EarthReason	FS-GRES	24	{10, 5, 1}	240	240	image-query-mask

231 **Model and Training Details.** We adopt Qwen2.5-VL-3B-Instruct (Bai et al., 2025) as base model.
 232 Our implementation is built on the VLM-R1¹ and Easy-R1² codebase. Unless otherwise specified,
 233 we strictly inherit the default hyperparameters without manual tuning. We set the same batch size for
 234 different post-training paradigm. We trained comparing models for 30 epochs, with early stopping
 235 when the reward converged. All experiments are conducted on 8 × H100 GPUs, and a full training
 236 run takes approximately 10 to 20 hours. Prompt templates are shown in Appendix C. We apply
 237 thinking prompts for RL-based Paradigms. We adopt GRPO as our primary RL-based post-training
 238 paradigm. For SFT-based post-training, we perform visual instruction tuning with standard next
 239 token prediction (NTP) loss, implemented via LLaMA-Factory (Zheng et al., 2024).
 240

241

3.2 FEW-SHOT GENERALIZED REFERRING EXPRESSION COMPREHENSION - REC

242 **Task Evaluation.** Performance on the REC subtask is measured by $\text{Acc}@\tau$ (a prediction is correct
 243 if its box IoU with the ground truth exceeds τ) in the test set of VRSBench. We report metrics for
 244 $\text{Acc}@0.5$ and $\text{Acc}@0.7$. The experiments are conducted in 1-shot, 5-shot, and 10-shot configurations,
 245 with “Unique,” “Non-Unique,” and overall results reported. This evaluation compares the SFT
 246 method against two RL-based approaches, GRPO (Shao et al., 2024) and DAPO (Yu et al., 2025).
 247 We highlight the performance gap in red.
 248

249 **Results.** Table 2 compares models trained on the full VRSBench (Full Amount Fine-tune) against
 250 few-shot models (1/5/10-shot Fine-tune). The few-shot results include both SFT-based models and
 251 our RL-tuned models. Performance data for the full-data baselines (except Qwen2.5-VL) are taken
 252 from the original VRSBench paper. The results reveal a clear performance hierarchy: RL-based
 253 post-training methods consistently and significantly outperform the SFT approach across all settings
 254 and metrics. This advantage is substantial; for example, in the 10-shot overall setting, our GRPO-
 255 based model achieves an $\text{Acc}@0.5$ score 12.30% higher than its SFT counterpart. Remarkably,
 256 our 10-shot GRPO model using only 260 samples, 0.71% data, achieves a score that surpasses all
 257 evaluated models (except Qwen2.5-VL) trained on all 36,313 samples.
 258

259 Within RL-based approaches, DAPO consistently outperforms GRPO across nearly all scenarios,
 260 indicating that more effective RL training could further enhance performance in few-shot settings.
 261 Moreover, the gains from RL-based methods are more pronounced on the Unique subset than on the
 262 Non-Unique subset, suggesting that RL approaches provide a larger boost on simpler tasks that do
 263 not require distinguishing between same-category distractors.
 264

265 ¹<https://github.com/om-ai-lab/VLM-R1>

266 ²<https://github.com/hiyouga/EasyR1>

Table 2: Performance on VRSBench-FS for the FS-REC task. We report grounding accuracy at IoU thresholds of 0.5 and 0.7. Unique and Non-Unique indicate whether a referred object is the only instance of its category in the image or not.

Method	Base LLM	Unique		Non-Unique		Overall	
		Acc@0.5	Acc@0.7	Acc@0.5	Acc@0.7	Acc@0.5	Acc@0.7
Full Amount Fine-tune (36,313 samples)							
LLaVA-1.5 (Liu et al., 2024b)	Vicuna1.5-7B	51.10	16.40	34.80	11.50	41.60	13.60
Mini-Gemini (Li et al., 2024e)	Gemma-7B	41.10	9.60	22.30	4.90	30.10	6.80
MiniGPT-v2 (Chen et al., 2023)	Vicuna1.5-7B	40.70	18.90	32.40	15.20	35.80	16.80
GeoChat (Kuckreja et al., 2024)	Vicuna1.5-7B	57.40	22.60	44.50	18.00	49.80	19.90
Qwen2.5-VL (Bai et al., 2025)	Qwen2.5-3B	66.54	36.77	60.32	36.30	62.91	36.50
Zero-shot Baseline							
GPT-4V (OpenAI, 2024)	GPT-4	8.60	2.20	2.50	0.40	5.10	1.10
Qwen2.5-VL w/o thinking	Qwen2.5-3B	43.10	25.10	33.46	18.01	37.48	20.97
Qwen2.5-VL w/ thinking	Qwen2.5-3B	46.18	26.90	35.22	18.87	39.79	22.22
1-shot Fine-tune (26 samples)							
Qwen2.5-VL-SFT	Qwen2.5-3B	34.32	18.87	31.62	16.35	32.75	17.40
Geo-R1 (GRPO)	Qwen2.5-3B	52.17 <small>(+17.85)</small>	31.18 <small>(+12.31)</small>	41.21 <small>(+9.59)</small>	23.04 <small>(+6.69)</small>	45.78 <small>(+13.03)</small>	26.43 <small>(+9.03)</small>
Geo-R1 (DAPO)	Qwen2.5-3B	51.72 <small>(+17.40)</small>	31.68 <small>(+12.81)</small>	42.13 <small>(+10.51)</small>	24.50 <small>(+8.15)</small>	46.13 <small>(+13.38)</small>	27.50 <small>(+10.10)</small>
5-shot Fine-tune (130 samples)							
Qwen2.5-VL-SFT	Qwen2.5-3B	36.98	16.61	33.94	17.17	35.21	16.94
Geo-R1 (GRPO)	Qwen2.5-3B	54.11 <small>(+17.13)</small>	31.35 <small>(+14.74)</small>	42.98 <small>(+9.04)</small>	23.98 <small>(+6.81)</small>	47.62 <small>(+12.41)</small>	27.06 <small>(+10.12)</small>
Geo-R1 (DAPO)	Qwen2.5-3B	55.73 <small>(+18.75)</small>	32.19 <small>(+15.58)</small>	44.19 <small>(+10.25)</small>	24.86 <small>(+7.69)</small>	49.00 <small>(+13.79)</small>	27.92 <small>(+10.98)</small>
10-shot Fine-tune (260 samples)							
Qwen2.5-VL-SFT	Qwen2.5-3B	41.81	18.59	35.78	17.20	38.29	17.78
Geo-R1 (GRPO)	Qwen2.5-3B	57.27 <small>(+15.46)</small>	35.61 <small>(+17.02)</small>	45.81 <small>(+10.03)</small>	27.03 <small>(+9.83)</small>	50.59 <small>(+12.30)</small>	30.61 <small>(+12.83)</small>
Geo-R1 (DAPO)	Qwen2.5-3B	59.49 <small>(+17.68)</small>	37.11 <small>(+18.52)</small>	47.91 <small>(+12.13)</small>	28.07 <small>(+10.87)</small>	52.74 <small>(+14.45)</small>	31.84 <small>(+14.06)</small>

3.2.1 FEW-SHOT GENERALIZED REFERRING EXPRESSION COMPREHENSION - OVD

Task Evaluation. For the OVD task, we evaluate performance using the COCO-style mean Average Precision (mAP) in the test set of NWPU VHR-10 (Cheng et al., 2014). Our evaluation compares the SFT method against our GRPO approach. Experiments are run in 5/10-shot settings. Results are reported for the following four categories: airplane (PL), ship (SH), ground track field (GTF), and vehicle (VH). We intentionally exclude the 1-shot setting because training on a single instance would bias the model toward predicting a single instance per image, creating an inconsistency between the training and testing sets.

Results. Table 3 presents the OVD performance of SFT and GRPO tuned models. A notable observation is that SFT can be detrimental with extremely limited data. In both 10-shot and 5-shot settings, SFT-based models fail to surpass the performance of the zero-shot baseline in three out of four categories (airplane, ship, and vehicle). This suggests that the limited training data lacks intra-class diversity, causing the model to memorize the specific and even spurious features of the few samples rather than the general concept of the class, leading to overfitting, degrading the model’s detection capabilities. In contrast, the GRPO-tuned model categories and settings, demonstrating that RL is possible. More importantly, the advantage of GRPO in a low-data setting. The performance gap between the 10-shot scenario to 6.58 mAP in the 5-shot scenario to learn effectively in data-scarce environments.

Table 3: Performance on FS-NWPU for the FS-OVD task. We report mAP in COCO style.

	PL	SH	GTF	VH	Avg.
Zero-shot Baseline					
Qwen2.5-VL w/o thinking	23.79	25.34	44.13	24.04	29.33
Qwen2.5-VL w/ thinking	25.17	21.85	57.08	23.95	32.01
5-shot Fine-tune (20 samples)					
Qwen2.5-VL-SFT	6.32	22.33	65.48	12.36	26.62
Geo-R1 (GRPO)	21.74	25.42	70.23	15.40	33.20
10-shot Fine-tune (40 samples)					
Qwen2.5-VL-SFT	15.76	21.90	68.42	14.73	30.20
Geo-R1 (GRPO)	25.76	28.12	69.24	16.57	34.92

3.2.2 FEW-SHOT GENERALIZED REFERRING EXPRESSION SEGMENTATION

Task Evaluation. We conduct experiments on the EarthReason (Li et al., 2025b) dataset under few-shot setting. Following LISA (Lai et al., 2024), performance on the GRES task is measured

324 by the mask-based gIoU, defined by the average of all per-image IoUs. We use this metric because
 325 alternatives like cIoU are highly biased toward large-area objects and tend to fluctuate significantly.
 326 We report the final gIoU scores on the validation and test sets of the EarthReason dataset.
 327

328 **Results.** In Table 4, we demonstrate the effective results of our proposed pipeline and task-
 329 specific reward for training reasoning models of FS-GRES task. A direct performance com-
 330 parison with SFT-tuned model like in FS-GREC tasks is not feasible due to the unique bbox-
 331 mask-reward pipeline. To establish a fair benchmark, we compare our method against SegEarth-
 332 R1, which is trained using SegEarth-R1 pipeline on the same limited datasets EarthReason-FS.
 333 First, we found our GRPO-trained model, i.e., Geo-
 334 R1, demonstrates a significant improvement com-
 335 pared to the zero-shot baseline. It achieves a gIoU
 336 increase of up to 38.48 points on the validation set
 337 (from 19.35 to 57.78) and up to 26.11 points on the
 338 test set (from 32.16 to 58.27), showing the success of
 339 RL-based post-training paradigm. Then, we observe
 340 the model exhibits remarkable performance with a
 341 very small number of samples. With just 240 sam-
 342 ples (10-shot), our model demonstrates a compara-
 343 ble performance with PixelLM, which are trained
 344 on 900K instances with descriptions. *Using only*
 345 *240 samples (10-shot), which is roughly 2% train-
 346 ing data, Geo-R1 reaches nearly 83% of the per-
 347 formance of the SegEarth-R1 model that was trained on
 348 the entire training set.*

349 In a direct comparison, the GRPO pipeline consis-
 350 tently yields superior models to the SFT approach.
 351 Geo-R1 outperforms SegEarth-R1 in both the 10-
 352 shot and 5-shot settings. Crucially, *this performance*
 353 *gap becomes more significant as the amount of train-
 354 ing data decreases*. This trend indicates that RL-
 355 based post-training paradigm is a more effective and
 356 sample-efficient method for adapting large VLM to
 357 this specialized, pixel-level task, especially in data-
 358 scarce scenarios.

4 DISCUSSION

361 In this section, we first compare the learning dynamics of SFT and GRPO, then examine cross-
 362 dataset generalization, the upper bound of few-shot learning, and the impact of model size. Unless
 363 otherwise specified, experiments are conducted on the VRSBench-FS dataset under the 10-shot
 364 setting.

4.1 LEARNING CURVE COMPARISON

368 We fine-tune Qwen2.5-VL-3B with both SFT and
 369 GRPO on the FS-REC task using same batch size
 370 and evaluate checkpoints every 100 steps to sketch
 371 the learning curve. As shown in Figure 2, GRPO
 372 consistently outperforms SFT at every checkpoint,
 373 with an average gain of 9.74%. GRPO improves
 374 steadily, peaking around 400 steps, and remains
 375 strong until the end, whereas SFT oscillated within
 376 37%–40%. GRPO achieves a clearly higher ceiling
 377 and stabilizes around 50%, indicating better training
 efficiency under few-shot setting.

Table 4: Performance on the EarthReason for the FS-RES task. We report gIoU.

	Val	Test
Full Amount Fine-tune		
LISA	61.04	60.88
PixelLM	57.94	60.01
PSALM	66.61	68.30
SegEarth-R1	68.60	70.75
Zero-shot Baseline		
Qwen2.5-VL w/ thinking	19.35	32.16
1-shot Fine-tune (24 samples)		
SegEarth-R1	42.47	43.01
Geo-R1	51.38	50.30
5-shot Fine-tune (120 samples)		
SegEarth-R1	45.37	45.46
Geo-R1	54.73	56.01
10-shot Fine-tune (240 samples)		
SegEarth-R1	56.40	56.60
Geo-R1	57.78	58.27

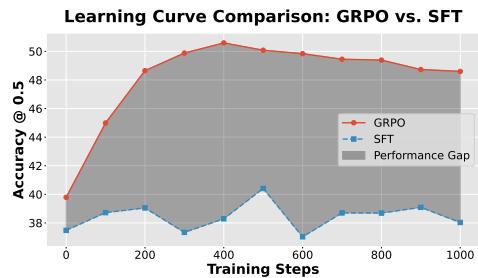


Figure 2: Learning curves of GRPO vs. SFT on FS-REC.

378
379

4.2 CROSS DATASET GENERALIZATION

380
381
382
383
384
385
386
387
388
389

We further assess the cross-dataset generalization of the SFT and GRPO approaches on the FS-GREC and FS-GRES tasks. For the FS-GREC task, we fine-tune models on the VRS-Bench dataset with limited supervision (1, 5, and 10-shot) and then evaluate model performance on the DIOR-RSVG target dataset, in a zero-shot manner. As shown in Table 5, GRPO consistently outperforms SFT across all settings, achieving a performance advantage of 4.92%, 6.05%, and 5.52% in the 1-shot, 5-shot, and 10-shot scenarios, respectively.

390
391
392
393
394

Similarly, for the FS-GRES task, models were tuned on the EarthReason dataset (1, 5, and 10-shot) and tested on the RRSIS-D dataset. Here, the GRPO-based model (Geo-R1) demonstrates a remarkable improvement over the SFT-based model (SegEarth-R1) under few-shot setting, achieving a relative improvement up to 80%. These results highlight GRPO’s incredible cross-dataset generalization, indicating superior transferability and robustness of Geo-R1.

395
396

4.3 UPPER BOUND OF FEW-SHOT LEARNING

397

As shown in Figure 3, GRPO clearly outperforms SFT in low-shot settings, although this performance gap narrows as supervision increases. To investigate this trend and determine the upper-bound capability of Geo-R1, we experimented with additional shot numbers (20, 50, 100, and 200). Concretely, the margin between GRPO and SFT approaches shrinks from 13.03% at 1-shot to 0.47% at 200-shot. This diminishing advantage suggests both approaches approach a common upper bound with more data. Empirically, they converge toward the full-data SFT result of 62.91%, indicating GRPO’s strong sample efficiency at small shots but similar asymptotic performance as shot count grows.

410

4.4 FEW-SHOT LEARNING MEETS MODEL SIZE

411

We then examine how model size influences the performance under different post-training paradigms. As shown in Figure 4, both SFT and GRPO benefit from increased model scales. However, this trend exhibits clear diminishing marginal returns. For instance, SFT gains 4.31% when scaling from 3B to 7B but only 2.23% from 7B to 32B, with a similar slowdown observed for GRPO from 3B to 7B. This suggests that while larger models provide a stronger foundation, simply increasing number of parameters yields limited benefits for the few-shot task. This can be attributed to the limited fine-tuning data. With few examples, high-capacity models tend to overfit by simply memorizing the training samples rather than learning generalizable features. Notably, GRPO’s performance decreased on the 32B model, likely due to two factors: overfitting on limited data and numerical instability from bf16 training.

428

5 RELATED WORK

429
430
431

Reasoning LLMs and VLMs. The OpenAI o1 (Jaech et al., 2024) showed that RL improves the reasoning capability of LLMs by learning from feedback on final outcomes. Recently, DeepSeek-

Table 5: Cross Dataset Evaluation.

# shot	VRSBench → DIOR-RSVG		EarthReason → RRSIS-D	
	SegEarth-R1	Geo-R1	SegEarth-R1	Geo-R1
1-shot	32.35	37.27 (4.92)	18.77	32.11 (13.54)
5-shot	34.52	40.57 (6.05)	20.29	36.41 (16.12)
10-shot	34.86	40.38 (5.52)	24.27	37.83 (13.56)

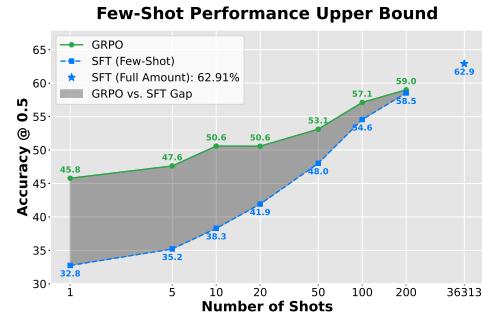


Figure 3: Few-shot Learning Upper-Bound.

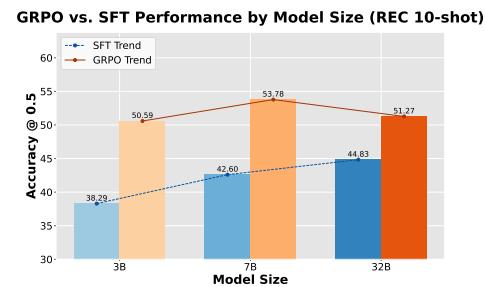


Figure 4: Few-shot Learning Upper-Bound.

R1 (Guo et al., 2025) demonstrated that rule-based rewards can be used with the GRPO algorithm to teach LLMs advanced reasoning skills. Inspired by the success of RL in LLMs, researchers are now applying the R1 framework to VLMs. R1-OneVision (Yang et al., 2025) created a step-by-step multimodal reasoning datasets for SFT and RL. Concurrently, R1-V (Chen et al., 2025) applied the GRPO algorithm to object counting, achieving the remarkable result of a 3B model outperforming much larger 72B models. VisualThinker-R1-Zero (Zhou et al., 2025) applied it directly to base VLMs, observing “visual aha moments”. Other studies refined the training process: Vision-R1 (Huang et al., 2025) first created a multimodal CoT dataset, serving as a cold-start before RL; LMM-R1 (Peng et al., 2025) used a two-phase strategy, starting with text-only reasoning before fine-tuning on multimodal data. Visual-RFT (Liu et al., 2025b), VLM-R1 (Shen et al., 2025), and Seg-Zero (Liu et al., 2025a) explored applying RL to image perception tasks.

Few-shot Learning in Remote Sensing. Few-shot learning (FSL) is crucial in RS, since it effectively addresses the challenge of limited labeled data. Attention-based contrastive learning have been shown to significantly improve classification accuracy in scene classification tasks (Xu et al., 2024; Zeng & Geng, 2022). Prototype-based networks (Li et al., 2021; Cheng et al., 2022) and multi-scale feature fusion strategies (Zhao et al., 2022) help models obtain diverse object characteristics, achieving state-of-the-art results on RS object detection benchmarks under few-shot settings. For segmentation, adaptive prototype clustering and mask-guided correlation learning enable precise pixel-level interpretation even with few annotated samples (Jiang et al., 2022; Jia et al., 2025; Li et al., 2024a; Shen et al., 2024). FSL enhances the efficiency and interpretability of RSI analysis, while also addressing key challenges in generalization and multimodal integration (Sun et al., 2021; Lee et al., 2024).

REC and RES in Remote Sensing. Referring expression comprehension in remote sensing—often termed remote sensing visual grounding (RSVG), which localizes a target in aerial imagery from a natural-language description. Early progress was established by the RSVG benchmark and the GeoVG model (Sun et al., 2022), and extended by DIOR-RSVG to broaden categories and scene scale (Zhan et al., 2023). In the MLLM era, GeoChat (Kuckreja et al., 2024) was the first MLLM to handle a wide range of RS vision-language tasks, including RSVG. Later, VRSBench (Li et al., 2024b) provided a high-quality dataset for RSVG task. RS-specific MLLMs such as EarthGPT (Zhang et al., 2024), RSGPT (Hu et al., 2025), SkySenseGPT (Luo et al., 2024), VHM (Pang et al., 2025), further unified different vision-language tasks, such as captioning, VG, VQA, and OVD, thus improving RS-specific alignment. For RES, Yuan et al. introduced the RES task for RS and released the RefSegRS dataset (Yuan et al., 2024). Liu et al. later introduced RRSIS-D, enabling pixel-level referring at scale (Liu et al., 2024c). Recent works such as GeoGround (Zhou et al., 2024b) and Skysense-O (Zhu et al., 2025) further unified the REC and RES tasks for RS images. Besides, works for OVD (Li et al., 2024d; Pan et al., 2025), and OVS (Li et al., 2025a;b) can be viewed as a special case of REC and RES (locate multiple objects with template-based description), which support grounding of novel categories.

6 CONCLUSION

In this paper, we define a generic task, Referring Expression Understanding, and contribute three corresponding few-shot remote sensing datasets for training: VRSBench-FS, NWPU-FS, and EarthReason-FS. We then compare RL-based (GRPO) and SFT-based post-training paradigms on few-shot REC, OVD, and GRES tasks within the RS domain. Our results show that our GRPO-trained model, Geo-R1, consistently outperforms standard SFT-tuned models across these tasks. The performance gains are particularly large in low-shot regimes, and the model exhibits significantly stronger cross-dataset generalization.

While our study demonstrates the effectiveness of reinforcement learning for few-shot referring expression understanding, several avenues remain. Our evaluation is limited to high-resolution aerial imagery; extending Geo-R1 to multispectral (e.g., Sentinel-2) and SAR data would further test its robustness. Beyond the three REU tasks studied (REC, RES, OVD), future work could explore broader grounding tasks such as GREC and OVS. Finally, scaling to larger shots, refining reward functions, and designing powerful RL training recipes remain promising directions.

486 REFERENCES
487

488 Shuai Bai, Keqin Chen, Xuejing Liu, Jialin Wang, Wenbin Ge, Sibo Song, Kai Dang, Peng Wang,
489 Shijie Wang, Jun Tang, Humen Zhong, Yuanzhi Zhu, Mingkun Yang, Zhaohai Li, Jianqiang Wan,
490 Pengfei Wang, Wei Ding, Zheren Fu, Yiheng Xu, Jiabo Ye, Xi Zhang, Tianbao Xie, Zesen Cheng,
491 Hang Zhang, Zhibo Yang, Haiyang Xu, and Junyang Lin. Qwen2.5-v1 technical report. *arXiv*
492 *preprint arXiv:2502.13923*, 2025.

493 Jun Chen, Deyao Zhu, Xiaoqian Shen, Xiang Li, Zechun Liu, Pengchuan Zhang, Raghuraman
494 Krishnamoorthi, Vikas Chandra, Yunyang Xiong, and Mohamed Elhoseiny. Minigpt-v2: large
495 language model as a unified interface for vision-language multi-task learning. *arXiv preprint*
496 *arXiv:2310.09478*, 2023.

497 Liang Chen, Lei Li, Haozhe Zhao, Yifan Song, and Vinci. R1-v: Reinforcing super generalization
498 ability in vision-language models with less than \$3. <https://github.com/Deep-Agent/R1-V>, 2025. Accessed: 2025-02-02.

499 Gong Cheng, Junwei Han, Peicheng Zhou, and Lei Guo. Multi-class geospatial object detection
500 and geographic image classification based on collection of part detectors. *ISPRS Journal of Photo-*
501 *grammetry and Remote Sensing*, 98:119–132, 2014.

502 Gong Cheng, Bowei Yan, Peizhen Shi, Ke Li, Xiwen Yao, Lei Guo, and Junwei Han. Prototype-cnn
503 for few-shot object detection in remote sensing images. *IEEE Transactions on Geoscience and*
504 *Remote Sensing*, 60:1–10, 2022. doi: 10.1109/TGRS.2021.3078507.

505 Daya Guo, Dejian Yang, Haowei Zhang, Junxiao Song, Peiyi Wang, Qihao Zhu, Runxin Xu, Ruoyu
506 Zhang, Shirong Ma, Xiao Bi, et al. Deepseek-r1 incentivizes reasoning in llms through reinforce-
507 ment learning. *Nature*, 645(8081):633–638, 2025.

508 Shuting He, Henghui Ding, Chang Liu, and Xudong Jiang. Grec: Generalized referring expression
509 comprehension. *arXiv preprint arXiv:2308.16182*, 2023.

510 Yuan Hu, Jianlong Yuan, Congcong Wen, Xiaonan Lu, Yu Liu, and Xiang Li. Rsgpt: A remote
511 sensing vision language model and benchmark. *ISPRS Journal of Photogrammetry and Remote*
512 *Sensing*, 224:272–286, 2025.

513 Wenxuan Huang, Bohan Jia, Zijie Zhai, Shaosheng Cao, Zheyu Ye, Fei Zhao, Yao Hu, and Shaohui
514 Lin. Vision-r1: Incentivizing reasoning capability in multimodal large language models. *arXiv*
515 *preprint arXiv:2503.06749*, 2025.

516 Aaron Jaech, Adam Kalai, Adam Lerer, Adam Richardson, Ahmed El-Kishky, Aiden Low, Alec
517 Helyar, Aleksander Madry, Alex Beutel, Alex Carney, et al. Openai o1 system card. *arXiv*
518 *preprint arXiv:2412.16720*, 2024.

519 Yuyu Jia, Jiabo Li, and Qi Wang. Generalized few-shot semantic segmentation for remote sensing
520 images. *IEEE Transactions on Geoscience and Remote Sensing*, 63:1–10, 2025. doi: 10.1109/
521 TGRS.2025.3531874.

522 Xufeng Jiang, Nan Zhou, and Xiang Li. Few-shot segmentation of remote sensing images using
523 deep metric learning. *IEEE Geoscience and Remote Sensing Letters*, 19:1–5, 2022.

524 Kartik Kuckreja, Muhammad S Danish, Muzammal Naseer, Abhijit Das, Salman Khan, and Fahad S
525 Khan. Geochat: Grounded large vision-language model for remote sensing. the iee. In *CVF*
526 *Conference on Computer Vision and Pattern Recognition*, volume 2, pp. 4, 2024.

527 Xin Lai, Zhuotao Tian, Yukang Chen, Yanwei Li, Yuhui Yuan, Shu Liu, and Jiaya Jia. Lisa: Rea-
528 soning segmentation via large language model. In *Proceedings of the IEEE/CVF Conference on*
529 *Computer Vision and Pattern Recognition (CVPR)*, pp. 9579–9589, June 2024.

530 Gao Yu Lee, Tanmoy Dam, Md Meftahul Ferdous, Daniel Puiu Poenar, and Vu N Duong. Unlocking
531 the capabilities of explainable few-shot learning in remote sensing. *Artificial Intelligence Review*,
532 57(7):169, 2024.

540 Kaiyu Li, Ruixun Liu, Xiangyong Cao, Xueru Bai, Feng Zhou, Deyu Meng, and Zhi Wang.
 541 Segearth-ov: Towards training-free open-vocabulary segmentation for remote sensing images.
 542 In *Proceedings of the Computer Vision and Pattern Recognition Conference*, pp. 10545–10556,
 543 2025a.

544 Kaiyu Li, Zepeng Xin, Li Pang, Chao Pang, Yupeng Deng, Jing Yao, Guisong Xia, Deyu Meng, Zhi
 545 Wang, and Xiangyong Cao. Segearth-r1: Geospatial pixel reasoning via large language model.
 546 *arXiv preprint arXiv:2504.09644*, 2025b.

548 Shuo Li, Fang Liu, Licheng Jiao, Xu Liu, Puhua Chen, and Lingling Li. Mask-guided correlation
 549 learning for few-shot segmentation in remote sensing imagery. *IEEE Transactions on Geoscience*
 550 and *Remote Sensing*, 62:1–14, 2024a. doi: 10.1109/TGRS.2024.3417965.

551 Xiang Li, Jingyu Deng, and Yi Fang. Few-shot object detection on remote sensing images. *IEEE*
 552 *Transactions on Geoscience and Remote Sensing*, 60:1–14, 2021.

554 Xiang Li, Congcong Wen, Yuan Hu, and Nan Zhou. Rs-clip: Zero shot remote sensing scene
 555 classification via contrastive vision-language supervision. *International Journal of Applied Earth*
 556 *Observation and Geoinformation*, 124:103497, 2023.

557 Xiang Li, Jian Ding, and Mohamed Elhoseiny. Vrsbench: A versatile vision-language benchmark
 558 dataset for remote sensing image understanding. *Advances in Neural Information Processing*
 559 *Systems*, 37:3229–3242, 2024b.

561 Xiang Li, Congcong Wen, Yuan Hu, Zhenghang Yuan, and Xiao Xiang Zhu. Vision-language mod-
 562 els in remote sensing: Current progress and future trends. *IEEE Geoscience and Remote Sensing*
 563 *Magazine*, 12(2):32–66, 2024c.

564 Yan Li, Weiwei Guo, Xue Yang, Ning Liao, Dunyun He, Jiaqi Zhou, and Wenxian Yu. Toward
 565 open vocabulary aerial object detection with clip-activated student-teacher learning. In *European*
 566 *Conference on Computer Vision*, pp. 431–448. Springer, 2024d.

568 Yanwei Li, Yuechen Zhang, Chengyao Wang, Zhisheng Zhong, Yixin Chen, Ruihang Chu, Shaoteng
 569 Liu, and Jiaya Jia. Mini-gemini: Mining the potential of multi-modality vision language models.
 570 *arXiv preprint arXiv:2403.18814*, 2024e.

571 Chang Liu, Henghui Ding, and Xudong Jiang. Gres: Generalized referring expression segmentation.
 572 In *Proceedings of the IEEE/CVF conference on computer vision and pattern recognition*, pp.
 573 23592–23601, 2023.

575 Fan Liu, Delong Chen, Zhangqingyun Guan, Xiaocong Zhou, Jiale Zhu, Qiaolin Ye, Liyong Fu,
 576 and Jun Zhou. Remoteclip: A vision language foundation model for remote sensing. *IEEE*
 577 *Transactions on Geoscience and Remote Sensing*, 62:1–16, 2024a.

580 Haotian Liu, Chunyuan Li, Yuheng Li, and Yong Jae Lee. Improved baselines with visual instruction
 581 tuning. In *2024 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)*, pp.
 582 26286–26296, 2024b.

584 Sihan Liu, Yiwei Ma, Xiaoqing Zhang, Haowei Wang, Jiayi Ji, Xiaoshuai Sun, and Rongrong Ji.
 585 Rotated multi-scale interaction network for referring remote sensing image segmentation. In *2024*
 586 *IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)*, pp. 26648–26658,
 587 2024c.

588 Yanbin Liu, Juho Lee, Minseop Park, Saehoon Kim, Eunho Yang, Sung Ju Hwang, and Yi Yang.
 589 Learning to propagate labels: Transductive propagation network for few-shot learning. In *Inter-
 590 national Conference on Learning Representations*, 2018.

593 Yuqi Liu, Bohao Peng, Zhisheng Zhong, Zihao Yue, Fanbin Lu, Bei Yu, and Jiaya Jia. Seg-
 594 zero: Reasoning-chain guided segmentation via cognitive reinforcement. *arXiv preprint*
 595 *arXiv:2503.06520*, 2025a.

596 Ziyu Liu, Zeyi Sun, Yuhang Zang, Xiaoyi Dong, Yuhang Cao, Haodong Duan, Dahua Lin, and Jiaqi
 597 Wang. Visual-rft: Visual reinforcement fine-tuning. *arXiv preprint arXiv:2503.01785*, 2025b.

594 Junwei Luo, Zhen Pang, Yongjun Zhang, Tingzhu Wang, Linlin Wang, Bo Dang, Jiangwei Lao, Jian
 595 Wang, Jingdong Chen, Yihua Tan, et al. Skysensegpt: A fine-grained instruction tuning dataset
 596 and model for remote sensing vision-language understanding. *arXiv preprint arXiv:2406.10100*,
 597 2024.

598 599 OpenAI. Gpt-4v(ision) system card. https://cdn.openai.com/papers/GPTV_System_Card.pdf, 2024. Accessed: 2025-08-30.

600 601 Jiancheng Pan, Yanxing Liu, Yuqian Fu, Muyuan Ma, Jiahao Li, Danda Pani Paudel, Luc Van Gool,
 602 and Xiaomeng Huang. Locate anything on earth: Advancing open-vocabulary object detection
 603 for remote sensing community. In *Proceedings of the AAAI Conference on Artificial Intelligence*,
 604 volume 39, pp. 6281–6289, 2025.

605 606 Chao Pang, Xingxing Weng, Jiang Wu, Jiayu Li, Yi Liu, Jiaxing Sun, Weijia Li, Shuai Wang, Litong
 607 Feng, Gui-Song Xia, et al. Vhm: Versatile and honest vision language model for remote sensing
 608 image analysis. In *Proceedings of the AAAI Conference on Artificial Intelligence*, volume 39, pp.
 609 6381–6388, 2025.

610 611 Yingzhe Peng, Gongrui Zhang, Miaozen Zhang, Zhiyuan You, Jie Liu, Qipeng Zhu, Kai Yang,
 612 Xingzhong Xu, Xin Geng, and Xu Yang. Lmm-r1: Empowering 3b lmms with strong reasoning
 613 abilities through two-stage rule-based rl. *arXiv preprint arXiv:2503.07536*, 2025.

614 615 Bryan A. Plummer, Liwei Wang, Chris M. Cervantes, Juan C. Caicedo, Julia Hockenmaier, and
 616 Svetlana Lazebnik. Flickr30k entities: Collecting region-to-phrase correspondences for richer
 617 image-to-sentence models. In *2015 IEEE International Conference on Computer Vision (ICCV)*,
 pp. 2641–2649, 2015. doi: 10.1109/ICCV.2015.303.

618 619 Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya Ramesh, Gabriel Goh, Sandhini Agarwal,
 620 Girish Sastry, Amanda Askell, Pamela Mishkin, Jack Clark, et al. Learning transferable visual
 621 models from natural language supervision. In *International conference on machine learning*, pp.
 622 8748–8763. PMLR, 2021.

623 624 Nikhila Ravi, Valentin Gabeur, Yuan-Ting Hu, Ronghang Hu, Chaitanya Ryali, Tengyu Ma, Haitham
 625 Khedr, Roman Rädle, Chloe Rolland, Laura Gustafson, Eric Mintun, Junting Pan, Kalyan Va-
 626 sudev Alwala, Nicolas Carion, Chao-Yuan Wu, Ross Girshick, Piotr Dollar, and Christoph Fe-
 627 ichtenhofer. SAM 2: Segment anything in images and videos. In *The Thirteenth International
 Conference on Learning Representations*, 2025.

628 629 John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. Proximal policy
 630 optimization algorithms. *arXiv preprint arXiv:1707.06347*, 2017.

631 632 Zhihong Shao, Peiyi Wang, Qihao Zhu, Runxin Xu, Junxiao Song, Xiao Bi, Haowei Zhang,
 633 Mingchuan Zhang, YK Li, Yang Wu, et al. Deepseekmath: Pushing the limits of mathemati-
 634 cal reasoning in open language models. *arXiv preprint arXiv:2402.03300*, 2024.

635 636 Haozhan Shen, Peng Liu, Jingcheng Li, Chunxin Fang, Yibo Ma, Jiajia Liao, Qiaoli Shen, Zilun
 637 Zhang, Kangjia Zhao, Qianqian Zhang, et al. Vlm-r1: A stable and generalizable r1-style large
 638 vision-language model. *arXiv preprint arXiv:2504.07615*, 2025.

639 640 Weihao Shen, Ailong Ma, Junjue Wang, Zhuo Zheng, and Yanfei Zhong. Adaptive self-supporting
 641 prototype learning for remote sensing few-shot semantic segmentation. *IEEE Transactions on
 642 Geoscience and Remote Sensing*, 62:1–16, 2024. doi: 10.1109/TGRS.2024.3435086.

643 644 Xian Sun, Bing Wang, Zhirui Wang, Hao Li, Hengchao Li, and Kun Fu. Research progress on
 645 few-shot learning for remote sensing image interpretation. *IEEE Journal of Selected Topics in
 646 Applied Earth Observations and Remote Sensing*, 14:2387–2402, 2021. doi: 10.1109/JSTARS.
 647 2021.3052869.

648 649 Yuxi Sun, Shanshan Feng, Xutao Li, Yunming Ye, Jian Kang, and Xu Huang. Visual grounding in
 650 651 remote sensing images. In *Proceedings of the 30th ACM International Conference on Multimedia*,
 652 MM '22, pp. 404–412, New York, NY, USA, 2022. Association for Computing Machinery. ISBN
 653 9781450392037. doi: 10.1145/3503161.3548316.

648 Xingxing Weng, Chao Pang, and Gui-Song Xia. Vision-language modeling meets remote sensing:
 649 Models, datasets, and perspectives. *IEEE Geoscience and Remote Sensing Magazine*, 2025.
 650

651 Jianzong Wu, Xiangtai Li, Shilin Xu, Haobo Yuan, Henghui Ding, Yibo Yang, Xia Li, Jiangning
 652 Zhang, Yunhai Tong, Xudong Jiang, et al. Towards open vocabulary learning: A survey. *IEEE*
 653 *Transactions on Pattern Analysis and Machine Intelligence*, 46(7):5092–5113, 2024.

654 Yulong Xu, Hanbo Bi, Hongfeng Yu, Wanxuan Lu, Peifeng Li, Xinming Li, and Xian Sun.
 655 Attention-based contrastive learning for few-shot remote sensing image classification. *IEEE*
 656 *Transactions on Geoscience and Remote Sensing*, 62:1–17, 2024. doi: 10.1109/TGRS.2024.
 657 3385655.

658 Ling Yang, Liangliang Li, Zilun Zhang, Xinyu Zhou, Erjin Zhou, and Yu Liu. Dpgn: Distribution
 659 propagation graph network for few-shot learning. In *Proceedings of the IEEE/CVF Conference*
 660 *on Computer Vision and Pattern Recognition (CVPR)*, June 2020.

661

662 Yi Yang, Xiaoxuan He, Hongkun Pan, Xiyan Jiang, Yan Deng, Xingtao Yang, Haoyu Lu, Dacheng
 663 Yin, Fengyun Rao, Minfeng Zhu, et al. R1-onevision: Advancing generalized multimodal rea-
 664 soning through cross-modal formalization. *arXiv preprint arXiv:2503.10615*, 2025.

665 Qiying Yu, Zheng Zhang, Ruofei Zhu, Yufeng Yuan, Xiaochen Zuo, Yu Yue, Weinan Dai, Tiantian
 666 Fan, Gaohong Liu, Lingjun Liu, et al. Dapo: An open-source llm reinforcement learning system
 667 at scale. *arXiv preprint arXiv:2503.14476*, 2025.

668

669 Zhenghang Yuan, Lichao Mou, Yuansheng Hua, and Xiao Xiang Zhu. Rrsis: Referring remote
 670 sensing image segmentation. *IEEE Transactions on Geoscience and Remote Sensing*, 2024.

671

672 Qingjie Zeng and Jie Geng. Task-specific contrastive learning for few-shot remote sensing image
 673 scene classification. *ISPRS Journal of Photogrammetry and Remote Sensing*, 191:143–154, 2022.

674

675 Yang Zhan, Zhitong Xiong, and Yuan Yuan. Rsvg: Exploring data and models for visual grounding
 676 on remote sensing data. *IEEE Transactions on Geoscience and Remote Sensing*, 61:1–13, 2023.

677

678 Wei Zhang, Miaoxin Cai, Tong Zhang, Yin Zhuang, and Xuerui Mao. Earthgpt: A universal mul-
 679 timodal large language model for multisensor image comprehension in remote sensing domain.
 680 *IEEE Transactions on Geoscience and Remote Sensing*, 62:1–20, 2024.

681

682 Zhitao Zhao, Ping Tang, Lijun Zhao, and Zheng Zhang. Few-shot object detection of remote sensing
 683 images via two-stage fine-tuning. *IEEE Geoscience and Remote Sensing Letters*, 19:1–5, 2022.
 684 doi: 10.1109/LGRS.2021.3116858.

685

686 Yaowei Zheng, Richong Zhang, Junhao Zhang, Yanhan Ye, Zheyuan Luo, Zhangchi Feng, and
 687 Yongqiang Ma. Llamafactory: Unified efficient fine-tuning of 100+ language models. *arXiv*
 688 *preprint arXiv:2403.13372*, 2024.

689

690 Hengguang Zhou, Xirui Li, Ruochen Wang, Minhao Cheng, Tianyi Zhou, and Cho-Jui Hsieh. R1-
 691 zero’s “aha moment” in visual reasoning on a 2b non-sft model. *arXiv preprint arXiv:2503.05132*,
 692 2025.

693

694 Yue Zhou, Litong Feng, Yiping Ke, Xue Jiang, Junchi Yan, Xue Yang, and Wayne Zhang. Towards
 695 vision-language geo-foundation model: A survey. *arXiv preprint arXiv:2406.09385*, 2024a.

696

697 Yue Zhou, Mengcheng Lan, Xiang Li, Litong Feng, Yiping Ke, Xue Jiang, Qingyun Li, Xue Yang,
 698 and Wayne Zhang. Geoground: A unified large vision-language model for remote sensing visual
 699 grounding. *arXiv preprint arXiv:2411.11904*, 2024b.

700

701 Qi Zhu, Jiangwei Lao, Deyi Ji, Junwei Luo, Kang Wu, Yingying Zhang, Lixiang Ru, Jian Wang,
 702 Jingdong Chen, Ming Yang, Dong Liu, and Feng Zhao. Skysense-o: Towards open-world re-
 703 mote sensing interpretation with vision-centric visual-language modeling. In *Proceedings of the*
 704 *Computer Vision and Pattern Recognition Conference (CVPR)*, pp. 14733–14744, June 2025.

702 **A THE USE OF LARGE LANGUAGE MODELS**
703704 The LLMs were used in three ways: (i) to edit and polish grammar and phrasing; (ii) using “Deep-
705 Research” to help retrieve and cluster related literature (with all citations verified by the authors).
706 We reviewed, verified, and take full responsibility for the contents.
707708 **B REPRODUCIBILITY STATEMENT**
709710 We are committed to ensuring the reproducibility of our research. When we trained the SFT model,
711 GRPO model and DAPO model, all the random seeds are fixed. Our implementation is built upon
712 VLM-R1 and Easy-R1 codebase. All datasets used in our experiments, such as VRSBench, NWPU,
713 EarthReason, RRSIS-D, and DIOR-RSVG, are publicly available. All models, training recipes will
714 be open-sourced in <http://geo-r1.github.io> to make sure the results presented in our main
715 paper are reproducible.
716717 **C PROMPT TEMPLATE**
718719 We largely follow the VLM-R1 prompt templates for REC, OVD, and extend the same interface to
720 the GRES setting. We append the thinking template at the end for all task prompts.
721722 **Prompt Template of REC**723 *Please provide the bounding box coordinates of the region this sentence describes: {query}.*
724725 **Prompt Template of OVD**726 *Please carefully check the image and detect the following objects: {target list}. Output
727 each detected target’s bbox coordinates in JSON format. The format of the bbox coordinates is:*728

```
```json
729 [
730 {
731 "bbox_2d": [x1, y1, x2, y2],
732 "label": "category name"
733 },
734 {
735 "bbox_2d": [x1, y1, x2, y2],
736 "label": "category name"
737 }
738]
739 ```
740
```

741 *If there are no such targets in the image, simply respond with None.*  
742743  
744  
745  
746  
747  
748  
749  
750  
751  
752  
753  
754  
755

756  
757

## Prompt Template of GRES

758  
759  
760

Please carefully check the image and answer: `{query}`. Based on your answer, detect all relevant objects in the image. Output each detected target's bbox coordinates in JSON format. The format of the bbox coordinates is:

761  
762  
763  
764  
765  
766  
767  
768  
769  
770  
771  
772  
773  
774

```
```json
[
{
    "bbox_2d": [x1, y1, x2, y2],
    "keypoint1": [x3, y3],
    "keypoint2": [x4, y4]
},
{
    "bbox_2d": [x1, y1, x2, y2],
    "keypoint1": [x3, y3],
    "keypoint2": [x4, y4]
}
]
```

```

775

## Thinking Template

776  
777  
778  
779

`{problem}` Output the thinking process in `<think>` `</think>` and final answer in `<answer>` `</answer>` tags.

780  
781  
782  
783  
784  
785  
786  
787

## D DEMO

We visualize the model's reasoning process for demonstration. Figure 5 shows some successful case on GRES task, while Figure 6 illustrates examples on GREC tasks. In general, Geo-R1 is able to provide a reasonable thinking process that leads to the accurate answer.

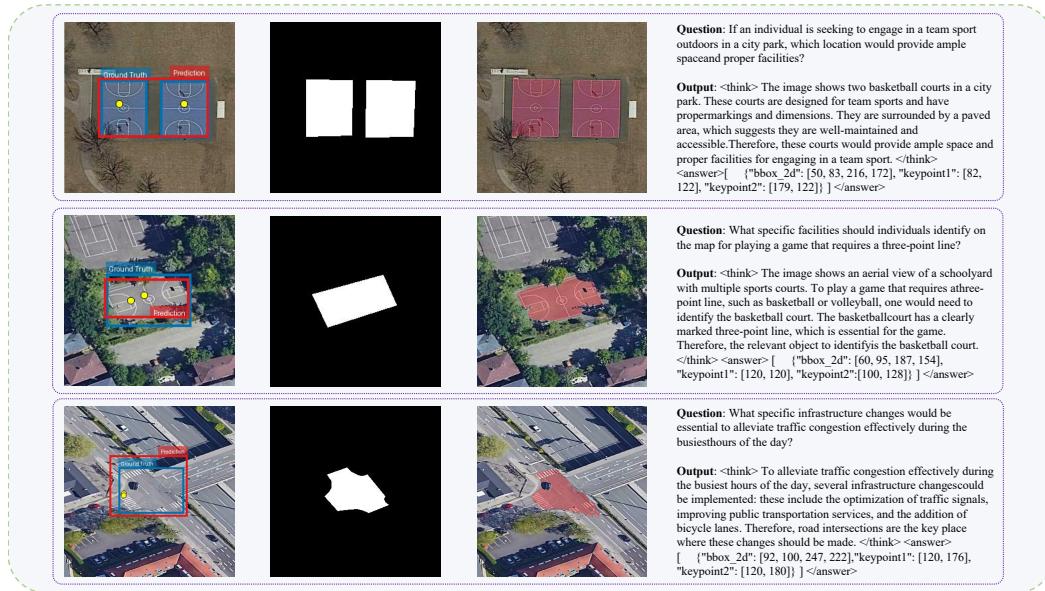
788  
789  
790  
791  
792  
793  
794  
795  
796  
797  
798  
799  
800  
801  
802  
803  
804  
805  
806  
807  
808  
809

Figure 5: Geo-R1 inference samples (success case for GRES).

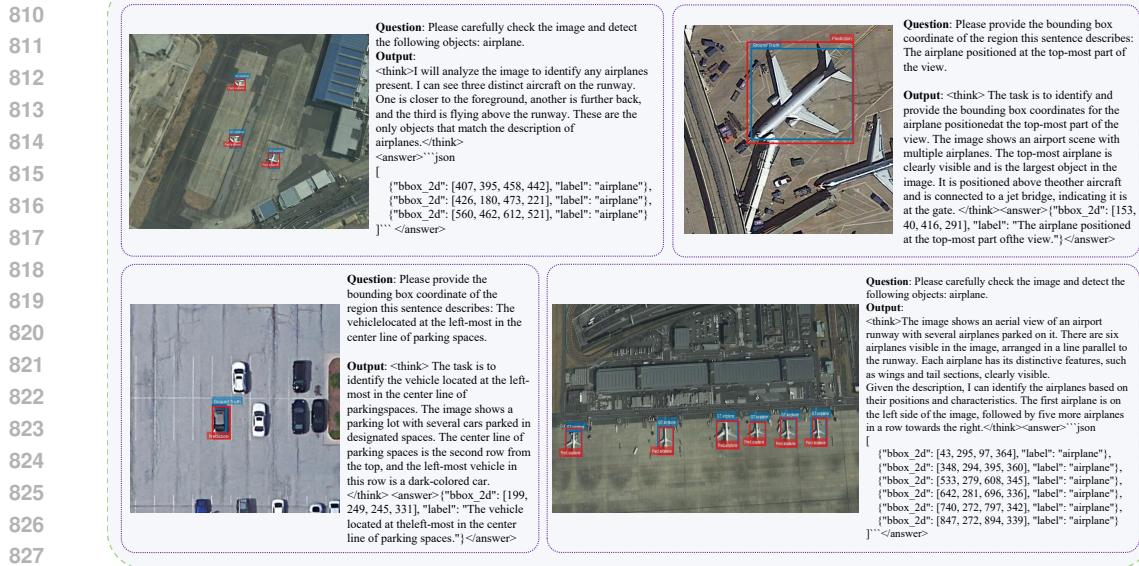


Figure 6: Geo-R1 inference samples (success case for GREC).

In general, Geo-R1 is able to provide a reasonable thinking process that leads to an accurate answer. However, we also identify key failure modes that highlight a disconnect between an often-plausible reasoning process and the final spatial output.

As shown in the top-left of Figure 7, the model can correctly reason in its reasoning process that the park area is the most suitable region for wildlife preservation, yet its final answer incorrectly grounds this concept to the nearby sports facility. In the bottom-right example, the model's reasoning correctly identifies the presence of multiple ships, but the final answer detects only the cluster on the left while omitting the group on the right. Furthermore, we also observe failures in reasoning process, the bottom-left example shows a failure within the reasoning process itself. Although the model accurately understands the task in its reasoning block (to identify the 'large vehicle'), it subsequently fails to apply this critical size attribute, incorrectly selecting a much smaller, adjacent vehicle for its final answer. These cases suggest that a key area for future improvement is strengthening the alignment between the model's high-level semantic understanding and the generation of accurate, complete, and precise spatial coordinates.

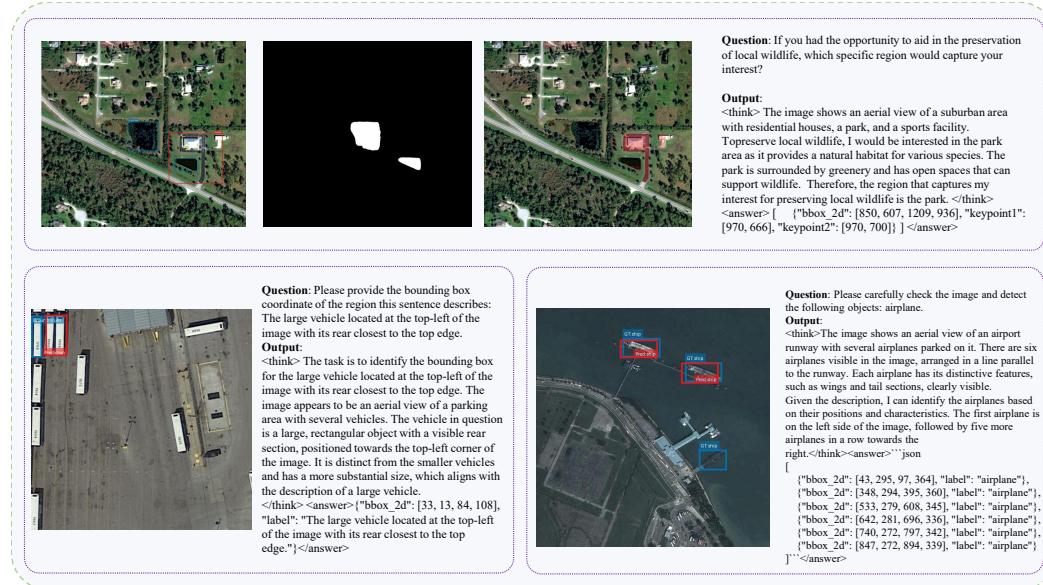


Figure 7: Geo-R1 inference samples (failure case).